高考数学二轮复习课时跟踪检测(一)平面向量(小题练)理(1)
- 格式:doc
- 大小:225.00 KB
- 文档页数:8
平面向量专题练习(带答案详解) 平面向量专题练(附答案详解)一、单选题1.已知向量 $a=(-1,2)$,$b=(1,1)$,则 $a\cdot b$ 等于()A。
3 B。
2 C。
1 D。
02.已知向量 $a=(1,-2)$,$b=(2,x)$,若 $a//b$,则 $x$ 的值是()A。
-4 B。
-1 C。
1 D。
43.已知向量 $a=(1,1,0)$,$b=(-1,0,2)$,且 $ka+b$ 与 $2a-b$ 互相垂直,则 $k$ 的值是()A。
1 B。
5/3 C。
3/5 D。
7/54.等腰直角三角形 $ABC$ 中,$\angle ACB=\frac{\pi}{2}$,$AC=BC=2$,点 $P$ 是斜边 $AB$ 上一点,且 $BP=2PA$,那么 $CP\cdot CA+CP\cdot CB$ 等于()A。
-4 B。
-2 C。
2 D。
45.设 $a,b$ 是非零向量,则 $a=2b$ 是成立的()A。
充分必要条件 B。
必要不充分条件 C。
充分不必要条件 D。
既不充分也不必要条件6.在 $\triangle ABC$ 中 $A=\frac{\pi}{3}$,$b+c=4$,$E,F$ 为边 $BC$ 的三等分点,则 $AE\cdot AF$ 的最小值为()A。
$\frac{8}{3}$ B。
$\frac{26}{9}$ C。
$\frac{2}{3}$ D。
$3$7.若 $a=2$,$b=2$,且 $a-b\perp a$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{6}$ B。
$\frac{\pi}{4}$ C。
$\frac{\pi}{3}$ D。
$\frac{\pi}{2}$8.已知非零向量 $a,b$ 满足 $|a|=6|b|$,$a,b$ 的夹角的余弦值为 $\frac{1}{3}$,且 $a\perp (a-kb)$,则实数 $k$ 的值为()A。
18 B。
必修 4 第二章平面向量教学质量检测一.选择题( 5 分× 12=60 分) :1.以下说法错误的是()A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等C.平行向量方向相同D.平行向量一定是共线向量2.下列四式不能化简为AD 的是()A .(AB+CD)+BC;B .(AD+MB)+(BC+CM);C.MB+AD-BM; D .OC-OA+CD;3.已知a =( 3, 4),b =( 5, 12),a与b则夹角的余弦为()A.63B.65C.13D.13 6554.已知 a、 b 均为单位向量 ,它们的夹角为60°,那么 |a+ 3b| =()A .7B.10C.13D. 45.已知 ABCDEF 是正六边形,且AB = a , AE = b ,则BC=()( A )12( a b) (B)12(b a ) (C) a +12b(D)12(a b)6.设a,b为不共线向量,AB=a+2b,BC=-4a-b,CD=-5 a- 3 b , 则下列关系式中正确的是()(A)AD=BC(B)AD=2BC(C)AD=-BC(D)AD=-2BC7.设e1与e2是不共线的非零向量,且k e1+e2与e1+ k e2共线,则 k 的值是()( A) 1(B)-1(C)1(D)任意不为零的实数8.在四边形ABCD中,AB=DC,且AC·BD= 0,则四边形ABCD是()( A)矩形(B)菱形(C)直角梯形(D)等腰梯形9.已知 M (- 2, 7)、 N( 10,- 2),点 P 是线段 MN 上的点,且PN =-2PM,则P点的坐标为()( A )(-14,16)(B)(22,-11)(C)(6,1)(D)(2,4)10.已知a=( 1,2),b=(- 2,3),且 k a + b与a- k b垂直,则k=()(A)12(B) 21(C) 2 3(D) 32r r(2 x 3, x) 互相平行,其中r r)11、若平面向量a(1, x) 和 b x R .则a b (A.2或0;B.25;C.2或2 5;D. 2或10.12、下面给出的关系式中正确的个数是()① 0 a0 ② a b b a ③a2 a 2④(a b )c a (b c)⑤a b a b(A) 0(B) 1(C) 2(D) 3二. 填空题 (5 分× 5=25 分 ):13.若AB(3,4), A点的坐标为(-2,-1),则B点的坐标为.14.已知a(3, 4), b (2,3) ,则 2 | a | 3a b.15、已知向量 a 3, b (1,2) ,且a b ,则a的坐标是_________________。
