高中数学 第二章 函数 第21课时 求函数零点近似值的一种计算方法——二分法课时作业 新人教B版必修1
- 格式:doc
- 大小:84.50 KB
- 文档页数:4
2.4.2 求函数零点近似解的一种计算方法──二分法一、教学目标1、知识与技能目标:理解用二分法求函数零点的原理,能借助计算器用二分法求出给定函数满足一定精度要求的零点的近似解;2、过程与方法目标:通过具体实例的求解,总结用二分法求函数零点近似解的过程与步骤,感受、体验二分法中的算法思想;3、情感、态度与价值观目标:了解有关解方程的历史,感受函数与方程的内在联系,在探究解决问题的过程中,培养学生与他人合作的态度、表达与交流的意识;培养认真、耐心、严谨的数学品质。
二、重点、难点分析:学习重点:学会用二分法求函数零点的近似解学习难点:对用二分法求函数零点近似解的步骤的概括和理解;对精确度要求的理解。
二分法作为求函数零点近似解的一种常用方法,也是一种通法,它操作简单,程序性强,只要按部就班地去做,总会算出结果,现在又有了计算机,更容易实现。
同时此处也为后续的算法内容作了铺垫。
所以重点放在会用二分法求函数零点的近似解。
二分法的一般算法,比较抽象,学生不易理解。
求函数零点近似解的过程中,又蕴含着极限的思想,它可以达到要求的任何精度,这种思想可以用于确定函数值。
而一种方法的学会以及“精确到”、“精确度”等概念的理解只有结合实例、亲手计算、辅以工具等才易领悟。
所以难点放在对用二分法求函数零点近似解的步骤的概括和理解;对精确度要求的理解。
三、教材内容分析(一)本节课在教材中的地位二分法是高中数学新课程的新增内容,这节内容安排在函数、函数性质、函数的零点之后,引入它的重要意义在于:体现了函数与方程的联系及蕴含其中的数形结合思想,打开了求解方程的新思路;引入二分法的另一个重要意义在于它引入了“近似”的概念。
一方面,在实际中离不开近似,另一方面求函数零点近似解的过程,蕴含着极限的思想,它可以达到要求的任何精度,这种思想可以用于确定函数值等等。
二分法是求函数零点近似解的一种常用方法,它的特点是操作简单,程序性强,为后续的算法内容作了铺垫。
2.4.2求函数零点近似解的一种计算方法——二分法1.了解变号零点与不变号零点的概念.2.理解函数零点的性质.3.会用二分法求近似值.1.函数零点的性质如果函数y=f(x) 在区间[a,b]上的图象是不间断的曲线,并且在它的两个端点处的函数值异号,即f(a)·f(b)<0,那么这个函数在这个区间上至少有一个零点,即存在一点x0∈(a,b),使f(x0)=0,若函数图象通过零点时穿过x轴,这样的零点称为变号零点,如果没有穿过x轴,则称为不变号零点.2.二分法对于在区间[a,b]上连续不断,且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法.3.用二分法求函数 f (x ) 零点近似值的步骤 给定精确度(1)确定区间[a ,b ],验证f (a )·f (b )<0; (2)求区间(a ,b )的中点 x 1;(3)计算 f (x 1);①若f (x 1)=0,则 x 1 就是函数的零点;②若f (a )·f (x 1)<0,则令 b =x 1 (此时零点 x 0∈(a ,x 1));③若f (x 1)·f (b )<0,则令a =x 1(此时零点 x 0∈(x 1,b )).(4)判断是否达到精确度,即若|a -b |<,则得到零点近似值 a (或 b );否则重复 (2)~(4).1.函数f (x )=x 3-2x 2+3x -6在区间[-2,4]上的零点必属于区间( ) A .[-2,1] B .⎣⎡⎦⎤52,4 C .⎣⎡⎦⎤1,74 D .⎣⎡⎦⎤74,52解析:选D .由于f (-2)<0, f (4)>0,f (-2+42)=f (1)<0,f (1+42)=f (52)>0, f (1+522)=f (74)<0, 所以零点在区间⎣⎡⎦⎤74,52内.2.用二分法研究函数f (x )=x 2+3x -1的零点时,第一次经计算f (0)<0,f (0.5)>0,可得其中一个零点x 0∈________,第二次计算________.以上横线应填的内容分别是( )A .(0,0.5) f (0.25)B .(0,1) f (0.25)C .(0.5,1) f (0.75)D .(0,0.5) f (0.125)解析:选A .因为f (0)<0,f (0.5)>0, 所以函数f (x )的一个零点x 0∈(0,0.5), 第二次计算f ⎝⎛⎭⎫0+0.52=f (0.25).3.函数的零点都能用“二分法”求吗?解:不一定.例如:函数y =x 2的零点为x =0,但不能用二分法求解.判断函数在某个区间内是否有零点(1)指出方程 x 5-x -1=0 的根所在的大致区间;(2)求证:方程x3-3x+1=0 的根一个在区间(-2,-1)内,一个在区间(0,1)内,另一个在区间(1,2)内.【解】(1)方程x5-x-1=0,即x5=x+1,令F(x)=x5-x-1,y=f(x)=x5,y=g(x)=x+1.在同一平面直角坐标系中,函数f(x)与g(x)的图象如图,显然它们只有1 个交点.两函数图象交点的横坐标就是方程的解.又F(1)=-1<0,F(2)=29>0,所以方程x5-x-1=0 的根在区间(1,2)内.(2)证明:令F(x)=x3-3x+1,它的图象一定是不间断的,又F(-2)=-8+6+1=-1<0,F(-1)=-1+3+1=3>0,所以方程x3-3x+1=0 的一根在区间(-2,-1)内.同理可以验证F(0)·F(1)=1×(-1)=-1<0,F(1)·F(2)=(-1)×3=-3<0,所以方程的另两根分别在区间(0,1)和(1,2)内.本题考查的是如何判断方程的根所在的大致区间问题,它是用二分法求方程近似解的前提.对于连续的函数可以多次验证某些点处的函数值的符号是否异号;若异号,则方程的解在以这两数为端点的区间内,这种方法需多次尝试,比较麻烦.另外在这个区间内也不一定只有一个解.已知f(x) 为偶函数,且当x≥0 时,f(x)=(x-1)2-1,求函数f(x)的零点,并判断哪些零点是变号零点,哪些零点是不变号零点.解:因为x≥0 时,f(x)=(x-1)2-1,而当x<0 时,-x>0,所以f(-x)=(-x-1)2-1,而f(x) 为偶函数,则f(-x)=f(x),所以 f (x ) =⎩⎪⎨⎪⎧(x -1)2-1(x ≥0),(x +1)2-1(x <0).