八年级数学下册《分式》单元测试及答案
- 格式:doc
- 大小:150.00 KB
- 文档页数:2
八年级数学下第五章分式与分式方程单元检测试卷(北师大带答案和解释)【新北师大版八年级数学(下)单元测试卷】第五《分式与分式方程》班级:___________ 姓名:___________ 得分:___________一选择题:(每小题3分共36分)1.在,,,中,是分式的有()A.1个B.2个.3个D.4个2.每千克元的糖果x千克与每千克n元的糖果千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为()A.元B.元.元D.元3.当x=2时,下列分式中,值为零的是()A.B..D.4.下列分式是最简分式的是()A.B..D..若,则的值为()A.1 B..D.6.计算所得的正确结论是()A B1 D-17.a÷b× ÷× ÷d×等于()A.a B..D.ab d8.计算的结果为:()A.B.-.-D.9.分式的分子分母都加1,所得的分式的值比()A.减小了B.不变.增大了D.不能确定10.若,则=()A B D11.关于x的方式方程的解是正数,则可能是()A.﹣4 B.﹣.﹣6 D.﹣712.如果关于x的方程的解不是负值,那么a与b的关系是()A.a>b B.b≥ a .a≥3b D.a=3b二、填空题:(每小题3分共12分)13.化简:= .14.已知,则的值是。
1.计算:= .16.若关于的分式方程无解,则= .三解答题:(共2分)17.(分)计算:(﹣)÷.18.(分)计算:.19.(6分)先化简再求值:,其中a=2,b=﹣1.20.(6分)A、B两地相距200千米,甲车从A地出发匀速开往B 地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.21.(10分)某商店经销一种纪念品,9月份的销售额为2000元,为扩大销售,10月份该商店对这种纪念品打九折销售,结果销售量增加20,销售额增加700元.(1)求这种纪念品9月份的销售价格?(2)若9月份销售这种纪念品获利800元,问10月份销售这种纪念品获利多少元?22.(10分)某工程承包方指定由甲、乙两个工程队完成某项工程,若由甲工程队单独做需要40天完成,现在甲、乙两个工程队共同做20天后,由于甲工程队另有其他任务不再做该工程,剩下的工程由乙工程队再单独做了20天才完成任务.(1)求乙工程队单独完成该工程需要多少天?(2)如果工程承包方要求乙工程队的工作时间不能超过30天,要完成该工程,甲工程队至少要工作多少天?23.(10分)一项工程,甲、乙两公司合做,12天可以完成,共需付工费102000元;如果甲、乙两公司单独完成此项公程,乙公司所用时间甲公司的1倍,乙公司每天的施工费比甲公司每天的施工费少100元。
苏科新版八年级下学期《第10章分式》单元测试卷一.选择题(共21小题)1.下列各式中,分式的个数是().A.2B.3C.4D.52.使分式有意义的x的取值范围是()A.x≠1B.x≠2C.x≠1且x≠2D.x可为任何数3.若分式的值为0,则x的值是()A.±3B.﹣3C.3D.04.已知﹣=5,则分式的值为()A.1B.5C.D.5.一件工作,甲单独完成需要a天,乙单独完成需要b天,如果甲、乙二人合作,那么每天的工作效率是()A.a+b B.+C.D.6.不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是()A.B.C.D.7.化简的结果是()A.1B.C.D.08.若=﹣,则a﹣2b的值是()A.﹣6B.6C.﹣2D.29.下列分式中,最简分式是()A.B.C.D.10.张萌将分式进行通分,则这两个分式的最简公分母为()A.2(x+y)(x﹣y)B.4(x+y)(x﹣y)C.(x+y)(x﹣y)D.4(x+y)211.计算(a2b)3•的结果是()A.a5b5B.a4b5C.ab5D.a5b612.已知,则的值为()A.1B.0C.﹣1D.﹣213.张阿姨,李阿姨到农贸市场买大米,第一次,张阿姨买了100千克大米,李阿姨买了100元的大米;第二次,张阿姨还是买了100千克大米,李阿姨还是买了100元的大米.下列说法正确的是()A.如果米价下降张阿姨买的合算B.如果米价上涨张阿姨买的合算C.无论米价怎样变化李阿姨买的合算D.无法判断谁买的合算14.已知+=3,则代数式的值为()A.3B.﹣2C.﹣D.﹣15.下列方程是分式方程的是()A.B.C.x2﹣1=3D.2x+1=3x 16.若关于x的分式方程无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.5 17.方程=的解是()A.﹣B.C.﹣D.18.用换元法解方程,若设=y,则原方程可化为()A.y2﹣7y+6=0B.y2+6y﹣7=0C.6y2﹣7y+1=0D.6y2+7y+1=0 19.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣2 20.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A.=15B.=15C.=D.21.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()A.8B.7C.6D.5二.解答题(共7小题)22.下面是售货员与小明的对话:根据对话内容解答下列问题:(1)A、B两种文具的单价各是多少元?(2)若购买A、B两种文具共20件,其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,共有几种购买方案.23.两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒.(1)求两车的速度之和及两车相向而行时慢车驶过快车某个窗口(慢车车头到达窗口某一点至车尾离开这一点)所用的时间;(2)如果两车同向而行,慢车的速度不小于8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为多少秒?24.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?25.济南在创建全国文明城市的进程中,高新区为美化城市环境,计划种植树木30000棵,由于志愿者的加入,实际每天植树比原计划多20%.结果提前10天完成任务,求原计划每天植树多少棵.26.在某校举办的2012年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200个以上可以按折扣价出售;购买200个以下(包括200个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050元;若多买35个,则按折扣价付款,恰好共需1050元.设小王按原计划购买纪念品x个.(1)求x的范围;(2)如果按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同,那么小王原计划购买多少个纪念品?27.一项工程,甲队单独完成比乙队单独完成需少用9天,甲队单独做3天的工作乙队单独做需要4天,(1)甲、乙两队单独完成此项工程各需几天?(2)该项工程先由甲、乙两队合作,再由甲队单独完成,若完成此项工程不超过18天,甲乙两队至少合作几天?28.今年我区的葡萄喜获丰收,葡萄一上市,水果店的王老板用2400元购进一批葡萄,很快售完;老板又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批葡萄每件进价多少元?(2)王老板以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价最少打几折?(利润=售价﹣进价)苏科新版八年级下学期《第10章分式》单元测试卷参考答案与试题解析一.选择题(共21小题)1.下列各式中,分式的个数是().A.2B.3C.4D.5【分析】判断分式的依据是看代数式的分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,的分母中均不含有字母,因此它们是整式,而不是分式;a+的分子不是整式,因此不是分式.,,的分母中含有字母,因此是分式.故选:B.【点评】本题考查了分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式,A叫做分式的分子,B叫做分式的分母.注意π不是字母,是常数,所以不是分式,是整式.2.使分式有意义的x的取值范围是()A.x≠1B.x≠2C.x≠1且x≠2D.x可为任何数【分析】分式有意义的条件是分母≠0,即x2﹣3x+2≠0,解得x.【解答】解:∵x2﹣3x+2≠0即(x﹣1)(x﹣2)≠0,∴x﹣1≠0且x﹣2≠0,∴x≠1且x≠2.故选:C.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.3.若分式的值为0,则x的值是()A.±3B.﹣3C.3D.0【分析】分式的值等于零,分子等于零,且分母不等于零.【解答】解:依题意,得x2﹣9=0且x+3≠0,解得,x=3.故选:C.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.已知﹣=5,则分式的值为()A.1B.5C.D.【分析】已知等式左边通分并利用同分母分式的减法法则变形,整理后代入原式计算即可得到结果.【解答】解:已知等式整理得:=5,即x﹣y=﹣5xy,则原式===1,故选:A.【点评】此题考查了分式的值,熟练掌握运算法则是解本题的关键.5.一件工作,甲单独完成需要a天,乙单独完成需要b天,如果甲、乙二人合作,那么每天的工作效率是()A.a+b B.+C.D.【分析】合作的工作效率=甲的工作效率+乙的工作效率,据此可得.【解答】解:∵甲单独完成需要a天,乙单独完成需要b天,∴甲的工效为,乙的工效为,∴甲、乙二人合作每天的工作效率是+,故选:B.【点评】本题主要考查列代数式,解题的关键是熟练掌握工程问题中关于合作的工作效率的相等关系.6.不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是()A.B.C.D.【分析】首先判断出分式的分子、分母的最高次项的系数分别为﹣1、﹣5,它们都是负数;然后根据分式的基本性质,把分式的分子、分母同时乘以﹣1,使分子、分母的最高次项的系数都为正即可.【解答】解:==∴不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是.故选:C.【点评】此题主要考查了分式的基本性质的应用,要熟练掌握,解答此题的关键是要明确:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.7.化简的结果是()A.1B.C.D.0【分析】将分子利用平方差公式分解因式,再进一步计算可得.【解答】解:原式=====1,故选:A.【点评】本题主要考查约分,解题的关键是掌握平方差公式分解因式和约分的定义.8.若=﹣,则a﹣2b的值是()A.﹣6B.6C.﹣2D.2【分析】先去分母,得4x=(a﹣b)x+(﹣2a﹣2b),再根据对应相等求出a、b 的值,代入计算即可.【解答】解:化简得,4x=(a﹣b)x+(﹣2a﹣2b),∴a﹣b=4,﹣2a﹣2b=0,解得a=2,b=﹣2,∴a﹣2b=2﹣2×(﹣2)=6,故选:B.【点评】本题考查了通分以及解二元一次方程组,是基础知识要熟练掌握.9.下列分式中,最简分式是()A.B.C.D.【分析】根据最简分式的定义对各选项逐一判断即可得.【解答】解:A、==,不符合题意;B、==,不符合题意;C、是最简分式,符合题意;D、==,不符合题意;故选:C.