2.复数、平面向量考向1 复数的概念、运算及几何意义1.(2022·河南开封一模)设(1+i 4n+3)z=i,n ∈Z ,则在复平面内,复数z 对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2.(2022·全国甲·理1)若z=-1+√3i,则zz -1=( )A.-1+√3iB.-1-√3iC.-13+√33iD.-13−√33i3.(2022·全国乙·理2)已知z=1-2i,且z+a z +b=0,其中a ,b 为实数,则( ) A.a=1,b=-2 B.a=-1,b=2 C.a=1,b=2 D.a=-1,b=-24.(2022·山东潍坊一模)已知复数z 满足z+3=4z +5i,则在复平面内复数z 对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限 5.(2022·新高考Ⅰ·2)若i(1-z )=1,则z+z =( ) A.-2B.-1C.1D.2考向2 平面向量的概念及线性运算6. (2022·河南名校联盟一模)如图,在△ABC 中,点M 是AB 上的点且满足AM ⃗⃗⃗⃗⃗⃗ =3MB ⃗⃗⃗⃗⃗⃗ ,P 是CM 上的点,且MP ⃗⃗⃗⃗⃗⃗ =15MC ⃗⃗⃗⃗⃗⃗ ,设AB ⃗⃗⃗⃗⃗ =a ,AC ⃗⃗⃗⃗⃗ =b ,则AP ⃗⃗⃗⃗⃗ =( )A.12a +14b B.35a +15b C.14a +12bD.310a +35b7.(2022·河南名校联盟一模)下列关于平面向量的说法正确的是( ) A.若AB ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ 共线,则点A ,B ,C ,D 必在同一直线上 B.若a ∥b 且b ∥c ,则a ∥cC.若G 为△ABC 的外心,则GA ⃗⃗⃗⃗⃗ +GB⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =0 D.若O 为△ABC 的垂心,则OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ ·OC⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗ 8.(2022·新高考Ⅰ·3)在△ABC 中,点D 在边AB 上,BD=2DA.记CA ⃗⃗⃗⃗⃗ =m ,CD ⃗⃗⃗⃗⃗ =n ,则CB ⃗⃗⃗⃗⃗ =( ) A.3m -2nB.-2m +3nC.3m +2nD.2m +3n9.(2022·河南许昌质检)正方形ABCD 中,P ,Q 分别是边BC ,CD 的中点,AP ⃗⃗⃗⃗⃗ =x AC ⃗⃗⃗⃗⃗ +y BQ ⃗⃗⃗⃗⃗ ,则x=( ) A.1113B.65C.56D.3210.(2022·河南名校联盟一模)如图,在同一个平面内,向量OA ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为α,且tan α=7,向量OB ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为45°,且|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |=1,|OC ⃗⃗⃗⃗⃗ |=√2.若OC ⃗⃗⃗⃗⃗ =m OA ⃗⃗⃗⃗⃗ +n OB ⃗⃗⃗⃗⃗ (m ∈R ,n ∈R ),则n-m= . 考向3 平面向量的数量积11.(2022·新高考Ⅱ·4)已知向量a =(3,4),b =(1,0),c =a +t b ,若<a ,c >=<b ,c >,则实数t=( ) A.-6 B.-5C.5D.612. (2022·新高考八省第二次T8联考)如图,在同一平面内沿平行四边形ABCD 两边AB ,AD 向外分别作正方形ABEF ,正方形ADMN ,其中AB=2,AD=1,∠BAD=π4,则AC ⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗⃗=( )A.-2√2B.2√2C.0D.-1 13.(2022·山东威海期末)已知向量a ,b 满足|a |=|b |=2,且a -b 在a 上的投影为2+√3,则<a ,b >=( )A.π6 B.π3C.2π3D.5π614.(2022·山东潍坊期末)已知正方形ABCD 的边长为2,MN 是它的内切圆的一条弦,点P 为正方形四条边上的动点,当弦MN 的长度最大时,PM ⃗⃗⃗⃗⃗⃗ ·PN ⃗⃗⃗⃗⃗⃗ 的取值范围是( ) A.[0,1]B.[0,√2]C.[1,2]D.[-1,1]15.(2022·山东济宁一模)等边三角形ABC 的外接圆的半径为2,点P 是该圆上的动点,则PA⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ 的最大值为( ) A.4 B.7C.8D.111 3,且|a|=1,|b|=3,则(2a+b)·b=.16.(2022·全国甲·理13)设向量a,b的夹角的余弦值为2.