解方程 (x -1)2-1=0, 得 x 1=0,x 2=2. 解方程 (x +1)2-1=0, 得 x 1=0,x 2=-2,故函数 f (x ) 共有 3 个零点为 -2,0,2,如图所示,可知函数 f (x )的变号零点为 -2,2,不变号零点为 0.用二分法求方程近似解用二分法求函数f(x)=x3-x-2的一个正实数零点(精确到0.1).【解】由f(1)=-2<0,f(2)=4>0,可以确定区间[1,2]作为计算的初始区间,用二分法逐步计算,具体如表.1.5,所以1.5可作为所求函数的一个正实数零点的近似值.用二分法求函数零点的近似值,首先要选好计算的初始区间,这个区间既要符合条件,又要使其长度尽量小,其次要依据条件给定的精确度及时检验计算所得到的区间是否满足这一精确度,以决定是停止计算还是继续计算.借助计算器,用二分法求方程(x+1)(x -2)(x-3)=1在区间(-1,0)内的近似解(精确到0.1).解:令f(x)=(x+1)(x-2)(x-3)-1,由于f(-1)=-1<0,f(0)=5>0,可取区间[-1,0]作为计算的初始区间.用二分法逐次计算,列表如下:5-0.9即为区间(-1,0)内的近似解.1.函数零点判定定理的应用判断一个函数是否有零点,首先看函数f(x) 在区间[a,b]上的图象是否连续,并且是否存在f(a)·f(b)<0,若存在,那么函数y=f(x) 在区间(a,b)内必有零点.对于函数f(x),若满足f(a)·f(b)<0,则f(x) 在区间[a,b]内不一定有零点,反之,f(x) 在区间[a,b]内有零点也不一定有f(a)·f(b)<0,如图所示.即此方法只适合变号零点的判断,不适合不变号零点.2.二分法的使用条件和范围(1)二分法的理论依据:如果函数y=f(x)是连续的,且f(a)与f(b)的符号相反(a<b),那么方程f(x)=0至少存在一个根在(a,b)之间.(2)用二分法求函数零点近似值的方法仅对函数的变号零点适合,对函数的不变号零点不适合.(3)每一次二分有根区间(a,b)为两个小区间,区间的长度都是原来区间长度的一半.用零点存在性定理判断函数的零点时,两个条件是缺一不可的.因此,在判断已知函数在区间上的零点是否存在时,应首先确定图象是不间断的.1.下列函数中能用二分法求零点的是()解析:选C.由二分法的定义知.2.设f(x)在区间[a,b]上是单调函数,且f(a)·f(b)<0,则方程f(x)=0在闭区间[a,b]内() A.至少有一实根B.至多有一实根C.没有实根D.必有唯一实根答案:D3.下面关于二分法的叙述,正确的是________.①用二分法可求所有函数零点的近似值;②用二分法求方程的近似解时,可以精确到小数点后的任一位;③二分法无规律可循,无法在计算机上完成;④只有在求函数零点时才用二分法. 答案:②4.设函数y =f (x )在区间[a ,b ]上的图象是连续不间断曲线,且f (a )·f (b )<0,取x 0=a +b2,若f (a )·f (x 0)<0,则利用二分法求方程根时取有根区间为________.解析:利用二分法求方程根时,根据求方程的近似解的一般步骤,由于f (a )·f (x 0)<0, 则[a ,x 0]为新的区间. 答案:[a ,x 0][A 基础达标]1.函数f (x )=x 3-3x -3有零点的区间是( ) A .(-1,0) B .(0,1) C .(1,2)D .(2,3)解析:选D .因为f (2)·f (3)=(8-6-3)·(27-9-3)=-15<0, 所以f (x )有零点的区间是(2,3).2.如图是函数f (x )的图象,它与x 轴有4个不同的公共点,给出下列四个区间中,存在不能用二分法求出的零点,则该零点所在的区间是( )A .[-2.1,-1]B .[1.9,2.3]C .[4.1,5]D .[5,6.1]解析:选B .由不变号零点的特征易判断该零点在[1.9,2.3]内. 3.方程2x 3-4x 2+7x -9=0在区间[-2,4]上的根必定属于区间( ) A .(-2,1) B .(52,4)C .(π4,1)D .(1,74)解析:选D .设f (x )=2x 3-4x 2+7x -9, 由f (1)·f (74)<0知选D .4.已知函数f (x )与g (x )满足的关系为f (x )-g (x )=-x -3,根据所给数表,判断f (x )的一个零点所在的区间为( )A .(-1,0) C .(1,2)D .(2,3)解析:选C .由列表可知f (1)=g (1)-1-3=2.72-4=-1.28,f (2)=g (2)-2-3=7.39-5=2.39,所以f (1)·f (2)<0.所以f (x )的一个零点所在的区间为(1,2).5.若函数f (x )=x 3+x 2-2x -2的一个正整零点附近的函数值用二分法计算,其参考数据如下:A .1.2B .1.3C .1.4D .1.5解析:选C .由零点的定义知,方程的根所在区间为[1.406 25,1.437 5],故精确到0.1的近似根为1.4.6.函数f (x )=x 2+ax +b 有零点,但不能用二分法求出,则a ,b 的关系是________. 解析:因为函数f (x )=x 2+ax +b 有零点,但不能用二分法,所以函数f (x )=x 2+ax +b 的图象与x 轴相切,所以Δ=a 2-4b =0,所以a 2=4b . 答案:a 2=4b7.方程x 3=2x 精确到0.1的一个近似解是________. 解析:令f (x )=x 3-2x ,f (1)=-1<0,f (2)=4>0,所以在区间[1,2]上求函数f (x )的零点,即为方程x 3=2x 的一个根,依照二分法求解得x =1.4.答案:1.48.某方程有一无理根在区间D =(1,3)内,若用二分法求此根的近似值,则将D 至少等分________次后,所得近似值的精确度为0.1.解析:由3-12n ≤0.1,得2n ≥20,n >4,故至少等分5次. 答案:59.分别求出下列函数的零点,并指出是变号零点还是不变号零点. (1)f (x )=3x -6; (2)f (x )=x 2-x -12; (3)f (x )=x 2-2x +1; (4)f (x )=(x -2)2(x +1)x . 解:(1)零点是2,是变号零点. (2)零点是-3和4,都是变号零点. (3)零点是1,是不变号零点.