【点评】本题主要考查最简分式,解题的关键是掌握一个分式的分子与分母没有公因式时,叫最简分式.10.张萌将分式进行通分,则这两个分式的最简公分母为()A.2(x+y)(x﹣y)B.4(x+y)(x﹣y)C.(x+y)(x﹣y)D.4(x+y)2【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式的分母分别是2x+2y=2(x+y)、4x﹣4y=4(x ﹣y),故最简公分母是4(x+y)(x﹣y).故选:B.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.11.计算(a2b)3•的结果是()A.a5b5B.a4b5C.ab5D.a5b6【分析】根据积的乘方等于乘方的积,分式的乘法,可得答案.【解答】解:原式=a6b3•=a5b5,故选:A.【点评】本题考查了分式的乘除法,熟记法则并根据法则计算是解题关键.12.已知,则的值为()A.1B.0C.﹣1D.﹣2【分析】解决本题首先将已知条件转化为最简形式,再把所求分式通分、代值即可.本题考查了分式的加减运算.【解答】解:把已知+=去分母,得(a+b)2=ab,即a2+b2=﹣ab∴+===﹣1.故选C.【点评】分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.13.张阿姨,李阿姨到农贸市场买大米,第一次,张阿姨买了100千克大米,李阿姨买了100元的大米;第二次,张阿姨还是买了100千克大米,李阿姨还是买了100元的大米.下列说法正确的是()A.如果米价下降张阿姨买的合算B.如果米价上涨张阿姨买的合算C.无论米价怎样变化李阿姨买的合算D.无法判断谁买的合算【分析】先设第一次大米的单价为a,第二次大米的单价为b,分别计算两人两次所卖大米的平均单价,求出单价,再比较两者的差,根据结果来比较大小.【解答】解:设第一次大米的单价为a,第二次大米的单价为b,张阿姨两次购买的平均单价为,李阿姨两次购买的平均单价为则﹣=≥0.所以无论米价怎样变化都是李阿姨买的合算.故选:C.【点评】本题考查了分式的混合运算,解题的关键是求出两人两次所买大米的平均单价,再比较单价的大小.14.已知+=3,则代数式的值为()A.3B.﹣2C.﹣D.﹣【分析】已知等式左边通分并利用同分母分式的加法法则计算,整理得到a+2b =6ab,代入原式计算即可得到结果.【解答】解:+==3,即a+2b=6ab,则原式===﹣,故选:D.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.15.下列方程是分式方程的是()A.B.C.x2﹣1=3D.2x+1=3x【分析】依据分式方程的定义进行判断即可.【解答】解:A、﹣=0是一元一次方程,故A错误;B、=﹣2是分式方程,故B正确;C、x2﹣1=3是一元二次方程,故C错误;D、2x+1=3x是一元一次方程,故D错误.故选:B.【点评】本题主要考查的是分式方程的定义,熟练掌握分式方程的定义是解题的关键.16.若关于x的分式方程无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.5【分析】去分母得出方程①(2m+x)x﹣x(x﹣3)=2(x﹣3),分为两种情况:①根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m;②求出当2m+1=0时,方程也无解,即可得出答案.【解答】解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),即(2m+1)x=﹣6,分两种情况考虑:①∵当2m+1=0时,此方程无解,∴此时m=﹣0.5,②∵关于x的分式方程无解,∴x=0或x﹣3=0,即x=0,x=3,当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),解得:此方程无解;当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),解得:m=﹣1.5,∴m的值是﹣0.5或﹣1.5,故选:D.【点评】本题考查了对分式方程的解的理解和运用,关键是求出分式方程无解时的x的值,题目比较好,难度也适中.17.方程=的解是()A.﹣B.C.﹣D.【分析】根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论解答可得.【解答】解:两边都乘以2(x+2),得:2(2x﹣1)=x+2,解得:x=,当x=时,2(x+2)≠0,所以x=是分式方程的解,故选:D.【点评】本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.18.用换元法解方程,若设=y,则原方程可化为()A.y2﹣7y+6=0B.y2+6y﹣7=0C.6y2﹣7y+1=0D.6y2+7y+1=0【分析】观察方程的两个分式具备的关系,若设=y,则原方程另一个分式为6×.可用换元法转化为关于y的方程.去分母、整理即可.【解答】解:把=y代入原方程得:y+6×=7,方程两边同乘以y整理得:y2﹣7y+6=0.故选:A.【点评】换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.19.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣2【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出未知字母的值.【解答】解:方程两边都乘(x+a)(x﹣2),得x+a+3(x﹣2)(x+a)=(a﹣x)(x﹣2),∵原方程有增根,∴最简公分母(a+x)(x﹣2)=0,∴增根是x=2或﹣a,当x=2时,方程化为:2+a=0,解得:a=﹣2;当x=﹣a时,方程化为﹣a+a=2a(﹣a﹣2),即a(a+2)=0,解得:a=0或﹣2.当a=﹣2时,原方程可化为+3=,化为整式方程得,1+3(x﹣2)=﹣x﹣2,即:x=,不存在增根,故不符合题意,当a=0时,原方程可化为,化为整式方程得,x+3x(x﹣2)=﹣x(x﹣2),解得x=或x=0,此时,有增根为x=0,∴a=0符合题意,故选:B.【点评】增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.20.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A.=15B.=15C.=D.【分析】若设走路线A时的平均速度为x千米/小时,则走路线B时的平均速度为1.6x千米/小时,根据路线B的全程比路线A的全程多7千米,走路线B 的全程能比走路线A少用15分钟可列出方程.【解答】解:设走路线A时的平均速度为x千米/小时,根据题意,得﹣=.故选:D.【点评】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.21.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()A.8B.7C.6D.5【分析】工效常用的等量关系是:工效×时间=工作总量,本题的等量关系为:甲工作量+乙工作量=1,根据从第三个工作日起,乙志愿者加盟此项工作,本题需注意甲比乙多做2天.【解答】解:方法1、设甲志愿者计划完成此项工作需x天,故甲的工效都为:,由于甲、乙两人工效相同,则乙的工效为甲前两个工作日完成了,剩余的工作量甲完成了,乙在甲工作两个工作日后完成了,则+=1,解得x=8,经检验,x=8是原方程的解.故选:A.方法2、设甲志愿者计划完成此项工作需a天,则一天完成工作总量的,由于甲、乙两人工效相同,则乙的一天完成工作总量的,甲实际工作了(a﹣3)天,乙比甲少工作两天,实际工作了(a﹣5)天,即用甲的工作量加乙的工作量=1,建立方程×(a﹣3)+×(a﹣5)=1,∴a=8,故选:A.【点评】本题主要考查分式方程的应用,还考查了工效×时间=工作总量这个等量关系.二.解答题(共7小题)22.下面是售货员与小明的对话:根据对话内容解答下列问题:(1)A、B两种文具的单价各是多少元?(2)若购买A、B两种文具共20件,其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,共有几种购买方案.【分析】(1)设A种文具的单价为x元,则B种文具单价为(25﹣x)元,根据用80元购买A种文具的数量是用120元购买B种文具的数量的2倍,列方程求解;(2)设学校购进A种文具a件,则购进B种文具(20﹣a)件,根据其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,列不等式求出a的取值范围,结合a为正整数,确定购买方案.【解答】解:(1)设A种文具的单价为x元,则B种文具单价为(25﹣x)元,由题意得,=,解得:x=10,经检验,x=10是分式方程的解,且符合题意,25﹣x=15答:种文具的单价为10元,则B种文具单价为15元;(2)设学校购进A种文具a件,则购进B种文具(20﹣a)件,由题意得,解得:8≤a<10,∵a是正整数,∴a为8或9∴共有两种购买方案.【点评】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒.(1)求两车的速度之和及两车相向而行时慢车驶过快车某个窗口(慢车车头到达窗口某一点至车尾离开这一点)所用的时间;(2)如果两车同向而行,慢车的速度不小于8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为多少秒?【分析】(1)快车驶过慢车某个窗口等量关系为:两车的速度之和×所用时间=快车车长;慢车驶过快车某个窗口等量关系为:两车的速度之和×所用时间=慢车车长;(2)等量关系为:两车速度之差×时间=两车车长之和.【解答】解:(1)设快,慢车的速度分别为x米/秒,y米/秒.根据题意得x+y==20,即两车的速度之和为20米/秒;设慢车驶过快车某个窗口需用t1秒,根据题意得x+y=,∴t1=.即两车相向而行时,慢车驶过快车某个窗口所用时间为7.5秒.答:两车的速度之和为20米/秒,两车相向而行时,慢车驶过快车某个窗口所用时间为7.5秒;(2)所求的时间t2=,∴,依题意,当慢车的速度为8米/秒时,t2的值最小,t2=,∴t2的最小值为62.5秒.答:从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为62.5秒.【点评】找到相应的等量关系是解决问题的关键;难点是得到相应的车速和路程.24.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)【分析】元,根据每件产品的成本价不超过34元,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论;(2)设这种产品的批发价为a元,则零售价为(a+30)元,根据数量=总价÷单价结合用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,即可得出关于a的分式方程,解之经检验后即可得出结论.【解答】解:(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)元,根据题意得:1.2(x+10)+x≤34,解得:x≤10.答:购入B种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a元,则零售价为(a+30)元,根据题意得:=,解得:a=50,经检验,a=50是原方程的根,且符合实际.