复数、平面向量1.B 解析: ∵i 4n+3=i 4n ·i 3=-i, ∴(1+i 4n+3)z=(1-i)z=i, ∴z=i1-i =i (1+i )(1-i )(1+i )=-12+12i,∴复数z 在复平面内对应的点为-12,12位于第二象限. 故选B . 2.C 解析: zz -1=√3i(-1+√3i )(-1-√3i )-1=√3i(-1)2+(√3)2-1=-13+√33i,故选C .3.A 解析: ∵z=1-2i, ∴z =1+2i,∴z+a z +b=1-2i +a (1+2i)+b=a+b+1+(2a-2)i =0, ∴{a +b +1=0,2a -2=0, 解得{a =1,b =-2.故选A .4.A 解析: 设z=x+y i,x ,y ∈R ,则z =x-y i,由z+3=4z +5i 得(x+y i)+3=4(x-y i)+5i,即(x+3)+y i =4x+(5-4y )i,于是得{x +3=4x ,y =5-4y ,解得x=y=1,则有z=1+i 对应的点为(1,1),所以在复平面内复数z 对应的点在第一象限. 故选A .5.D 解析: ∵i(1-z )=1, ∴z=i -1i=1+i, ∴z =1-i . ∴z+z =2. 故选D .6.B 解析: AP ⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ +MP ⃗⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ +15MC ⃗⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ +15(AC ⃗⃗⃗⃗⃗ −AM ⃗⃗⃗⃗⃗⃗ )=45AM ⃗⃗⃗⃗⃗⃗ +15AC ⃗⃗⃗⃗⃗ =45×34AB ⃗⃗⃗⃗⃗ +15AC ⃗⃗⃗⃗⃗ =35a +15b .7.D 解析: 若AB ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ 共线,则直线AB 与CD 平行或重合,∴点A ,B ,C ,D 不一定在同一直线上,A 错;当b =0时,满足a ∥b 且b ∥c ,不能得出a ∥c ,B 错; 当G 为△ABC 的重心,则GA⃗⃗⃗⃗⃗ +GB ⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =0,C 错; 若O 为△ABC 的垂心,则OB ⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,∴OB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =0, 即OB ⃗⃗⃗⃗⃗ ·(OC ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )=0,∴OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ ,同理OB ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗ ,∴D 正确,故选D . 8.B解析: 如图.∵BD=2DA ,∴AB ⃗⃗⃗⃗⃗ =3AD ⃗⃗⃗⃗⃗ ,∴CB ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +3AD ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +3(CD ⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ )=-2CA ⃗⃗⃗⃗⃗ +3CD ⃗⃗⃗⃗⃗ . 又CA ⃗⃗⃗⃗⃗ =m ,CD ⃗⃗⃗⃗⃗ =n ,所以CB ⃗⃗⃗⃗⃗ =-2m +3n . 故选B .9.C 解析: ∵P ,Q 分别是正方形边BC ,CD 的中点,∴AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +A D ⃗⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ ,BQ ⃗⃗⃗⃗⃗ =-12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ,∴AP ⃗⃗⃗⃗⃗ =x AC ⃗⃗⃗⃗⃗ +y BQ ⃗⃗⃗⃗⃗ =x (AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )+y -12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =x-12y AB ⃗⃗⃗⃗⃗ +(x+y )AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ ,∴{x -12y =1,x +y =12,∴{x =56,y =-13,故选C . 