(4)零点是-1,0和2,其中变号零点是0和-1,不变号零点是2. 10.已知函数f (x )=13x 3-x 2+1(1)证明方程f (x )=0在区间(0,2)内有实数解;(2)使用二分法,取区间的中点三次,指出方程f (x )=0(x ∈[0,2])的实数解x 0在哪个较小的区间内.解:(1)证明:因为f (0)=1>0,f (2)=-13<0,所以f (0)·f (2)<0,由函数的零点存在性定理可得方程 f (x )=0在区间(0,2)内有实数解. (2)取x 1=12(0+2)=1,得f (1)=13>0,由此可得f (1)·f (2)<0,下一个有解区间为(1,2). 再取x 2=12(1+2)=32,得f ⎝⎛⎭⎫32=-18<0, 所以f (1)·f ⎝⎛⎭⎫32<0,下一个有解区间为⎝⎛⎭⎫1,32. 再取x 3=12⎝⎛⎭⎫1+32=54,得f ⎝⎛⎭⎫54=17192>0, 所以f ⎝⎛⎭⎫54·f ⎝⎛⎭⎫32<0,下一个有解区间为⎝⎛⎭⎫54,32. 综上所述,得所求的实数解x 0在区间⎝⎛⎭⎫54,32内.[B 能力提升]11.若函数f (x )的图象在R 上连续不断,且满足f (0)<0,f (1)>0,f (2)>0,则下列说法正确的是()A.f(x)在区间(0,1)上一定有零点,在区间(1,2)上一定没有零点B.f(x)在区间(0,1)上一定没有零点,在区间(1,2)上一定有零点C.f(x)在区间(0,1)上一定有零点,在区间(1,2)上可能有零点D.f(x)在区间(0,1)上可能有零点,在区间(1,2)上一定有零点解析:选C.根据零点存在性定理,由于f(0)·f(1)<0,f(1)·f(2)>0,所以f(x)在区间(0,1)上一定有零点,在区间(1,2)上无法确定,可能有,也可能没有,如图所示:12.已知定义在R上的函数f(x)的图象是连续不断的,且有如下部分对应值表:则f(x解析:由于f(2)>0,f(3)<0,f(4)>0,f(5)<0,所以f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,故f(x)的零点个数至少有3个.答案:313.在一个风雨交加的夜里,从某水库闸房到防洪指挥部的电话线路发生了故障.这是一条10 km长的线路,如果沿着线路一小段一小段查找,困难很多.每查一个点要爬一次电线杆子,10 km长,大约有200多根电线杆子.则:(1)维修线路的工人师傅怎样工作最合理?(2)算一算要把故障可能发生的范围缩小到50 m~100 m 左右,即一两根电线杆附近,要查多少次?解:(1)如图,他首先从中点C查.用随身带的话机向两端测试时,发现AC段正常,断定故障在BC段,再到BC段中点D查,这次发现BD段正常,可见故障在CD段,再到CD中点E来查.(2)每查一次,可以把待查的线路长度缩减一半,因此只要7 次就够了.14.(选做题)求方程3x2-4x-1=0的根的近似值.解:令f(x)=3x2-4x-1,列出x,f(x)的一些对应值如下表:00若x0∈[-1,0],取区间[-1,0]的中点x1=-0.5,则f(-0.5)=1.75,因为f(-0.5)·f(0)<0,所以x0∈[-0.5,0].再取区间[-0.5,0]的中点x2=-0.25,则f(-0.25)=0.187 5,因为f(-0.25)·f(0)<0,所以x0∈[-0.25,0].同理,可得x0∈[-0.25,-0.125],x0∈[-0.25,-0.187 5],x0∈[-0.218 75,-0.187 5],区间[-0.218 75,-0.187 5]的左、右端点精确到0.1所取的近似值都是-0.2.所以把x0=-0.2作为方程3x2-4x-1=0的一个根的近似值.同理,若x0∈[1,2]时,方程的根的近似值为1.5.2±7综上,方程3x2-4x-1=0的根的精确值为x1,2=3,近似值为-0.2或1.5.。
2.4.2求函数零点近似解的一种计算方法——二分法【学习目标】1.了解函数变号零点与不变号零点的概念,会判断函数变号零点的存在.2.会用二分法求函数变号零点的近似值,并能对二分法的过程作出程式化的步骤.【重点】了解函数变号零点与不变号零点的概念,会判断函数变号零点的存在.【难点】会用二分法求函数变号零点的近似值,并能对二分法的过程作出程式化的步骤.【基础自测】1.零点存在的判定方法条件:y=f(x)在[a,b]上的图象不间断,f(a)·f(b)<0.结论:y=f(x)在[a,b]上至少有一个零点,即存在x0∈(a,b)使f(x0)=0.2.零点的分类3.二分法(1)定义对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点的方法叫做二分法.(2)求函数零点的一般步骤已知函数y=f(x)定义在区间D上,求它在D上的一个零点x0的近似值x,使它满足给定的精确度.用二分法求此函数零点的一般步骤为:①在D内取一个闭区间[a0,b0]⊆D,使f(a0)与f(b0)异号,即f(a0)·f(b0)<0,零点位于区间[a0,b0]中.②取区间[a0,b0]的中点,则此中点对应的坐标为x0=a0+b02.计算f(x0)和f(a0),并判断:a.如果f(x0)=0,则x0就是f(x)的零点,计算终止.b.如果f(a0)·f(x0)<0,则零点位于区间[a0,x0]中,令a1=a0,b1=x0. c.如果f(a0)·f(x0)>0,则零点位于区间[x0,b0]中,令a1=x0,b1=b0.③取区间[a1,b1]的中点,则此中点对应的坐标为x1=a1+b12.计算f(x1)和f(a1),并判断:a.如果f(x1)=0,则x1就是f(x)的零点,计算终止.b.如果f(a1)·f(x1)<0,则零点位于区间[a1,x1]上,令a2=a1,b2=x1.c.如果f(a1)·f(x1)>0,则零点位于区间[x1,b1]上,令a2=x1,b2=b1.……继续实施上述步骤,直到区间[a n,b n],函数的零点总位于区间[a n,b n]上,当区间的长度b n-a n不大于给定的精确度时,这个区间[a n,b n]中的任何一个数都可以作为函数y=f(x)的近似零点,计算终止.思考:二分法需要注意的问题有哪些?[提示]用二分法求方程近似解应注意的问题为:①看清题目的精确度,它决定着二分法步骤的结束.