答:这种产品的批发价为50元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出分式方程.25.济南在创建全国文明城市的进程中,高新区为美化城市环境,计划种植树木30000棵,由于志愿者的加入,实际每天植树比原计划多20%.结果提前10天完成任务,求原计划每天植树多少棵.【分析】设原计划每天种树x棵,则实际每天栽树的棵数为(1+20%),根据题意可得,实际比计划少用10天,据此列方程求解.【解答】解:设原计划每天种树x棵,则实际每天栽树的棵数为(1+20%),由题意得,﹣=10,解得:x=500,经检验,x=500是原分式方程的解,且符合题意.答:原计划每天种树500棵.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.26.在某校举办的2012年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200个以上可以按折扣价出售;购买200个以下(包括200个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050元;若多买35个,则按折扣价付款,恰好共需1050元.设小王按原计划购买纪念品x个.(1)求x的范围;(2)如果按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同,那么小王原计划购买多少个纪念品?【分析】(1)根据商场的规定确定出x的范围即可;(2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.【解答】解:(1)根据题意得:0<x≤200,且x∈N;(2)设小王原计划购买x个纪念品,根据题意得:×5=×6,整理得:5x+175=6x,解得:x=175,经检验x=175是分式方程的解,且满足题意,则小王原计划购买175个纪念品.【点评】此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.27.一项工程,甲队单独完成比乙队单独完成需少用9天,甲队单独做3天的工作乙队单独做需要4天,(1)甲、乙两队单独完成此项工程各需几天?(2)该项工程先由甲、乙两队合作,再由甲队单独完成,若完成此项工程不超过18天,甲乙两队至少合作几天?【分析】(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+9)天,根据甲队单独做3天的工作乙队单独做需要4天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设甲乙两队合作y天,根据完成此项工程不超过18天,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,取其中的最小值即可得出结论.【解答】解:(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+9)天,根据题意得:=,解得:x=27,经检验,x=27是原方程的解,且符合题意,∴x+9=36.答:甲队单独完成此项工程需27天,乙队单独完成此项工程需36天.(2)设甲乙两队合作y天,根据题意得:+≥1,解得:y≥12.。
初中数学81八年级数学下册分式单元测试题一、精心选一选(每小题3分,共24分)1.计算223)3(a a ÷-的结果是()(A )49a -(B )46a(C )39a (D )49a2.下列算式结果是-3的是()(A )1)3(--(B )0)3(-(C ))3(--(D )|3|--4.下列算式中,你认为正确的是( ) A .1-=---a b a b a bB 。
11=⨯÷ba ab C .D .b a b a b a b a +=--•+1)(12225.计算⎪⎪⎭⎫⎝⎛-÷⎪⎪⎭⎫ ⎝⎛-⋅24382342y x y x y x 的结果是()(A )x3-(B )x3(C )x12-(D )x126.如果x >y >0,那么xyx y -++11的值是()(A )0 (B )正数(C )负数(D )不能确定7.如果m 为整数,那么使分式13++m m 的值为整数的m 的值有()(A )2个(B )3个(C )4个(D )5个8.已知122432+--=--+x B x A x x x ,其中A 、B 为常数,则4A -B 的值为()(A )7 (B )9 (C )13 (D )5二、细心填一填(每小题3分,共30分)9.计算:-16-=.10.用科学记数法表示:-0.00002004=.11.如果32=b a,那么=+ba a____ .12.计算:a b bb a a -+-=.13.已知31=-a a ,那么221a a +=.14.一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f满足关系式:1u +1v =1f. 若f =6厘米,v =8厘米,则物距u =厘米.15.若54145=----xx x 有增根,则增根为___________.16、若2)63(2)3(----x x 有意义,那么x 的取值范围是 。
17、某工厂的锅炉房储存了c 天用的煤m 吨,要使储存的煤比预定多d 用天,每天应节约煤 吨 18.若1)1(1=-+x x ,则x = .三、耐心做一做(本题共6小题,共46分)19.(本题满分4分)化简:)3()126()2(2432x x x x ÷-+-.20.(本题满分4分) 计算:|1|2004125.02)21(032-++⨯---21.计算题(共18分) 1、)6()43(8232y x zy xx -⋅-⋅ 2.212293m m ---3.(-3ab -1)34.4xy 2z ÷(-2x -2yz -1)5.112---a a a 6.22428a a a -+-÷(a 2-4)·2442a a a -+-. 22.已知(a+11a -)(311a +-1)÷31aa -,其中a=99,求原式的值.(6分) 24.(本题满分5分)某商场销售某种商品,第一个月将此商品的进价加价20%作为销售价,共获利6000元,第二个月商场搞促销活动,将商品的进价加价10%作为销售价,第二个月的销售量比第一个增加了100件,并且商场第二个月比第一个月多获利2000元,问此商品进价是多少元?商场第二个月共销售多少件? 25.(本题满分4分)学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?附加题:国家对居民住宅建设明确规定:窗户面积必须小于卧室内地面面积,而且按采光标准,窗户面积必须与卧室内地面面积之比应该在15%左右,而且这个比值越大,采光条件越好,如果同时增加相等的窗户面积和地面面积,那么采光条件变好了还是变差了,请你运用数学知识这个回答问题。
(共25题)一、选择题(共10题)1.若分式x2−4x+2的值为0,则x的值为( )A.±2B.2C.−2D.02.在方程:x+32−5=0,4x=6,x2+x−3=0,x3−4x=1中,是分式方程的有( )A.2个B.3个C.4个D.0个3.使分式3xx+2有意义的x的取值范围为( )A.x≠−2B.x≠2C.x≠0D.x≠±24.若代数式1x−9有意义,则实数x的取值范围是( )A.x≠0B.x≥0C.x≠9D.x≥95.使分式13−x有意义的x的取值范围是( )A.x≠3B.x=3C.x≠0D.x=06.计算2x+3x+1−2xx+1的结果为( )A.1B.3x+1C.3D.x+3x+17.下列方程是分式方程的是( )A.x−32+x+13=4B.xπ+1−x+1π−1=2C.√x−1x−12=1D.2xx+x−22=48.计算(1+1x )÷x2+2x+1x的结果是( )A.x+1B.1x+1C.xx+1D.x+1x9.若分式xx−3有意义,则x的取值范围是( )A . x >3B . x <3C . x ≠3D . x =310. 要使分式 3x−1有意义,则 x 的取值范围是 ( )A . x ≠1B . x >1C . x <1D . x ≠−1二、填空题(共7题) 11. 化简:4xy 220x 2y = . 12. 若 a b=23,则a−b b= .13. 要使分式 x−1x+1 有意义,x 的取值应满足 .14. 要使分式 x 2−1(x+1)(x−2) 有意义,则 x 应满足的条件是 .15. 当 x 时,分式 1x+3 有意义.16. 当 x 时,分式 1x 的值为正数.17. 用换元法解方程1x 2−2x+2x 2−4x =3 时,如果设 x 2−2x =y ,那么原方程可以化为关于 y 的整式方程是 .三、解答题(共8题) 18. 按要求计算:(1) 计算:√12−∣2√3−1∣+(π−2√3)0÷(12)−2.(2) 因式分解:① 4a 2−25b 2;② −3x 3y 2+6x 2y 3−3xy 4. (3) 解方程:x−1x−2+2=32−x .19. 已知 1x −1y =2,求 3x+4xy−3y2x−5xy−2y 的值.20.解下列方程:2x−2−1x=0.21.计算:11+x +x1−x.22.化简:x4−16x3+2x2+4x+8.23.从不同角度谈谈你对等式x(x+4)=5的理解.24.“新禧”杂货店去批发市场购买某种新型儿童玩具,第一次用1200元购得玩具若干个,并以7元的价格出售,很快就售完.由于该玩具深受儿童喜爱,第二次进货时每个玩具的批发价已比第一次提高了20%,他用1500元所购买的玩具数量比第一次多10个,再按8元售完,问该老板两次一共赚了多少钱?25.解方程:5x−4=14−x+2.答案一、选择题(共10题)1. 【答案】B【解析】根据题意得x2−4=0且x+2≠0,解得x=2.【知识点】分式值为正,为负,为零的条件2. 【答案】B【解析】由分式方程的定义,知4x =6,x2+x−3=0,x3−4x=1是分式方程.【知识点】分式方程的概念3. 【答案】A【解析】x+2≠0,∴x≠−2.【知识点】分式有无意义的条件4. 【答案】C【知识点】分式有无意义的条件5. 【答案】A【解析】分式13−x有意义,则3−x≠0,解得:x≠3.【知识点】分式有无意义的条件6. 【答案】B【解析】2x+3x+1−2xx+1=2x+3−2xx+1=3x+1.【知识点】分式的加减7. 【答案】D【知识点】分式方程的概念8. 【答案】B【解析】原式=(xx+1x)÷(x+1)2x=x+1x⋅x(x+1)2=1x+1.【知识点】分式的混合运算9. 【答案】C【解析】∵分式xx−3有意义,∴x−3≠0,∴x的取值范围是x≠3.【知识点】分式有无意义的条件10. 【答案】A【解析】由题意得,x−1≠0,解得x≠1.【知识点】分式有无意义的条件二、填空题(共7题)11. 【答案】y5x【解析】原式=4xy⋅y4xy⋅5x =y5x.故答案为:y5x.【知识点】约分12. 【答案】−13【知识点】分式的基本性质13. 【答案】x≠−1【解析】∵分式x−1x+1有意义,∴x+1≠0,解得x≠−1.【知识点】分式有无意义的条件14. 【答案】x≠−1且x≠2【知识点】分式有无意义的条件15. 【答案】≠−3【解析】由题意得:x+3≠0,解得x≠−3.【知识点】分式有无意义的条件16. 【答案】 >0【解析】由题意得:1x >0,即 x >0.【知识点】分式值为正,为负,为零的条件17. 【答案】 2y 2−3y +1=0【知识点】分式方程的解法三、解答题(共8题) 18. 【答案】(1)√12−∣2√3−1∣+(π−2√3)0÷(12)−2=2√3−2√3+1+1+4= 6.(2) ① 原式=(2a +5b )(2a −5b );② 原式=−3xy 2(x 2−2xy +y 2)=−3xy 2(x −y )2.(3) 去分母得,x −1+2(x −2)=−3.3x −5=−3.解得x =23.检验:把 x =23 代入 x −2≠0,所以 x =23 是原方程的解.【知识点】提公因式法、算术平方根的运算、平方差、负指数幂运算、完全平方式、零指数幂运算、绝对值、分式方程的解法19. 【答案】 29.【知识点】约分、简单的代数式求值20. 【答案】去分母得:2x −x +2=0.解得:x =−2.经检验,x =−2 是原方程的解.【知识点】分式方程的解法21. 【答案】 1+x 21−x 2.【知识点】分式的加减22. 【答案】 x −2.【知识点】约分23. 【答案】①方程:一元二次方程 x 2+4x −5=0,两根分别为 x 1=1,x 2=−5;或分式方程 x +4−5x =0,两根分别为 x 1=1,x 2=−5; ②函数:二次函数 y =x 2+4x 与直线 y =5 的交点,或一次函数y=x+4与反比例函数y=5x的交点;③图形:边长为x和x+4,面积为5的矩形.【知识点】一元二次方程的解法、矩形的面积、分式方程的解法24. 【答案】设这种新型儿童玩具第一次进价为x元/个,则第二次进价为1.2x元/个,根据题意,得15001.2x −1200x=10,变形为:1500−1440=12x,解得:x=5.经检验,x=5是原方程的解.则该老板这两次购买玩具一共盈利为:15001.2×5×(8−1.2×5)+12005×(7−5)=980(元).答:该老板两次一共赚了980元.【知识点】分式方程的应用25. 【答案】去分母得:5=−1+2(x−4).整理得:2x=14.解得:x=7.经检验x=7是分式方程的解.【知识点】分式方程的解法。