10.12解析: 由题意在题图中以O 为原点,OA ⃗⃗⃗⃗⃗ 方向为x 轴非负半轴,过O 与OA 垂直向上为y 轴正方向建立平面直角坐标系(图略),则A (1,0),∵向量OA ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为α, tan α=7,∴cos α=√210,sin α=7√210, 又|OC ⃗⃗⃗⃗⃗ |=√2,∴C15,75,cos(α+45°)=-35,sin(α+45°)=45,∴B -35,45, ∵OC ⃗⃗⃗⃗⃗ =m OA ⃗⃗⃗⃗⃗ +n OB ⃗⃗⃗⃗⃗ ,∴15,75=m (1,0)+n -35,45,∴{m -35n =15,45n =75,解得{m =54,n =74,∴n-m=12. 11.C 解析: 由题意得c =(3+t ,4),cos <a ,c >=cos <b ,c >,故9+3t+16|c |×5=3+t|c |×1,解得t=5.故选C .12.C 解析: AC ⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )·(FA ⃗⃗⃗⃗⃗ +AN ⃗⃗⃗⃗⃗⃗ )=AB ⃗⃗⃗⃗⃗ ·FA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ·FA ⃗⃗⃗⃗⃗ +A A ⃗⃗⃗⃗⃗⃗ ·AN ⃗⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ·AN ⃗⃗⃗⃗⃗⃗ =0+|AD ⃗⃗⃗⃗⃗ ||FA ⃗⃗⃗⃗⃗ |cos π4+|AB ⃗⃗⃗⃗⃗ ||AN⃗⃗⃗⃗⃗⃗ |cos 3π4+0=√2−√2=0.选C . 13.D 解析: (a -b )·a =|a -b ||a |cos <a -b ,a >=(2+√3)·2, 即a 2-a ·b =4+2√3,a ·b =-2√3.所以|a ||b |cos <a ,b >=-2√3,cos <a ,b >=-√32,<a ,b >=5π6.14.A 解析: 由题当弦MN 长度最大时,即MN 为直径,设弦MN 的中点为O ,由题意,PM ⃗⃗⃗⃗⃗⃗ ·PN ⃗⃗⃗⃗⃗⃗ =(PO ⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ )·(PO ⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗⃗ )=PO ⃗⃗⃗⃗⃗ 2−14MN ⃗⃗⃗⃗⃗⃗⃗ 2=PO ⃗⃗⃗⃗⃗ 2-1=|PO ⃗⃗⃗⃗⃗ 2|-1,由1≤|PO ⃗⃗⃗⃗⃗ |≤√2,得PM ⃗⃗⃗⃗⃗⃗ ·PN⃗⃗⃗⃗⃗⃗ 的取值范围是[0,1]. 15.C解析: 如图所示,建立平面直角坐标系,设△ABC 的边长为a ,则asinA =2R=4(R 为△ABC 外接圆半径),所以a=2√3,A (0,3),B (-√3,0),C (√3,0),△ABC 的外接圆的方程为x 2+(y-1)2=4,设P 点坐标为(2cos θ,1+2sin θ),θ∈R ,PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ (PA ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )=4+2√3cos θ+2sin θ=4+4cos θ-π6≤8,当cos θ-π6=1时,等号成立.故选C .。
一、选择题1.在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e 1=(0,0),e 2=(1,2) B .e 1=(-1,2),e 2=(5,-2) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=(-2,3) 答案 B解析 可依据向量共线不行以作为基底来推断. ∵A 、C 、D 中e 1与e 2共线,故选B.2.已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92 B .0 C .3 D.152答案 C解析 2a -3b =(2k -3,-6),由(2a -3b )⊥c ,得4k -6-6=0,解得k =3.选C.3.若向量a 、b 满足:|a |=1,(a +b )⊥a ,(2a +b )⊥b ,则|b |=( ) A .2 B. 2 C .1 D.22 答案 B 解析由题意得⎩⎨⎧(a +b )·a =a 2+a ·b =0,(2a +b )·b =2a ·b +b 2=0⇒-2a 2+b 2=0,即-2|a |2+|b |2=0,又|a |=1,∴|b |= 2.故选B.4.设O 为△ABC 内部的一点,且OA →+OB →+2OC →=0,则△AOC 的面积与△BOC 的面积之比为( )A.32B.53 C .2 D .1答案 D解析 ∵OA →+OB →+2OC →=0,∴OA →+OB →=-2OC →=2OD →(D 为边AB 的中点),画出图形如图所示,则点A ,B 到OC 的距离相等,OC 边公用,则△AOC ,△BOC 的面积相等,选D.5.已知向量a =(cos θ,-2),b =(sin θ,1),且a ∥b .则tan ⎝⎛⎭⎪⎫θ-π4等于( )A .3B .-3 C.13 D .-13答案 B解析 由a ∥b 得cos θ+2sin θ=0,∴tan θ=-12,tan ⎝ ⎛⎭⎪⎫θ-π4=tan θ-11+tan θ=-3.故选B.6.[2021·长春质监(三)]已知|a |=1,|b |=2,且a ⊥(a -b ),则向量a 与向量b 的夹角为( )A.π6B.π4。