②在没有公式可用来求方程根时,可联系相关函数,用二分法求零点,用二分法求出的零点一般是零点的近似解,如求f(x)=g(x)的根,实际上是求函数y=f(x)-g(x)的零点,即求曲线y=f(x)与y=g(x)交点的横坐标.③并不是所有函数都可用二分法求零点,必须满足在区间[a,b]上连续不断,且f(a)·f(b)<0这样条件的函数才能用二分法求得零点的近似值.一、二分法的概念(1)已知函数f(x)的图象如图2-4-2所示,其中零点的个数与可以用二分法求解的个数分别为()A.4,4B.3,4C.5,4 D.4,3(2)用二分法求方程x3-2x-5=0在区间[1,3]内的根,取区间的中点为x0=2,那么下一个有根的区间是________.图2-4-2[规律方法] 二分法求函数零点的依据:其图象在零点附近是连续不断的,且该零点为变号零点,因此,用二分法求函数零点近似值的方法仅对函数的变号零点适用,对函数的不变号零点不适用.[跟踪训练] 1.下面关于二分法的叙述,正确的是( ) A .用二分法可求所有函数零点的近似值B .用二分法求方程的近似解时,可以精确到小数点后的任一位C .二分法无规律可循D .只有在求函数零点时才用二分法 二、函数零点类型的判定判断下列函数是否有变号零点:(1)y =x 2-5x -14; (2)y =x 2+x +1;(3)y =-x 4+x 3+10x 2-x +5; (4)y =x 4-18x 2+81.[规律方法] 图象连续不间断的函数f (x )在[a ,b]上,若f (a )·f (b )<0,则函数f (x )在该区间上至少有一个变号零点,也就是可能有多个变号零点,还可能有不变号零点,但至少有一个变号零点是肯定的.这一结论可直接应用于函数变号零点判定之中提醒:1当fa ·f b>0时,不要轻率地判定f x 在a ,b 上没有零点,如fx =x 2-2x +12,有f0·f 2=14>0,但x =1±22∈0,2是fx的两个变号零点2初始区间的选定一般在两个整数间,如3选的是0和5.[跟踪训练] 2.对于函数f (x )=x 2+mx +n ,若f (a )>0,f (b )>0,则函数f (x )在区间(a ,b )内( )A .一定有零点B .一定没有零点C .可能有两个零点D .至多有一个零点三、用二分法求方程的近似解 [探究问题]1.函数y=f(x)的零点与方程f(x)=0的解有何关系?提示:函数y=f(x)的零点就是方程f(x)=0的解.2.如何把求方程的近似解转化为求函数零点的近似解?提示:设方程为f(x)=g(x),构造函数F(x)=f(x)-g(x),求方程f(x)=g(x)的近似解问题就可转化为求函数F(x)=f(x)-g(x)零点的近似解问题.用二分法求方程2x3+3x-3=0的一个正实数近似解(精确度为0.1).[规律方法] 1.根据函数的零点与相应方程的解的关系,求函数的零点与求相应方程的解是等价的.求方程f(x)=0的近似解,即按照用二分法求函数零点近似值的步骤求解.2.对于求形如f(x)=g(x)的方程的近似解,可以通过移项转化成求形如F(x)=f(x)-g(x)=0的方程的近似解,然后按照用二分法求函数零点近似值的步骤求解.[跟踪训练] 3.用二分法求函数f(x)=x3+5的零点可以取的初始区间是() A.[-2,1] B.[-1,0] C.[0,1] D.[1,2]1.下列函数中能用二分法求零点的是()2.用二分法求函数f(x)在(a,b)内的唯一零点时,精确度为0.001,则结束计算的条件是()A.|a-b|<0.1B.|a-b|<0.001C.|a-b|>0.001 D.|a-b|=0.0013.图象连续不间断的函数f(x)的部分对应值如表所示4.若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,参考数据如下:5.指出方程x3-2x-1=0的正根所在的大致区间;一、选择题1.用“二分法”可求近似解,对于精确度ε说法正确的是()A.ε越大,零点的精确度越高B.ε越大,零点的精确度越低C.重复计算次数就是εD.重复计算次数与ε无关2.已知连续函数f(x)的部分对应值如下表:则函数f(x)在区间[1,9]上的零点至少有() 【导学号:60462178】A.2个B.3个C.4个D.5个3.函数f(x)=x3-2x2+3x-6在区间[-2,4]上的零点必定属于()A.[-2,1] B.[2.5,4] C.[1,1.75] D.[1.75,2.5]4.在用二分法求函数f(x)的一个正实数零点时,经计算,f(0.64)<0,f(0.72)>0,f(0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为() A.0.68 B.0.72 C.0.7 D.0.65.若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)两个零点分别位于区间()A.(a,b)和(b,c)内B.(-∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(-∞,a)和(c,+∞)内二、填空题6.若函数f(x)的图象是连续不间断的,根据下面的表格,可以断定f(x)的零点所在的区间为________.(只填序号) 【导学号:60462179】①(-∞,1]②[1,2]③[2,3]④[3,4]⑤[4,5]⑥[5,6]⑦[6,+∞)8.已知函数f(x)的图象是连续不断的,且有如下的对应值表:①函数f(x)在区间(-1,0)内有零点;②函数f(x)在区间(2,3)内有零点;③函数f(x)在区间(5,6)内有零点;④函数f(x)在区间(-1,7)内有三个零点.三、解答题9.已知函数f(x)=x2+x+a(a<0)在区间(0,1)上有零点,求实数a的取值范围.10.用二分法求方程x2-5=0的一个近似正解(精确度为0.1)[冲A挑战练]一、选择题1.若函数y=f(x)在区间(-2,2)上的图象是连续的,且方程f(x)=0在(-2,2)上仅有一实根0,则f(-1)·f(1)的值()A.大于0B.小于0 C.等于0 D.无法判断2.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为()①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是近似值.A.0 B.1 C.3 D.4二、填空题3.下面是连续函数f(x)在[1,2]上的一些函数值,如表:4.已知f(x)的一个零点x0∈(2,3),用二分法求精确度为0.01的x0近似值时,判断各区间中点的函数值的符号最多需要的次数为________.三、解答题5.已知函数f(x)=3ax2+2bx+c,a+b+c=0,f(0)>0,f(1)>0,证明a>0,并利用二分法证明方程f(x)=0在[0,1]内有两个实根.。