华东师大版八年级数学下册第十六章分式章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果关于x 的不等式组45253m x x x ->⎧⎨+≥+⎩所有整数解中非负整数解有且仅有三个,且关于y 的分式方程2301322my y y --=--有正整数解,则符合条件的整数m 有( )个 A .1 B .2 C .3 D .42、若关于x 的一元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩的解集为x a ≤-,且关于x 的分式方程32222ax x x x +=+--有非负整数解,则所有满足条件的整数a 的值之和是( )A .14-B .5-C .9-D .6- 3、要使式子5a b a b -+值为0,则( ) A .a ≠0 B .b ≠0 C .5a =bD .5a =b 且b ≠0 4、根据分式的基本性质,分式22m -可以变形为( ) A .11m - B .22m -- C .22m -+ D .21m-5、下列关于x 的方程,是分式方程的是( )A .325xx -= B .11523x y -= C .32xx x π=+ D .1212x x=-+ 6、已知分式2ab a b +的值为25,如果把分式2ab a b+中的,a b 同时扩大为原来的3倍,那么新得到的分式的值为( )A .25 B .45 C .65 D .4257、下列运算正确的是( )A .22352a b a b -=-B .()22448a b a b -= C .()224--= D .()22224a b a b -=- 8、已知5a b +=,3ab =,则b a a b+的值为( ) A .6 B .193 C .223 D .89、若关于x 的一元一次不等式组()21122x x x m ⎧+-<+⎨-≤⎩的解集为1x <;关于x 的分式方程2422x m m x x ++=--的解为非负整数.则满足条件的整数m 的值之和是( )A .13B .12C .14D .1510、一辆汽车以60千米/时的速度行驶,从A 城到B 城需t 小时,如果该车的速度每小时增加v 千米,那么从A 城到B 城需要( )小时.A .60t v B .6060t v + C .60vt v + D .60vt 第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、计算下列各题:(1)|3﹣4|﹣1=_____;(2=_____;(3)30=_____;(4)32y xy x+=_____. 2、计算:24133--+=--m m m m _________. 3、如果分式2356x x x --+的值为零,那么x =____. 4、将0.000927用科学计数法表示为______.5、当x ≠4时,(x ﹣4)0=___.6、计算:1322x x x -+=++________. 7、已知ab =﹣4,a +b =3,则11a b +=_____. 8、若分式21x +无意义,则x 的值为__. 9、化简:1111x x x ⎛⎫+÷= ⎪--⎝⎭______. 10、计算:02202211122-⎛⎫⎛⎫-+--= ⎪ ⎪⎝⎭⎝⎭______. 三、解答题(5小题,每小题6分,共计30分)1、如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①11x x -+;②222a b a b --;③22x y x y +-,其中是“和谐分式”的是 (填写序号即可); (2)若a 为整数,且214x x ax --++为“和谐分式”,写出满足条件的a 的值为 ; (3)在化简22344a ab ab b b -÷-时,小明和小娟分别进行了如下三步变形:小明:原式22222323232232444444()()a a a a a b a ab b ab b b b ab b b ab b b --=-⋅=-=---, 小娟:原式22223222444444()()()a a a a a a ab ab b b b b a b b b a b --=-⋅=-=---, 你比较欣赏谁的做法?先进行选择,再根据你的选择完成化简过程,并说明你选择的理由.2、计算(1)()()()223a b a b a a b -+-+ (2)22242211x x x x x x ⎛⎫-+÷- ⎪-+-⎝⎭3、计算:()03.14π-4、计算:1111x y x y ----+-. 5、计算:(1)()()()23123a a a a -+--(2)()254111x x x x x --⋅++---参考答案-一、单选题1、B【解析】【分析】解不等式组和分式方程得出关于x 的范围,根据不等式组有且仅有非负整数解和分式方程的解为正整数解得出m 的范围,继而可得整数m 的个数.解:解不等式45m x ->,得:54m x -<, 解不等式253x x +≥+,得:2x ≥-,不等式组有且仅有三个非负整数解,4234m -∴<≤, 解得:1216m <≤,解关于y 的分式方程2301322my y y --=--, 23013(2)my y --=-,(13)58m y -=, 得:1358y m =-, 分式方程有正整数解, ∴58013m >-,且58213m ≠-,即42m ≠, 解得:13m >且42m ≠,综上,1316m <≤,所以所有满足条件的整数m 的值为14,15,一共2个.故选:B .【点睛】本题主要考查分式方程的解和一元一次不等式组的解,解题的关键是熟练掌握解分式方程和不等式组的能力,并根据题意得到关于m 的范围.2、B【解析】先解不等式组根据解集x a ≤-,求出得a 的范围,再解分式方程,根据非负整数解,求出a 的值即可求解.【详解】 解一元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩得5x x a ≤⎧⎨≤-⎩ ∵元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩的解集为x a ≤-∴5a ≥-,即5a ≥-解关于x 的分式方程32222ax x x x +=+--得61x a =-+ ∵分式方程32222ax x x x+=+--有非负整数解, ∴11a +=-或12a +=-或13a +=-或16a +=-,解得2a =-或3a =-或4a =-或7a =-, ∵621x a =-≠+ ∴4a ≠-∵5a ≥-∴2a =-或3a =-∴2(3)5-+-=-或3a =-故选:B【点睛】本题考查分式方程、一元一次不等式组,熟练掌握分式方程、一元一次不等式组的解法,注意分式方程增根的情况是解题的关键.3、D【解析】【分析】根据分式有意义的条件,即可求解.【详解】解:根据题意得:50a b -= 且0a b +≠ ,∴5a b = 且0b ≠ .故选:D【点睛】本题主要考查了,熟练掌握分式有意义的条件是分式的分子等于0且分母不等于0是解题的关键.4、B【解析】【分析】根据分式的基本性质即可求出答案.【详解】 解:原式2222m m =---, 故选B .【点睛】本题考查的是分式的基本性质,即分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.5、D【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.【详解】解:A.方程分母中不含未知数,故不是分式方程,不符合题意;B.方程分母中不含未知数,故不是分式方程,不符合题意;C.方程分母中不含表示未知数的字母,π是常数,故不是分式方程,不符合题意;D.方程分母中含未知数x,故是分式方程,符合题意.故选:D.【点睛】本题主要考查了分式方程的定义,解题的关键是掌握判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).6、C【解析】【分析】直接利用分式的基本性质进而化简得出答案.【详解】解:把分式2aba b+中的,a b都扩大为原来的3倍,则分式223392263333()55ab a b aba b a b a b===⨯=+++,故选:C.【点睛】本题主要考查了分式的基本性质,解题的关键是正确化简分式.7、B【解析】【分析】由题意依据合并同类项和积、幂的乘方以及负指数幂和完全平方差公式逐项进行运算判断即可.【详解】解:A. 222352a b a b a b -=-,本选项运算错误;B. ()22448a b a b -=,本选项运算正确; C. ()2124--=,本选项运算错误; D. ()222244a b a ab b -=-+,本选项运算错误.故选:B.【点睛】本题考查整式的混合运算以及完全平方差公式,熟练掌握合并同类项和积、幂的乘方以及负指数幂运算是解题的关键.8、B【解析】【分析】 将原式同分,再将分子变形为2()2a b ab ab+-后代入数值计算即可. 【详解】解:∵5a b +=,3ab =, ∴2222()25231933b a a b a b ab a b ab ab ++--⨯+====, 故选:B .【点睛】此题考查了分式的化简求值,正确掌握完全平方公式的变形计算是解题的关键.9、B【解析】【分析】由关于x 的一元一次不等式组可得m ≥-1,关于x 的分式方程的解为83m x -=,根据题意得出所有满足条件的整数m 的值,求和即可.【详解】解:解不等式组2(1)122x x x m +-<+⎧⎨-≤⎩得,12x x m <⎧⎨≤+⎩, 因为不等式组的解集为1x <;所以21m +≥,解得,1m ≥-; 解分式方程2422x m m x x ++=--得,83m x -=, 因为关于x 的分式方程2422x m m x x ++=--的解为非负数. 所以,803m -≥且823m -≠, 解得,8m ≤且2m ≠,又因为方程的解是非负整数,则整数m 的值为-1,5,8;它们的和为:-1+5+8=12;故选:B【点睛】本题主要考查了分式方程的解,一元一次不等式组的解集,有理数的混合运算.考虑解分式方程可能产生增根是解题的关键.10、B【解析】【分析】根据题意求出全程,及后来行驶的速度,相除即可得到时间.