2.4.2 求函数零点近似解的一种计算方法──二分法教学设计教学目标1.理解并掌握用二分法求函数零点近似解的基本方法,并能用计算器求简单方程的近似解。
2.进一步体会函数与方程之间的联系,以及在用函数的观点下处理问题的函数思想,包括其中的逼近思想、近似思想和算法思想等。
3.通过用二分法求零点近似解的过程,使学生进一步感受用数学观点处理问题时的思想和精神.进而培养学生良好的数学意识。
教学重难点教学重点:用二分法求函数零点的近似解.教学难点:理解二分法的一般算法.学情分析及教学内容分析在本册2.4.1中,学生已经学习了函数零点的概念及几何意义,“零点存在性定理”及变号零点、不变号零点的概念(为了给二分法减轻负担,可以将“零点存在性定理”及变号零点、不变号零点的概念的学习提前在2.4.1中完成).学生已经能够利用初中学过的知识(包括十字相乘、分组分解法、图像法等)求一次函数、二次函数及某些可以分解因式的三次函数的零点,还可以利用两个函数的图像的交点情况判断一个方程的解的情况.虽然三次、四次的函数有求根公式,但是它们的表示相当复杂,一般来讲不适于作具体计算.况且高于四次的代数方程不存在求根公式.因此,对于高次多项式函数及其他函数求零点,学生用已有的知识就无能为力了,因此有必要探寻一种可以操作的求零点的近似解的方法.二分法是必修数学1(B版)函数与方程中的教学内容.在大纲版的教科书中没有,是新课标补充的内容.其基本思想是利用“零点存在性定理”,求定义在区间D上的函数在D上满足给定的精确度的零点的近似值的一种计算方法.这种算法比较抽象,学生不易理解.但它是一种通法,只要按部就班地去做,总会借助计算器(包括图形计算器)或计算机软件算出结果.通过对“二分法”的学习,可为必修3中算法的学习提供一些素材,同时做一些必要的思想铺垫.同时,通过对二分法的学习,还可以加深对函数思想、数形结合思想的理解.通过猜1G优盘的价格,学生对二分法有了初步的了解.但是究竟怎样将二分法用于求方程的近似零点,对学生却是一个比较困难的问题,主要有以下问题:1.如何确定初始区间,才能使二分的次数尽可能少?为了解决这个问题,应该充分利用数形结合的思想方法,确定函数零点的大致位置;此外初始区间的端点应尽可能为整数值,且区间的长度尽可能短.2.计算到什么程度停止,取决于精确度的要求.为了降低难度,本节课的设计按教材上给出的“精确到”处理,而不是给出“精确度”的精确解释.3.如何用数学的语言叙述二分法的步骤?为了便于学生理解,本设计采取先用一个具体的例子来引导学生探究,再给出一般理论的做法(教材是先讲二分法的概念、解题步骤,再讲例题,若按这种安排进行教学,学生容易停滞在对“生涩”的二分法步骤的理解,上不利于中等水平的学生的接受).教学过程1.导入新课教师:问题一:上节课我们学习了函数的零点,请同学们求函数的零点.学生:有一个变号零点0.教师:若将函数改为,这个函数有没有零点?若有,有几个,你能求出所有的零点吗?学生1:函数的图像是由的图像向下平移1个单位得到的,因此函数应该有零点;学生2:函数在R上是单调递增的,因此函数的零点应该有且只有一个,而且是一个正值.教师:这个零点是多少呢?教师:简要介绍有关三次、四次及其他高次方程求解的数学史料(用PPT给出).意图:直求函数的零点的形式切入主题,简单明快,承上启下,也符合最近发展区原理;介绍数学史,可以可以丰富学生的知识,提高学生的学习兴趣;上述引入的过程同时复习了函数的图像平移、函数的性质、函数的零点与函数的图像、方程的解之间的关系.师生:复习(1)方程的根与函数零点的关系;(2)零点存在性定理.教师:问题二:我手里的4G优盘是最近买的,你能猜出大致价格吗?要求猜的次数不能超过4次.意图:虽然多数学生都有优盘,但这种设问方式对学生还是很新奇的,借此调动学生的学习积极性,同时让学生对二分法有一个感性认识.教师:板书:二分法2.讲授新课教师:用PPT展示例题:求函数的一个正实数零点(精确到0.1)意图:这里不用教材所给函数(),因为该函数可以利用因式分解的方法求出精确解,容易产生干扰,本节课的目标是求函数的“够用的”近似零点.教师:问题三:对所给函数,怎样能够给出一个较好的包含零点的区间?学生1:最好能画出函数的图像,可是我不会画;学生2:既然这个零点是正值,只需确定左端点为0的一个区间,其右端点的函数值与异号即可.教师:利用几何画板直接做出函数的准确图形,学生观察图象,确信函数的零点只有一个,并且在内.意图:复习“零点存在性定理”进一步体会数形结合思想在解题过程中的应用.教师:问题四:如何用二分法求函数的近似零点(即方程的近似解)?探究1.零点的初始区间的确定师生共同从所画图象(用几何画板直接画出)上选择一个最优区间,作为初始区间.探究2.缩小区间的方法(逼近):找中点,二分区间.(假如满足精确度要求的近似零点为)学生:四人一组,三人计算(用计算器),一人记录(每算一次,校对一次),逐步缩小零点的存在区间(计算8次):第一次:;第二次:;第三次:;第四次:;第五次:;第六次:;第七次:;第八次:.探究3.零点的精确化教师:比如要求精确到0.1、0.01,结果是多少?算几次即可?学生1:若要求精确到0.1,则两个端点的近似值都为0.3,取,算5次就够了.学生2:若要求精确到0.01,则,算8次就够了.意图:“缩小区间、逼近零点”是二分法的核心环节,是本课的重点内容.因此这个计算过程一定要由学生完成.在计算过程中,学生会发现包含零点的区间越来越短,从而函数的零点也越来越精确,学生的热情越来越高.通过学生思考、探究和互动,反复触碰这个核心,不断深化对二分法的理解;通过精确度的控制,学生能够进一步感受精确与近似的相对统一;同时,在经历解决问题的过程中获得方法,建构新知,为下一步总结二分法的概念及步骤做了很好的铺垫.教师:问题五:什么是二分法?学生:对于在区间,上连续不断,且满足·的函数,按照一定的精确度的要求,通过不断地把函数的零点所在的区间一分为二(等分),使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.