【详解】解:一辆汽车以60千米/时的速度行驶,从A城到B城需t小时,故全程为60t千米,该车的速度每小时增加v千米后的速度为每小时(60+v)千米,则从A城到B城需要6060tv+小时,故选:B.【点睛】此题考查了分式的实际应用,正确理解题意是解题的关键.二、填空题1、 0 3 1 5 x【解析】【分析】(1)先化简绝对值,再计算减法运算即可得;(2)先计算有理数的乘方,再计算算术平方根即可得;(3)计算零指数幂即可得;(4)根据分式的加法运算法则即可得.【详解】解:(1)原式11110=--=-=,故答案为:0;(2)原式3==,故答案为:3;(3)原式1=,故答案为:1;(4)原式325x x x+==, 故答案为:5x .【点睛】本题考查了零指数幂、算术平方根、分式的加法等知识点,熟练掌握各运算法则是解题关键.2、-1【解析】【分析】根据同分母分式的加法法则计算即可.【详解】 解:241241313333m m m m m m m m m---+--+===-----. 故答案为:-1.【点睛】本题考查了同分母分式的加减运算,同分母分式的加减法则:分母不变,分子相加减.3、3-【解析】【分析】根据分时的值为0的条件,可得30x -= 且2560x x -+≠ ,即可求解.【详解】 解:根据题意得:30x -= 且2560x x -+≠ ,即3x =± 且()()230x x --≠ ,∴3x =± 且2x ≠ 且3x ≠ ,∴3x =- .故答案为:3-【点睛】本题主要考查了分时的值为0的条件,熟练掌握当分式的分子等于0,且分母不等于0时,分时的值为0是解题的关键.4、9.27×10-4【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000927=9.27×10-4,故答案为:9.27×10-4.【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5、1【解析】【分析】根据零指数幂的定义:a0=1(a≠0),求解即可.【详解】解:∵x≠4,∴x-4≠0,∴(x-4)0=1.故答案是:1.【点睛】本题考查了零指数幂,掌握运算法则是解答本题的关键.6、1【解析】【分析】根据b c b ca a a++=计算即可.【详解】∵1322 xx x-+++=13222 x xx x-++=++=1,故答案为:1.【点睛】本题考查了同分母分式的加法,熟练掌握同分母分式的加减法的法则是解题的关键.7、3 4 -【解析】先通分:11a ba b ab++=,然后再代入数据即可求解.【详解】解:由题意可知:113344a ba b ab++===--,故答案为:34 -.【点睛】本题考查了分式的加减运算及求值,属于基础题,计算过程中细心即可.8、-1【解析】【分析】根据使分式无意义的条件“分母为0”,计算即可.【详解】根据题意有10x+=,解得:1x=-.故答案为:-1.【点睛】本题考查使分式无意义的条件.掌握使分式无意义的条件是分母为0是解答本题的关键.9、1【解析】【分析】根据分式的加减运算法则以及乘除运算法则即可求出答案.解:原式=1111x xx x +--⨯-=11x xx x-⨯-=1故答案为:1.【点睛】本题考查分式的混合运算,解题的关键是熟练运用分式的加减运算以及乘除运算法则,本题属于基础题型.10、-4【解析】【分析】先运用乘方、零次幂、负整数次幂化简,然后计算即可.【详解】解:02 202211122-⎛⎫⎛⎫-+--⎪ ⎪⎝⎭⎝⎭=114-+-=-4.故答案为-4.【点睛】本题主要考查了乘方、零次幂、负整数次幂等知识点,灵活运用相关运算法则成为解答本题的关键.三、解答题1、(1)②(3)我欣赏小娟的做法,见解析【解析】【分析】(1)根据和谐分式的定义判断即可得出答案;(2)根据完全平方公式和十字相乘法即可得出答案;(3)小娟利用了和谐分式,通分时找到了最简公分母,完成化简即可.(1)解:①分子或分母都不可以因式分解,不符合题意;②分母可以因式分解,且这个分式不可约分,符合题意;③这个分式可以约分,不符合题意;故答案为:②;(2)解:将分母变成完全平方公式得:244x x ±+,此时4a =±;将分母变形成(1)(4)x x ++,此时5a =;故答案为:4±或5;(3)我欣赏小娟的做法, 原式222444()a a ab b a b -+=- 24()ab b a b =- 4()a b a b =-, 理由:小娟利用了和谐分式,通分时找到了最简公分母.解:我欣赏小娟的做法, 原式222444()a a ab b a b -+=- 24()ab b a b =- 4()a b a b =-, 理由:小娟利用了和谐分式,通分时找到了最简公分母.【点睛】本题考查了分式的混合运算,解题的关键是掌握在分式的混合运算中,能因式分解的多项式要分解因式,便于约分.2、 (1)243b ab -- (2)21x x -- 【解析】【分析】(1)根据单项式乘多项式和平方差公式可以解答本题;(2)先因式分解,再根据分式的减法和除法解答本题.(1)解:(1)()()()223a b a b a a b -+-+()22243a b a ab =--+22243a b a ab =---243b ab =--(2)22242211x x x x x x ⎛⎫-+÷- ⎪-+-⎝⎭()()()()222212111x x x x x x x x -+-⎡⎤+=÷-⎢⎥---⎣⎦ ()()()()222211x x x x x -+-+⎡⎤=÷⎢⎥--⎣⎦()()()()()222121x x x x x ⎡⎤-+-=⎢⎥-+-⎢⎥⎣⎦ 21x x -=- 【点睛】本题考查整式的混合计算,分式的混合运算、单项式乘多项式、平方差公式,熟悉相关性质是解答本题的关键.3、6【解析】【分析】先运用零次幂、算术平方根的性质、立方根的知识化简,然后计算即可.【详解】解:()03.14π-=1+2-(-3)=1+2+3=6.【点睛】本题主要考查了零次幂、算术平方根、立方根等知识点,灵活运用相关知识是解答本题的关键.4、y x y x+-. 【解析】【分析】根据负整数指数幂、分式的加减法与除法法则即可得.【详解】 解:原式1111x y x y+=-y x xy xy y x xy xy+=- y xxy y xxy+=- y x y x+=-. 【点睛】本题考查了负整数指数幂、分式的加减法与除法,熟练掌握分式的运算法则是解题关键.5、 (1)3a + (2)11x - 【解析】【分析】(1)先利用单项式乘多项式和多项式乘多项式运算法则计算,然后再合并即可;(2)运用分式的四则混合运算法则计算即可.(1)解:()()()23123a a a a -+--=2262253a a a a -+-+=3a +.(2) 解:()254111x x x x x --⋅++-- =()()()541111x x x x x x --⋅+++-- =5411x x x x --+-- =541x x x -+-- =11x -. 【点睛】本题主要考查整式乘法混合运算、分式四则混合运算等知识点,灵活运用相关知识点成为解答本题的关键.。
第十章分式单元综合测试一.选择题1.在中,是分式的有()A.1个B.2个C.3个D.4个2.若分式有意义,则x满足的条件是()A.x=5B.x≠5C.x=0D.x≠03.下列分式中,最简分式是()A.B.C.D.4.下列约分正确的是()A.=x3B.=0C.=x+y D.=x﹣y5.如果把分式中的x,y同时扩大为原来的4倍,那么该分式的值()A.不变B.扩大为原来的4倍C.缩小为原来的D.缩小为原来的6.化简+的结果是()A.x+y B.x﹣y C.D.7.化简÷的结果是()A.x+3B.x﹣3C.3﹣x D.﹣6x8.如果a2+a﹣1=0,那么代数式(1﹣)÷的值是()A.3B.1C.﹣1D.﹣39.为有效解决交通拥堵问题,营造路网微循环,某市决定对一条长860m的道路进行拓宽改造.为了减轻施工对城市交通造成的影响,实际施工时,每天改造道路的长度比原计划增加10%,结果提前6天完成任务.求实际每天改造道路的长度与实际施工天数.珍珍同学根据题意列出方程﹣=6;文文同学根据题意列出方程=×(1+10%).已知两人的答案均正确,则下列说法正确的是()A.x,y代表相同的含义B.x表示实际每天改造道路的长度C.y表示实际施工天数D.表示实际每天改造道路的长度10.如果关于x的不等式组有且只有四个整数解,且关于x的分式方程=﹣8的解为非负数,则符合条件的所有整数a的个数为()A.1B.2C.3D.4二.填空题11.若分式的值为0,则x=.12.化简:=.13.分式与的最简公分母为.14.计算:=.15.计算:=.16.计算的结果等于.17.方程=﹣2的解是.18.要使的值和的值互为相反数,则x的值是.19.如果方程+=0不会产生增根,那么k的取值范围是.20.某校要建立两个计算机教室,为此要购买相同数量的A型计算机和B型计算机.已知一台A 型计算机的售价比一台B型计算机的售价便宜400元,如果购买A型计算机需要224000元,购买B型计算机需要240000元.求一台A型计算机和一台B型计算机的售价分别是多少元.设一台B型计算机的售价是x元,依题意列方程为.三.解答题21.已知x=﹣4时,分式无意义,x=2时,此分式的值为零,求分式的值.22.约分:(1)(2)23.计算:.24.计算下列各式:(1)•;(2)÷(x﹣2)•.25.解方程:=1.26.某超市用4000元购进某种牛奶,面市后供不应求,超市又用1万元购进第二批这种牛奶,所购数量是第一批的2倍,但单价贵了2元.(1)第一批牛奶进货单价为多少元?(2)超市销售两批牛奶售价相同,两批全部售完后要求获利不少于4000元,则售价至少为多少元?27.我们定义:如果两个分式A与B的差为常数,且这个常数为正数,则称A是B的“雅中式”,这个常数称为A关于B的“雅中值”.如分式A=,B=,A﹣B=﹣()===2,则A是B的“雅中式”,A关于B的“雅中值”为2.(1)已知分式C=,D=,判断C是否为D的“雅中式”,若不是,请说明理由,若是,请证明并求出C关于D的“雅中值”;(2)已知分式P=,Q=,P是Q的“雅中式”,且P关于Q的“雅中值”是2,x为整数,且“雅中式”P的值也为整数,求E所代表的代数式及所有符合条件的x的值之和;(3)已知分式M=,N=(a,b,c为整数),M是N的“雅中式”,且M关于N的“雅中值”是1,求a﹣b+c的值.参考答案一.选择题1.解:的分母中含有字母,属于分式,其他的属于整式.故选:B.2.解:∵分式有意义,∴x﹣5≠0,∴x≠5,故选:B.3.解:A、=,所以A选项不符合;B、=,所以B选项不符合;C、==,所以C选项不符合;D、为最简分式,所以D选项符合.故选:D.4.解:A、原式=x4,所以A选项错误;B、原式=1,所以B选项错误;C、为最简分式,所以C选项错误;D、原式==x﹣y,所以D选项正确.故选:D.5.解:x,y同时扩大为原来的4倍,则有==•,∴该分式的值是原分式值的,故选:D.6.解:原式=﹣===x﹣y.故选:B.7.解:原式=•=x﹣3.故选:B.8.解:原式=(﹣)÷=•==,∵a2+a﹣1=0,∴a2+a=1,则原式==3,故选:A.9.解:若设原计划每天改造道路x米,则实际每天改造道路(1+10%)x米,根据题意,可列方程﹣=6;若设实际施工天数为y天,则原计划施工的天数为(y+6)天,根据题意,可列方程=×(1+10%);所以x,y代表不同的含义,表示计划每天改造道路的长度.故选:C.10.解:,不等式组化简为,由不等式组有且只有四个整数解,得到,2<解得:6≤a<10,即整数a=6,7,8,9,,分式方程去分母得:ax﹣28=﹣8(4﹣x)解得:x=,由分式方程的解为非负数以及分式有意义的条件,a﹣8<0,解得:a<8,故a=6和7.故选:B.二.填空题11.