教师:问题六:用二分法求零点近似值的步骤是什么?师生:用二分法求函数满足给定的精确度的零点近似值的步骤如下:(1)确定初始区间,验证·;(2)求区间的中点;(3)计算:①若=,则就是函数的零点,计算终止;②若·<,则令(此时零点);③若·>,则令(此时零点);(4)判断区间是否达到精确度.若达到,则得到零点值(或);否则重复步骤(2)(4),直到区间,使得函数的零点总位于这个区间,并且当和按照给定的精确度所取的近似值相同时,这个相同的近似值就是函数的近似零点,计算终止.意图:学生总结,教师多媒体演示定义及二分法的解题步骤.让学生总结二分法的定义以及求函数零点的步骤,可以帮助学生调理思路,养成独立思考,善于总结的学习习惯,并且学会用数学语言进行数学的表达,这也是本课的一个难点.对于计算机水平较高的学生,还可以让他们在科学计算软件Scilab的界面上编制并调用二分法程序,对上例进行计算,求出精确度更高的近似解(后面给出了相应程序).3.练习与巩固(1)下列图象中,不能用二分法求函数零点的是()选题意图:二分法使用的条件是函数的图像在零点附近连续不断并且零点是变号零点.(2)求函数的一个正零点的近似值(精确到0.1).选题意图:怎样确定初始区间?若取,则二分两次就可得到零点3(满足精确度要求).(3)使用计算器或数学软件,用二分法求函数的正零点(精确到0.01).选题意图:通过此题,让学生进一步熟悉用二分法求函数零点的步骤.4.小结学生甲:本节课主要学习了二分法,以及用二分法求函数的近似零点的方法与步骤.学生乙:使用二分法求函数的零点近似值,要选好初始区间,控制好精确度,计算一定要准确无误,特别是区间端点函数值符号的判断.学生丙:本节课还学习了数学中的很多数学思想,即等价转化、函数与方程、数形结合,以及无限逼近等思想.教师:思考题:1、举几个二分法在实际生活中的例子;2、类似于二分法,有没有三分法、四分法,怎么实施?二分法进行对比,孰优孰劣?设计意图:对二分法的本质及好处增进理解.教学反思按新课程教育教学理念的要求,教学过程要倡导积极主动、勇于探索的学习方式.因此本节课在导入新课、讲授新课、练习与巩固的环节都有学生的积极参与,尤其是例题的求解过程,完全由学生相互配合完成,对培养学生动手实践、合作交流的能力起到了积极的作用.新课程教育教学理念认为,提高学生的数学思维能力是数学教育的基本目标之一.因此本设计在整堂课的教学过程中共提出了六个问题,按照学生的认知规律层层深入.在问题的解决过程中,提高了学生的数学思维能力.新课程教育教学理念还提倡实现信息技术与课程内容的有机整合.本课在保证笔算训练的前提下,让学生使用科学型计算器完成相关计算,并且鼓励有能力的学生使用科学计算软件Scilab进行快速、精确的计算.在教学过程中,教师还充分利用了powerpoint、几何画板等软件提高了教学效率,实现了信息技术与课程内容的有机整合.由于在上一节课做了铺垫(提前学习了“零点存在性定理”及变号零点、不变号零点等概念),所及用一课时就能比较顺利地完成本设计的教学任务.由于部分学生使用计算器进行大量计算的能力还比较差,因此很多组算得较慢.今后的教学中,在学习本课之前应该加强计算器使用的教学,让多数学生比较顺利地完成8次计算,以获得成功的快感.另外,本节课导入新课的环节有些拖沓,导致最后一个练习部分学生没有得到最后的结果,也是今后教学要改进的地方.本教学设计另附课件(PPT).附:用科学计算软件Scilab求函数的一个正实数零点(精确到0.01)的程序及程序框图:a=input("a=");b=input("b=");x1=a;x2=b;for i=1:7t=(x1+x2)/2;A=(x1)^3+(3*x1)-1;B=t^3+3*t-1;if A*B<0 then x1=x1;x2=t;C=t^3+3*t-1;else x1=t;x2=x2;C=t^3+3*t-1;if C>=0.005 then i=i+1;else disp("gen shi",t); endendend。
2.4.2 求函数零点近似解的一种计算方法——二分法【学习要求】1.理解变号零点的概念,掌握二分法求函数零点的步骤及原理;2.了解二分法的产生过程,会用二分法求方程近似解. 【学法指导】通过借助计算器用二分法求方程的近似解,了解数学中逼近的思想和程序化地处理问题的思想;通过具体问题体会逼近过程,感受精确与近似的相对统一,体会“近似是普遍的,精确则是特殊的”辩证唯物主义观点. 填一填:知识要点、记下疑难点如果函数y =f(x)在一个区间[a ,b]上的图象不间断,并且在它的两个端点处的函数值 异号 ,即f(a)f(b)<0 ,则这个函数在这个区间上,至少有一个零点,即存在一点x 0∈(a ,b),使f(x 0)=0.如果函数图象通过零点时穿过x 轴,则称这样的零点为变号 零点,如果没有穿过x 轴,则称这样的零点为 不变号 零点. 研一研:问题探究、课堂更高效[问题情境] 一元二次方程可用判别式判定根的存在性,可用求根公式求方程的根.但对于一般的方程,虽然可用零点存在性定理判定根的存在性,但是没有公式求根,如何求得方程的根呢? 探究点一 变号零点与不变号零点问题 函数y =3x +2,y =x 2,y =x 2-2x -3的图象,如下图所示,在图象上零点左右的函数值怎样变化?答:函数y =3x +2的零点是-23,零点左侧的函数值为负数,零点右侧的函数值为正数;函数y =x 2的零点是0,在0两侧的函数值都是正数. 函数y =x 2-2x -3的零点是-1,3,在零点左右两侧的函数值异号.小结:如果函数f(x)在一个区间[a ,b]上的图象不间断,并且在它的两个端点处的函数值异号,即f(a)f(b)<0,则这个函数在这个区间上至少有一个零点,即存在一点x 0∈(a ,b),使f(x 0)=0.如果函数图象通过零点时穿过x 轴,则称这样的零点为变号零点,如果没有穿过x 轴,则称这样的零点为不变号零点. 探究点二 二分法的概念问题1 由变号零点的概念我们知道,函数y =f(x)在一个区间[a ,b]上的图象不间断,并且在它的两个端点处的函数值异号,即f(a)f(b)<0,则这个函数在这个区间上至少有一个零点,那么如何求出这个零点的近似值? 答:我们可以将零点所在的范围尽量缩小,那么在一定的精确度的要求下,可以得到零点的近似值. 例1 利用计算器,求方程x 2-2x -1=0的一个正实数零点的近似解(精确到0.1).解 :设f(x)=x 2-2x -1,先画出函数图象的简图.(如图所示) 因为f(2)=-1<0,f(3)=2>0,所以在区间(2,3)上方程x 2-2x -1=0有正实数根,又因为在区间(2,3)上函数f(x)是单调递增的,所以方程x 2-2x -1=0在区间(2,3)上有唯一正实数根x 1. 取2与3的平均数2.5,因为f(2.5)=0.25>0,所以2<x 1<2.5. 再取2与2.5的平均数2.25,因为f(2.25)=-0.437 5<0,所以2.25<x 1<2.5. 如此继续下去,得f(2)<0,f(3)>0⇒x 1∈(2,3),f(2)<0,f(2.5)>0⇒x 1∈(2,2.5),f(2.25)<0,f(2.5)>0⇒x 1∈(2.25,2.5), f(2.375)<0,f(2.5)>0⇒x 1∈(2.375,2.5),f(2.375)<0,f(2.437 5)>0⇒x 1∈(2.375,2.437 5),因为2.375与2.437 5精确到0.1的近似值都为2.4, 所以此方程的一个正实数零点的近似解为2.4.问题2 例1中求方程近似解的方法就是二分法,根据解题过程,你能归纳出什么是二分法吗? 答:对于区间[a ,b]上连续不断,且f(a)·f(b)<0的函数f(x),通过不断地把函数f(x)的零点所在的区间一分为二,再经比较,按需要留下其中一个小区间,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法. 问题3 给定精确度,用二分法求函数f(x)的零点近似值的步骤是怎样的? 答:用二分法求函数零点的一般步骤:1.在定义域D 内取一个闭区间[a 0,b 0]⊆D ,使f(a 0)与f(b 0)异号,即f(a 0)·f(b 0)<0.零点位于区间[a 0,b 0]中.2.取区间[a 0,b 0]的中点(如图),则此中点对应的坐标为x 0=a 0+12(b 0-a 0)=12(a 0+b 0).计算f(x 0)和f(a 0),并判断:(1)如果f(x0)=0,则x0就是f(x)的零点,计算终止;(2)如果f(a0)·f(x0)<0,则零点位于区间[a0,x0]中,令a1=a0,b1=x0;(3)如果f(a0)·f(x0)>0,则零点位于区间[x0,b0]中,令a1=x0,b1=b0.3.取区间[a1,b1]的中点,则此中点对应的坐标为x1=a1+12(b1-a1)=12(a1+b1).计算f(x1)和f(a1),并判断:(1)如果f(x1)=0,则x1就是f(x)的零点,计算终止;(2)如果f(a1)·f(x1)<0,则零点位于区间[a1,x1]上,令a2=a1,b2=x1;(3)如果f(a1)·f(x1)>0,则零点位于区间[x1,b1]上,令a2=x1,b2=b1.……继续实施上述步骤,直到区间[a n,b n],函数的零点总位于区间[a n,b n]上,当a n和b n按照给定的精确度所取的近似值相同时,这个相同的近似值就是函数y=f(x)的近似零点,计算终止.这时函数y=f(x)的近似零点满足给定的精确度.跟踪训练1借助计算器或计算机,用二分法求函数f(x)=x3+1.1x2+0.9x-1.4在区间(0,1)内的零点(精确到0.1).解:由题设可知f(0)=-1.4<0,f(1)=1.6>0,于是f(0)·f(1)<0,所以函数f(x)在区间[0,1]内有一个零点.取区间(0,1)的中点x1=0.5,用计算器可算得f(0.5)=-0.55.因为f(0.5)·f(1)<0,所以x0∈[0.5,1].再取区间[0.5,1]的中点x2=0.75,用计算器可算得f(0.75)≈0.32. 因为f(0.5)·f(0.75)<0,所以x0∈[0.5,0.75].同理可得x0∈[0.625,0.75],x0∈[0.625,0.687 5],x0∈[0.656 25,0.687 5].区间[0.656 25,0.687 5]的左右端点精确到0.1所取的近似值都是0.7,因此0.7就是所求函数在区间(0,1)内的零点的近似值.探究点三二分法的应用例2求函数f(x)=x3+x2-2x-2的一个正数零点的近似值(精确到0.1).解:由于f(1)=-2<0,f(2)=6>0,可以确定区间[1,2]作为计算的初始区间.正实数零点的近似值.小结:判定一个函数能否用二分法求其零点的近似值的依据是:其图象在零点附近是连续不断的,且该零点为变号零点.因此,用二分法求函数的零点近似值的方法仅对函数的变号零点适用,对函数的不变号零点不适用.跟踪训练2求32的近似值(精确到0.1).解:设x=32,则x3=2,即x3-2=0,令f(x)=x3-2,则函数f(x)零点的近似值就是所求近似值,以下用二分法求其零点.由于f(1)=-1<0,f(2)=由上表的计算可知,区间[1.25,1.312 5]的左右端点精确到0.1所取的近似值都是1.3,因此1.3可以作为所求的近似值.练一练:当堂检测、目标达成落实处1.已知函数f(x)的图象是不间断的,x 、f(x)的对应法则见下表,则函数f(x)存在零点的区间有 ( C )A.[1,2],[2,3] 解析:由于f(2)f(3)=5×(-3)=-15<0, f(3)f(4)=(-3)×10=-30<0,f(4)f(5)=-50<0, 所以函数f(x)存在零点的区间有[2,3],[3,4],[4,5].2.设函数y =f(x)在区间[a ,b]上的图象是不间断的,且f(a)·f(b)<0,取x 0=a +b2,若f(a)·f(x 0)<0,则利用二分法求函数零点时,零点所在区间为____⎣⎢⎡⎦⎥⎤a ,a +b 2______. 3.已知函数f(x)=mx +2m -7 (m≠0)在区间[-2,5]上有零点,求实数m 的取值范围. 解:因函数f(x)=mx +2m -7 (m≠0)在实数集R 上是单调 函数,所以函数的零点是变号零点. 由题意,得f(-2)f(5)<0, 即(-2m +2m -7)×(5m +2m -7)<0,所以m>1.课堂小结:1.理解二分法是一种求方程近似解的常用方法.2.能借助计算机(器)用二分法求方程的近似解,体会程序化的思想即算法思想.3.进一步认识数学来源于生活,又应用于生活.4.感悟重要的数学思想:等价转化、函数与方程、数形结合、分类讨论以及无限逼近的思想.。
第21课时求函数零点近似值的一种计算方法——二分法
课时目标
1.理解变号零点和不变号零点的概念.