解:由题意得:x2﹣1=0,且1﹣x≠0,解得:x=﹣1.故答案为:﹣1.12.解:原式==.故答案为.13.解:分式与的分母为2x2y和6xy2,系数的最小公倍数是6,再取x2和y2,可得最简公分母为6x2y2,故答案为6x2y2.14.解:原式=+=+=+==.故答案为:.15.解:原式=[﹣]•=﹣•=﹣•=﹣2(a+3)=﹣2a﹣6.故答案为:﹣2a﹣6.16.解:原式=•=.故答案为:.17.解:去分母得:2x=3﹣2(2x﹣2),去括号得:2x=3﹣4x+4,移项合并得:6x=7,解得:x=,检验:把x=代入得:2x﹣2=﹣2=≠0,则x=是分式方程的解.故答案为:x=.18.解:根据题意可得:+=0,去分母得:x﹣5+2x﹣4=0,解得:x=3,经检验,x=3是原分式方程的解,故答案为3.19.解:+=0,去分母得,2k+x=0,当x=﹣2时,会产生增根,把x=﹣2代入整式方程得,2k﹣2=0,解得k=1,∴解方程+=0时,不会产生增根,实数k的取值范围为k≠1.故答案是:k≠1.20.解:设一台B型计算机的售价是x元,则一台A型计算机的售价是(x﹣400)元,依题意得:=.故答案为:=.三.解答题21.解:∵分式无意义,∴2x+a=0即当x=﹣4时,2x+a=0.解得a=8∵分式的值为0,∴x﹣b=0,即当x=2时,x﹣b=0.解得b=2∴.22.解:(1)=;(2)原式==.23.解:原式====.24.解:(1)原式=;(2)原式=••=.25.解:方程两边同乘以(x+3)(x﹣1)得:2x(x﹣1)﹣24=(x+3)(x﹣1),整理得:2x2﹣2x﹣24=x2+2x﹣3,则x2﹣4x﹣21=0,(x﹣7)(x+3)=0,解得:x1=7,x2=﹣3,检验:当x=﹣3时,(x+3)(x﹣1)=0,故x=﹣3是方程的增根,当x=7时,(x+3)(x﹣1)≠0,故x=7是原方程的根.26.解:(1)设第一批牛奶进货单价为x元,则第二批牛奶进货单价为(x+2)元,依题意可得:=2×,解得x=8.经检验x=8是方程的解,答:第一批牛奶进货单价为8元;(2)设售价为y元,依题意可得:×(y﹣8)+2××(y﹣10)≥4000,解得y≥12.答:售价至少为12元.27.(1)C是D的“雅中式”,理由如下,==.即:C不是D的“雅中式”.(2).∵P是Q的雅中式.又∵P关于Q的雅中值为2.∴E﹣2x2﹣6x=2(9﹣x2).∴E=6x+18.∴P===.∵P的值也为整数,且分式有意义.故3﹣x=±1,或3﹣x=±2,或者3﹣x=±3,或3﹣x=±6,∴x的值为:﹣3,0,1,2,4,5,6,9.∵x≠±3.∴x的值为:﹣3,0,1,2,4,5,6,9.符合条件的x的值之和为:0+1+2+4+5+9=27.(3)∵M是N的“雅中式”,且M关于N的“雅中值”是1.=1.整理得:(﹣b﹣c+a+4)x+bc﹣5a=0.由上式子恒成立,则:.消去a得:bc﹣5b﹣5c+20=0.∴b(c﹣5)﹣5(c﹣5)=5.∴(b﹣5)(c﹣5)=5.∵a、a、c的整数.∴b﹣5、c﹣5也是整数.当b﹣5=1、c﹣5=5时,b=5,c=10,此时a=12.∴a﹣b+c=16.当b﹣5=5、c﹣5=1时,b=10,c=6,此时a=12.∴a﹣b+c=8.当b﹣5=﹣1、c﹣5=﹣5时,b=4,c=0,此时a=0.∴a﹣b+c=﹣4.当b﹣5=﹣5、c﹣5=﹣1时,b=0,c=4,此时a=0.∴a﹣b+c=4.综上:a﹣b+c的值为:16或8或﹣4或4.。
八年级下册分式单元测试卷一.选择(每题2分,共20分)1、代数式的家中来了四位客人①x 2 ②5y x + ③a -21 ④1-πx ,其中属于分式家族成员的有( ) A .①② B. ③④ C. ①③ D.①②③④2. 若分式1-x x 无意义,则x 的值是( ) A. 0 B. 1 C. -1 D.1±3、小名把分式xyy x -中的x 、y 的值都扩大2倍,却搞不清分式的值有什么变化,请帮他选出正确的答案( ) A 不变 B 扩大2倍 C 扩大4倍 D 缩小一半4.下列式子变形不正确的是( ) A 2122x x x x =-- B 223362x xy x y x x ++= C 22a b a ab ab a b ++= D 22222a b ab b a a b --= 5计算:322222()()()x y y y x x•÷-的结果是( ) A 368x y - B 368x y C 2516x y - D 2516x y6如果分式242x x -+的值为零,那么x 值的为( ) A 2 B -2 C 2± D 07 当13x -与13x +的和为2109x -时,x 的值为( ) A -5 B 5 C 5± D 无解8 .若关于x 的方程x a c b x d -=- 有解,则必须满足条件( )A.c ≠dB.c ≠-dC.bc ≠-ad C.a ≠b9 甲乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶的速度是原来的3.2倍,从甲站到乙站的时间缩短了11小时,设列车提速前的速度为x 千米/时,则所列方程为( ) A 12801280 3.211x x -= B 12801280113.2x x -= C 12801280113.2x x -= D 12801280 3.211x x-=10.若mn n m =-,则n m 11-的值是( ) A.mn1 B.0 C.1 D.1- 二.填空(每题2分,共16分)11、(-2)-2= ;12、当x 时,分式3213+-x x 有意义; 13、在冬春季节是禽流感病的高发时期,禽流感病毒一般为球形,直径大约为0.000000102米,用科学记数法表示: 0.000000102= ;14、当x 时,分式21x x -的值为正数; 15、已知31=b a ,分式ba b a 52-+的值为 ; 16、当k 时,关于x 的方程3423--=+-x x x k 不会产生增根; 17、如果分式121x x ++的值为-1,则x 的值是 ; 18、我国是一个水资源贫乏的国家,每一个公民都应自觉养成节约用水的意识和习惯,为提高水资源的利用率,某住宅小区安装了循环用水装置。
八年级(下)数学单元检测题(第十六章 分式)一、选择题(每小题3分,共30分)1.下列式子是分式的是( B )A .2xB .x 2C .πx D .2y x + 2.下列各式计算正确的是(C )A .11--=b a b aB .ab b a b 2=C .()0,≠=a ma na m nD .am a n m n ++= 3.下列各分式中,最简分式是( A )A .()()y x y x +-73B .n m n m +-22C .2222ab b a b a +-D .22222yxy x y x +-- 4.化简2293m m m --的结果是( B ) A.3+m m B.3+-m m C 。
3-m m D 。
m m -3 5.若把分式xy y x +中的x 和y 都扩大2倍,那么分式的值( C ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍6.若分式方程xa x a x +-=+-321有增根,则a 的值是( D ) A .1 B .0 C .—1 D .—27.已知432c b a ==,则cb a +的值是( D ) A .54 B. 47 C.1 D 。
45 8.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( A )A .x x -=+306030100B .306030100-=+x x C .x x +=-306030100 D .306030100+=-x x 9.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。
设原计划行军的速度为xkm/h ,,则可列方程( D )A .1%206060++=x x B. 1%206060-+=x x C 。
一、选择题1.已知关于x 的分式方程422x k x x -=--的解为正数,则k 的取值范围是( ) A .80k -<<B .8k >-且2k ≠-C .8k >-且2k ≠D .4k <且2k ≠-2.八年级学生去距学校10Km 的春蕾社区参加社会实践活动,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车学生的速度的2倍,求骑自行车学生的速度.若设骑自行车学生的速度为xKm/h ,列方程正确的是( )A .1010302x x -= B .102010602x x += C .1010302x x += D .102010602x x-= 3.下列各式中,分式有( )个3x ,1n ,15a +,15a b +,2z x y ,()22ab a b + A .4 B .3 C .2 D .14.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( ) A .23 B .25 C .27 D .285.如果关于x 的分式方程6312233ax x x x--++=--有正整数解,且关于y 的不等式组521510y y a -⎧≥-⎪⎨⎪+->⎩至少有两个整数解,则满足条件的整数a 的和为( ) A .2B .3C .6D .11 6.若关于x 的方程121m x -=-的解为正数,则m 的取值范围是( ) A .1m >- B .1m ≠ C .1m D .1m >-且1m ≠ 7.下列式子的变形正确的是( )A .22b b a a = B .22+++a b a b a b=C .2422x y x y x x --=D .22m n n m-=- 8.若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .0x = C .1x ≠- D .2x =9.不改变分式的值,下列各式变形正确的是( ) A .11x x y y +=+ B .1x y x y -+=-- C .22x y x y x y +=++ D .22233x x y y ⎛⎫-= ⎪⎝⎭10.冬季来临,为防止疫情传播,某学校决定用420元购买某种品牌的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多了20瓶,求原价每瓶多少元.设原价每瓶x 元,则可列出方程为( )A .420420200.5x x -=- B .420420200.5x x -=+ C .420420200.5x x-=+ D .420200.5x =- 11.下列计算正确的是( )A .22a a a ⋅=B .623a a a ÷=C .2222a b ba a b -=-D .3339()28a a-=- 12.某生产小组计划生产3000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务,设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( )A .3000300052x x -=+B .3000300052x x -=C .3000300052x x -=+D .3000300052x x-= 二、填空题 13.若113m n +=,则分式225m n mn m n +---的值为________ . 14.计算22a b a b a b-=-- _________. 15.计算:111x x---的结果是________. 16.观察给定的分式,探索规律: (1)1x ,22x ,33x ,44x ,…其中第6个分式是__________; (2)2x y ,43x y -,65x y ,87x y-,…其中第6个分式是__________; (3)2b a -,52b a ,83b a -,114b a,…其中第n 个分式是__________(n 为正整数).17.当x _______时,分式22x x -的值为负. 18.PM2.5是指大气中直径小于或等于2.5微米(0.0000000025千米)的颗粒物,也称为可入肺颗粒物.2.5微米用科学记数法表示为________千米.19.要使分式2x x 1+有意义,那么x 应满足的条件是________ . 20.如果分式126x x --的值为零,那么x =________ . 三、解答题21.计算:2291369m m m m m -⎛⎫-÷ ⎪+++⎝⎭. 22.解方程:(1)81877--=--x x x ; (2)21124x x x -=--. 23.(1)化简分式:11222x x x -+---; (2)判断方程112022x x x-+-=--是否有解?_____(填“是”或“否”) 24.今年11月14日,“行孝仗义,柿柿如意”2020第三届孝义柿子文化节在兑镇镇产树原村隆重开幕.柿子是孝义市地理标志农产品,开发柿子产业是转型跨越发展致富的新路.某食品公司有一批新鲜柿子,公司将一部分新鲜柿子直接销售,这批新鲜柿子的总售价为4000元,剩余的一部分加工成柿饼后进行销售,这批柿饼的总售价为80000元.已知柿饼的销售数量比直接销售的新鲜柿子多2000千克,且每千克的售价是新鲜柿子的10倍.求新鲜柿子和柿饼每千克的售价各多少元?25.明德中学需要购进甲、乙两种笔记本电脑,经调查,每台甲种电脑的价格比每台乙种电脑的价格少0.2万元,且用12万元购买的甲种电脑的数量与用20万元购买的乙种电脑的数量相同.(1)求每台甲种电脑、每台乙种电脑的价格分别为多少万元;(2)学校计划用不超过34万元购进甲、乙两种电脑共80台,其中乙种电脑的数量不少于甲种电脑数量的1.5倍,学校有哪几种购买方案?26.(1(1018223202023-⎛⎫--+ ⎪⎝⎭.(2)先化简,再求值:21211x x ++-,其中2021x =.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】令分母等于0解出增根,去分母后,把增根代入求出k 值;去分母解出x ,因为解为正数,从而求出k 的范围【详解】解:令x-2=0,解得分式方程的增根是2去分母得:()42x x k --=- 代入增根2,解得k=−2去分母解得x=k+83∵分式方程解为正数 ∴k+803> 解得k 8>- 综合所述k 的取值范围是:8k >-且2k ≠-故答案选B【点睛】本题主要考察了分式方程的增根,一元一次不等式等知识点,准确记住增根的解题步骤是解题关键.2.D解析:D【分析】设骑车学生每小时走x 千米,则设乘车学生每小时走2x 千米,根据题意可得等量关系:骑车学生所用时间-乘车学生所用时间=20分钟,根据等量关系列出方程即可.【详解】解:设骑车学生每小时走x 千米,则设乘车学生每小时走2x 千米,由题意得: 102010602x x-=, 故选:D .【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.3.A解析:A【分析】分母是整式且整式中含有字母,根据这点判断即可.【详解】 ∵3x 中的分母是3,不含字母, ∴3x 不是分式; ∵1n 中的分母是n ,是整式,且是字母, ∴1n 是分式; ∵15a +中的分母是a+5,是多项式,含字母a , ∴15a +是分式; ∵15a b +中的分母是15,不含字母, ∴15a b +不是分式; ∵2z x y 中的分母是2x y ,是整式,含字母x ,y , ∴2z x y 是分式; ∵()22ab a b +中的分母是2()a b +,是整式,含字母a ,b , ∴()22ab a b +是分式;共有4个,故选A .【点睛】本题考查了分式的定义,熟练掌握分式构成的两个基本能条件是解题的关键. 4.B解析:B【分析】表示出不等式组的解集,由不等式至少有3个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩, 不等式组整理得:2y y a -⎧⎨≤⎩>, 由不等式组至少有3个整数解,得到-2<y≤a ,解得:a≥1,即整数a=1,2,3,4,5,6,…,3222a x x-=--, 去分母得:2(x-2)-3=-a ,解得:x=72a -, ∵72a -≥0,且72a -≠2, ∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a 为1,2,4,5,6,7, 之和为1+2+4+5+6+7=25.故选:B .【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键. 5.B解析:B【分析】根据分式方程的解为正整数解,即可得出a =0,1,2,5,11,根据不等式组的解集为a−1<4,即可得出a <5,找出a 的所有的整数,将其相加即可得出结论.【详解】解:∵分式方程有解,∴解分式方程得x =121a +, ∵x≠3, ∴121a +≠3,即a≠3, 又∵分式方程有正整数解,∴a =0,1,2,5,11,又∵不等式组至少有2个整数解,∴解不等式组得51y y a ≤⎧⎨-⎩>,∴a−1<4,解得,a <5,∴a =0,1,2,∴0+1+2=3,故选:B .【点睛】本题考查了一元一次不等式组的整数解、分式方程的解,有一定难度,注意分式方程中的解要满足分母不为0的情况.6.D解析:D【分析】分式方程去分母转化为整式方程,表示出解,由解为正数确定出m 的范围即可.【详解】去分母得:m-1=2x-2,解得:x=12+m , 由方程的解为正数,得到12+m >0,且12+m ≠1, 解得:1m >-且1m ≠,故答案为:1m >-且1m ≠【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键. 7.C解析:C【分析】根据分式的性质逐一判断即可.【详解】解:A. 22b b a a=不一定正确; B. 22+++a b a b a b=不正确; C.2422x y x y x x --=分子分母同时除以2,变形正确; D. 22m n n m-=-不正确; 故选:C .【点睛】本题考查分式的基本性质,掌握分式的基本性质是解题的关键.8.A解析:A【分析】根据分式有意义分母不为零即可得答案.【详解】∵分式2x x -有意义, ∴x-2≠0,解得:x≠2.故选:A .【点睛】 本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.9.B解析:B【分析】根据分式的基本性质即可求出答案.【详解】解:A 、11x x y y ++≠,不符合题意; B 、=1x y x y-+--,符合题意; C 、22x y x y x y+≠++,不符合题意; D 、22239x x y y ⎛⎫-= ⎪⎝⎭,不符合题意; 故选:B .【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 10.A解析:A【分析】根据“原价买的瓶数-实际价格买的瓶数=20”列出方程即可.【详解】 解:原价买可买420x 瓶,经过还价,可买4200.5x -瓶.方程可表示为: 420420200.5x x-=-. 故选:A .【点睛】考查了由实际问题抽象出分式方程.列方程解应用题的关键步骤在于找相等关系.本题要注意还价前后商品的单价的变化.11.C解析:C【分析】A 、B 两项利用同底数幂的乘除法即可求解,C 项利用合并同类项法则计算即可,D 项利用分式的乘方即可得到结果,即可作出判断.【详解】解:A 、原式=a 3,不符合题意;B 、原式=a 4,不符合题意;C 、原式=-a 2b ,符合题意;D 、原式=3278a -,不符合题意, 故选:C .【点睛】此题考查了分式的乘方,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键. 12.D解析:D【分析】找出等量关系:原计划所用时间-实际所用时间=提前5小时,据此即可得出分式方程,得解.【详解】解:设原计划每小时生产口罩x 个,则实际每小时生产口罩2x 个,依题意得:3000300052x x-= 故选:D .【点睛】本题考查了由实际问题抽象出分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.二、填空题13.【分析】由可得m+n=3mn 再将原分式变形将分子分母化为含有(m+n )的代数式进而整体代换求出结果即可【详解】解:∵∴即m+n=3mn ∴====故答案为:【点睛】本题考查分式的值理解分式有意义的条件 解析:13-【分析】 由113m n+=可得m+n=3mn ,再将原分式变形,将分子、分母化为含有(m+n )的代数式,进而整体代换求出结果即可.【详解】 解:∵113m n +=, ∴=3m n mn +,即m+n=3mn , ∴225m n mn m n +--- =()()25+m n mn m n +-- =2353mn mn mn⋅-- =3mn mn- =13-. 故答案为:13-. 【点睛】本题考查分式的值,理解分式有意义的条件,掌握分式值的计算方法是解决问题的关键. 14.【分析】根据分式运算的性质结合平方差公式计算即可得到答案【详解】故答案为:【点睛】本题考查了分式平方差公式的知识;解题的关键是熟练掌握分式加减运算平方差公式的性质从而完成求解解析:+a b【分析】根据分式运算的性质,结合平方差公式计算,即可得到答案.【详解】22a b a b a b ---()()22a b a b a b a b a b a b+--===+-- 故答案为:+a b .【点睛】本题考查了分式、平方差公式的知识;解题的关键是熟练掌握分式加减运算、平方差公式的性质,从而完成求解.15.【分析】先把分式化成同分母再根据同分母分式相加减分母不变分子相加减即可得出答案【详解】解:===故答案为【点睛】本题考查了分式的加减熟练掌握运算法则是解题的关键 解析:21x x-. 【分析】先把分式化成同分母,再根据同分母分式相加减,分母不变,分子相加减,即可得出答案.【详解】 解:111x x --- =()111111x x x x x x------- =2111x x x x-+-+- =21x x- 故答案为21x x-. 【点睛】本题考查了分式的加减.熟练掌握运算法则是解题的关键.16.【分析】(1)分子是连续正整数分母是以x 为底指数是连续正整数第六个分式的分子是6分母是x6(2)分子是以x 为底指数是连续偶数分母是以y 为底指数是连续奇数第奇数个分式符号是正第偶数个分式符号为负第六个 解析:66x 1211x y - 31(1)n n n b a-- 【分析】(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,第六个分式的分子是6,分母是 x 6(2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,第六个分式是负号,分子是x 12,分母是 y 11,(3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个分式的符号是(-1)n , 分子是b 3n-1,分母是 a n ,【详解】解:(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,所以,第六个分式是66x , (2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,所以,第六个分式是1211x y-, (3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个符号为(-1)n ,所以,第六个分式是31(1)n nn b a-- 【点睛】 本题考查了数字之间的规律,连续正整数、奇数、偶数和依次递增3的数字规律,包括符号依次变化规律,熟练掌握特殊数字之间的规律是解题关键17.