2.掌握函数零点存在的判定方法.
3.能够正确利用二分法求函数零点的近似值.
识记强化
1.给定精确度ε,用二分法求函数f(x)零点近似值的步骤如下:
给定精确度ε,用二分法求函数f(x)零点近似值的步骤如下:
(1)确定区间a,b],验证f(a)·f(b)<0,给定精确度ε;
(2)求区间(a,b)的中点x1;
(3)计算f(x1);
①若f(x1)=0,则x1就是函数的零点;
②若f(a)·f(x1)<0,则令b=x1(此时零点x0∈(a,x1));
③若f(x1)·f(b)<0,则令a=x1(此时零点x0∈(x1,b)).
(4)判断是否达到精确度ε,即若|a-b|<ε,则得到零点近似值a(或b);否则重复(2)~(4).
课时作业
(时间:45分钟,满分:90分)
一、选择题(本大题共6小题,每小题5分,共30分)
1.用二分法求函数f(x)=x3-2的零点时,初始区间可选为( )
A.(0,1) B.(1,2)
C.(2,3) D.(3,4)
答案:B
解析:∵f(1)=-1,f(2)=6,∴f(1)·f(2)<0,故选B.
2.对于定义在R上的函数y=f(x),若f(m)·f(n)>0(m,n∈R,且m<n),则函数y =f(x)在(m,n)内( )
A.只有一个零点
B.至少有一个零点
C.无零点
D.无法确定有无零点
答案:D
解析:对于条件f (m )·f (n )>0(m ,n ∈R ,且m <n ),根据下列三种函数图象可知D 正
确.
3.用二分法求如图所示的函数f (x )的零点时,不可能求出的零点是( )
A .x 1
B .x 2
C .x 3
D .x 4
答案:C 解析:能用二分法求零点的函数必须满足在区间a ,b ]上连续不断,且f (a )f (b )<0.而
x 3两边的函数值都小于零,不满足区间端点处函数值符号相异的条件,故选C.
4.用二分法求方程x 3+3x -7=0在(1,2)内的近似解的过程中,设函数f (x )=x 3+3x
-7,算得f (1)<0,f (1.25)<0,f (1.5)>0,f (1.75)>0,则该方程的一个根落在区间( )
A .(1,1.25)内
B .(1.25,1.5)内
C .(1.5,1.75)内
D .(1.75,2)内
答案:B
解析:由f (1.25)<0,f (1.5)>0,得f (1.25)·f (1.5)<0,所以函数f (x )的一个零点x 0∈
(1.25,1.5),即方程x 3+3x -7=0的一个根落在区间(1.25,1.5)内.
5.已知函数y =f (x )的图象是连续不断的,有如下的对应值表:
x
1 2 3 4 5 6 y 123.56 21.45 -7.82 11.45 -53.76 -128.88
则函数y =f (x )在区间1,6]上的零点至少有( )
A .2个
B .3个
C .4个
D .5个
答案:B
解析:由表,可知f (2)·f (3)<0,f (3)·f (4)<0,f (4)·f (5)<0.由变号零点的性质,得函数
y =f (x )在区间(2,3),(3,4),(4,5)内各应至少存在1个零点,所以函数y =f (x )在区间1,6]上的零点至少有3个.
6.函数f (x )=x 3-2x 2+3x -6在区间-2,4]上的零点必定在( )
A .-2,1] B.⎣⎢⎡⎦
⎥⎤52,4
由题意,得f (-1)·f (1)=8(a -1)(a -2)<0,
即⎩⎪⎨⎪⎧ a -1<0a -2>0或⎩⎪⎨⎪⎧ a -1>0a -2<0,∴1<a <2,
故实数a 的取值范围为(1,2).
(2)若a =3217,则f (x )=3217x 3-6417x +2817
, ∴f (-1)=6017>0,f (0)=2817>0,f (1)=-417
<0, ∴函数f (x )的零点在区间(0,1)上,又f (12
)=0, ∴方程f (x )=0在区间(-1,1)上的根为12
. 能力提升
12.(5分)在用二分法求函数f (x )的一个正实数零点时,经计算,f (0.64)<0,f (0.72)>0,f (0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为( )
A .0.68
B .0.72
C .0.7
D .0.6
答案:C
解析:已知f (0.64)<0,f (0.72)>0,则函数f (x )的一个正实数零点的初始区间为0.64,0.72],又0.68=(0.64+0.72)/2,且f (0.68)<0,所以一个正实数零点在区间0.68,0.72]上,且该区间的左、右端点精确到0.1所取的近似值都是0.7,因此,0.7就是所求函数的一个正实数零点的近似值.
13.(15分)对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0成立,则称x 0为f (x )的不动点.已知f (x )=ax 2+(t +1)x +(t -1)(a ≠0).
(1)当a =1,t =2时,求f (x )的不动点;
(2)若对任意t ∈R ,函数f (x )恒有两个相异的不动点,求实数a 的取值范围.
解:(1)当a =1,t =2时,由f (x )=x 得x 2+3x +1=x ,解得x =-1.
∴f (x )的不动点为-1.
(2)∵f (x )恒有两个相异不动点,
∴方程ax 2+(t +1)x +(t -1)=x 恒有不等两根,
即方程ax 2+tx +(t -1)=0有不等两根.
∴⎩⎪⎨⎪⎧
a ≠0,Δ1=t 2-4a t -1=t 2-4at +4a >0
对于一切t ∈R 恒成立. ∴Δ2=16a 2-16a <0,解得0<a <1,
∴实数a 的取值范围是(0,1).。