且【分析】分式有意义x2≠0分式的值为负数只有分子x-2<0由此求x 的取值范围【详解】解:依题意得解得x <2且x≠0故答案为:x <2且x≠0【点睛】本题考查了分式的值求分式的值必须同时满足分母不为0解析:2x <且0x ≠【分析】分式有意义,x 2≠0,分式的值为负数,只有分子x-2<0,由此求x 的取值范围.【详解】解:依题意,得2200x x -<⎧⎨≠⎩解得x <2且x≠0,故答案为:x <2且x≠0.【点睛】本题考查了分式的值.求分式的值,必须同时满足分母不为0.18.【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;当原数的绝对值<解析:92.510-⨯【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】2.5微米=92.510-⨯千米,故答案为:92.510-⨯.【点睛】此题考查科学记数法,注意n 的值的确定方法,当原数小于1时,n 等于原数左数第一个非零数字前零的个数,按此方法即可正确求解.19.【分析】根据分式有意义的条件是分母不等于零可得答案【详解】由题意得:解得:故答案为:【点睛】本题主要考查了分式有意义的条件关键是掌握分式有意义的条件是分母不等于零解析:1x≠-【分析】根据分式有意义的条件是分母不等于零可得答案.【详解】由题意得:10x+≠,解得:1x≠-,故答案为:1x≠-.【点睛】本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.20.1【分析】根据分式的值为零可得解方程即可得【详解】由题意得:解得分式的分母不能为零解得符合题意故答案为:1【点睛】本题考查了分式的值为零正确求出分式的值和掌握分式有意义的条件是解题关键解析:1【分析】根据分式的值为零可得10x-=,解方程即可得.【详解】由题意得:10x-=,解得1x=,分式的分母不能为零,260x∴-≠,解得3x≠,1x∴=符合题意,故答案为:1.【点睛】本题考查了分式的值为零,正确求出分式的值和掌握分式有意义的条件是解题关键.三、解答题21.33 m-【分析】根据分式的性质化简即可;【详解】原式()()()2333333mm mm m m m+⎛⎫+=-⎪+++-⎝⎭,()()()233333m m m m +=++-, 33m =-; 【点睛】本题主要考查了分式的化简,准确计算是解题的关键.22.(1)无解;(2)x =﹣32【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)去分母得:()8187x x -+=-,整理得:749x =解得:x =7,经检验x =7是原方程的增根,∴原方程无解;(2)去分母得:()2214x x x +-=-, 整理得:23x =-解得:x =32-, 经检验x =﹣32是分式方程的解. 【点睛】 本题考查分式方程的解法,解题的关键是化分式方程为整式方程的方法,同时注意检验方程的根.23.(1)1;(2)否.【分析】(1)原式通分并利用同分母分式的加减法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,检验即可. 【详解】 解:(1)11222x x x -+--- =12(2)1222x x x x x --++---=12412x xx-+-+-=22 xx--=1;(2)去分母得:1-x+2x-4+1=0,解得:x=2,经检验x=2是增根,分式方程无解.故答案为:否.【点睛】此题考查了分式方程的解,以及解分式方程,熟练掌握运算法则是解本题的关键.24.新鲜柿子每千克2元,柿饼每千克20元【分析】设每千克新鲜柿子x元,则每千克柿饼10x元,根据题意列出方程求解即可;【详解】解:设每千克新鲜柿子x元,则每千克柿饼10x元.依题意得,400080000200010x x+=,方程两边乘10x,得40000+20000x=80000,解得,x=2,检验:当x=2时,10x≠0.所以,原分式方程的解为x=2,且符合实际意义,当x=2时,10x=20,答:新鲜柿子每千克2元,柿饼每千克20元.【点睛】本题主要考查了分式方程的应用,准确计算是解题的关键.25.(1)每台甲种电脑的价格为0.3万元、每台乙种电脑的价格为0.5万元;(2)学校有三种购买方案,方案1:购买甲种电脑32台,乙种电脑48台;方案2:购买甲种电脑31台,乙种电脑49台;方案3:购买甲种电脑30台,乙种电脑50台.【分析】(1)设每台甲种电脑的价格为x万元,则每台乙种电脑的价格为(x+0.2)万元,根据题意列出方程求解即可;(2)设购买乙种电脑m台,则购买甲种电脑(80﹣m)台,根据题意列出一元一次不等式组求解即可;再结合m为整数即可得出各种购买方案;【详解】(1)设每台甲种电脑的价格为x万元,则每台乙种电脑的价格为(x+0.2)万元,根据题意得:12x=200.2x+,解得:x=0.3,经检验,x =0.3是原分式方程的解,且符合题意,∴x+0.2=0.3+0.2=0.5.答:每台甲种电脑的价格为0.3万元、每台乙种电脑的价格为0.5万元.(2)设购买乙种电脑m 台,则购买甲种电脑(80﹣m )台,根据题意得:()()1.5800.3800.534m m m m -⎧⎪⎨-+≤⎪⎩≥ , 解得:48≤m≤50.又∵m 为整数,∴m 可以取48,49,50.∴学校有三种购买方案,方案1:购买甲种电脑32台,乙种电脑48台;方案2:购买甲种电脑31台,乙种电脑49台;方案3:购买甲种电脑30台,乙种电脑50台.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,正确理解题意是解题的关键; 26.(1)-1;(2)11x -;12020【分析】(1)根据绝对值化简、负指数幂和零指数幂计算即可;(2)先化简分式,再代入求解即可;【详解】(1)解:原式331=--, 1=-;(2)解:原式221211x x x -=+-- 1(1)(1)x x x +=+- 11x =-, 当2021x =时,原式11202112020==-; 【点睛】本题主要考查了实数的混合运算和分式化简求值,准确计算是解题的关键.。
《第3章 分式》单元测试题一、选择题1.在下列各式ma m x xb a x x a ,),1()3(,43,2,3222--÷++π中,是分式的有( ) A.2个 B.3个 C.4个 D.5个2.要使分式733-x x 有意义,则x 的取值范围是( ) A.x=37 B.x>37 C.x<37 D.x ≠=37 3.若分式4242--x x 的值为零,则x 等于( ) A.2 B.-2 C.2± D.04.计算)1(1xx x x -÷-所得的正确结论为( ) A.11-x B.1 C.11+x D.-1 5.把分式2222-+-+-x x x x 化简的正确结果为( ) A.482--x x B.482+-x x C.482-x x D.48222-+x x 6.当x=33时,代数式)23(232x x x x x -+÷--的值是( ) A.213- B.213+ C.313- D.313+ 二、填空题7.若分式)3)(2(2+--a a a 的值为0,则a= .8.已知当x=-2时,分式ax b x -- 无意义,x=4时,此分式的值为0,则a+b= . 9.使分式方程3232-=--x m x x 产生增根,m 的值为 . 10.要使15-x 与24-x 的值相等,则x= . 11.化简=-+-ab b b a a . 12.已知5922=-+b a b a ,则a :b= .13若121-x 与)4(31+x 互为倒数,则x= . 三、解答题14.计算(22+--x x x x )24-÷x x ; 15化简⎪⎪⎭⎫ ⎝⎛++÷--ab b a b a b a 22222;16.化简:⎪⎭⎫ ⎝⎛--+÷--13112x x x x 。
17. (1)125552=-+-x x x (2)22122=-+-x x x x(3)114112+-=-+x x x (4)x x x x x -+=-+2516318.若关于x 的方程x x x k --=+-3423有增根,试求k 的值。
八年级分式单元测试题
一、选择题: (每题3分,共33分) 1、使分式
2
x x +有意义的x 的取值范围是( B ) A .2x ≠
B .2x ≠-
C .2x >-
D .2x <
2、如果分式
2x
x
-的值为0,那么x 为( D ). A 、-2
B 、0
C 、1
D 、2
3、化简分式
2
b ab b
+的结果为( A ) A.
1a b
+ B.
11a b
+ C.
2
1a b
+ D.
1ab b
+
4、下列分式是最简分式的是( D )
A
B
C
D
5、下列运算正确的是( C )
A -40=1
B (-3)-1=31
C (-2m-n )2=4m-n
D (a+b )-1=a -1+b -1
6、 分式
2
8,9,12z
y
x xy z x x z y -+-的最简公分母是( A ) A 72xyz 2
B 108xyz
C 72xyz
D 96xyz 2
7、 用科学计数法表示的数-3.6×10-4写成小数是( C )
A 0.00036
B -0.0036
C -0.00036
D -36000 8、 如果把分式
y
x x 232-中的x,y 都扩大3倍,那么分式的值( B )
A 扩大3倍
B 不变
C 缩小3倍
D 扩大2倍
9、 在m
a y x xy x x 1
,3,3,21,21,12
+++π中,分式的个数是( B )
A 2
B 3
C 4
D 5
10.如果分式
2
||55x x x
-+的值为0,那么x 的值是(B )
A .0
B .5
C .-5
D .±5 11.若2x+y=0,则
2
2
2
2x xy y xy x
++-的值为( B ) A .-
13.5
5
B -
C .1
D .无法确定
二、填空题: (每题3分,共24分)
12.若分式
||55y y
--的值等于0,则y=_-5__. 13、()
231200841
-+⎪⎭
⎫
⎝⎛--+-= 2
14、当x = 0或1 时,分式
x
x 11-
无意义. 15、若分式
2
42
--x x 的值为0,则x 的值为 -2
16、计算:2
22a a b
b b a ⎛⎫-÷= ⎪⎝⎭
2
22b a . 17、计算:2
933a a a -=--3+a . 18、7m =3,7n =5,则7
2m-n
=5
9 19.当x 3
1>
时,分式
213x
--的值为正数.
三、解答题:
20、计算:(每题6分,共36分) (1)
2
2
2x y xy x y
x y
+-
-- 答案:()y x - (2)
(
)d
cd
b a c
ab 234322
22
2-∙-÷
答案: ⎪⎭
⎫
⎝⎛ac 1
(3)
1
11
1
2
2
--
--÷
-a a a a a a 答案: ⎪⎭⎫
⎝⎛
-1a a
(4)⎪⎭⎫
⎝⎛---÷--225262x x x x 答案: ⎪
⎭
⎫
⎝⎛
--32
x
(5) x x x x x x x 112122÷⎪⎭⎫ ⎝⎛+---+ 答案: ⎪
⎭⎫ ⎝⎛+--1212x x (6) 11)1(212
--+-+a a a a 答案: ⎪⎭
⎫
⎝⎛+221a
21、先化简,再求值.
.3
1,3,222
2
=
=--+-y x y x y
x y x 其中
解:原式=-X -3Y 当X=3,Y=
3
1时,原式=-3-3×
3
1=-4。