(完整版)《平面向量》测试题及答案《平面向量》测试题一、选择题1.若三点P (1,1),A (2,-4),B (x,-9)共线,则()A.x=-1B.x=3C.x=29D.x=512.与向量a=(-5,4)平行的向量是()A.(-5k,4k )B.(-k 5,-k 4)C.(-10,2)D.(5k,4k) 3.若点P 分所成的比为43,则A 分所成的比是()A.73B. 37C.- 37D.-73 4.已知向量a 、b ,a ·b=-40,|a|=10,|b|=8,则向量a 与b 的夹角为() A.60° B.-60° C.120° D.-120° 5.若|a-b|=32041-,|a|=4,|b|=5,则向量a ·b=() A.103B.-103C.102D.106.(浙江)已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( )A.? ????79,73B.? ????-73,-79C.? ????73,79D.? ????-79,-737.已知向量a=(3,4),b=(2,-1),如果向量(a+x )·b 与b 垂直,则x 的值为() A.323B.233C.2D.-52 8.设点P 分有向线段21P P 的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是() A.(-∞,-1) B.(-1,0) C.(-∞,0) D.(-∞,-21) 9.设四边形ABCD 中,有DC =21,且||=|BC |,则这个四边形是() A.平行四边形 B.矩形 C.等腰梯形 D.菱形10.将y=x+2的图像C 按a=(6,-2)平移后得C ′的解析式为()A.y=x+10B.y=x-6C.y=x+6D.y=x-1011.将函数y=x 2+4x+5的图像按向量a 经过一次平移后,得到y=x 2的图像,则a 等于() A.(2,-1) B.(-2,1) C.(-2,-1) D.(2,1)12.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D 的坐标是() A.(2a,b) B.(a-b,a+b) C.(a+b,b-a) D.(a-b,b-a) 二、填空题13.设向量a=(2,-1),向量b 与a 共线且b 与a 同向,b 的模为25,则b= 。
高考数学专题:平面向量练习试题 1.已知(3,4)a =,(8,6)b =-,则向量a 与b ( )A .互相平行B .互相垂直C .夹角为30°D .夹角为60° 2.已知向量(5,3)a =-,(2,)b x =,且//a b ,则x 的值是( ) A .65 B .103 C .-65 D .-103 3.已知向量(2,3)a =,(1,2)b =,且()()a b a b λ+⊥-,则λ等于( ) A .35 B .35- C .3- D .3 4.如果a 、b 都是单位向量,则a b -的取值范围是( )A .(1,2)B .(0,2)C .[1,2]D .[0,2] 5.已知在ABC ∆中,0OA OB OC ++=,则O 为ABC ∆的( )A .垂心B .重心C .外心D .内心 6.已知(7,1)A ,(1,4)B ,直线ax y 21=与线段AB 交于点C ,且2AC CB =,则a 等于( ) A .2 B .35 C .1 D .54 7.已知直线2y x =上一点P 的横坐标为a ,有两个点(1,1)A -,(3,3)B ,那么使向量PA 与PB 夹角为钝角的一个充分但不必要的条件是( )A .12a -<<B .01a <<C .22a -<< D .02a <<8.已知向量(4,2)a =,(1,1)b =-,则b 在a 方向上的射影长为_________. 9.已知点(2,3)A ,(0,1)C ,且2AB BC =-,则点B 的坐标为_____________.10.已知||2a =,||2b =,a 与b 的夹角为45︒,则()b a a -⋅=________. 11.已知向量(3,1)OA =--,(2,3)OB =,OC OA OB =+,则向量OC 的坐标为____________,将向量OC 按逆时针方向旋转90︒得到向量OD ,则向量OD 的坐标为______________12.已知向量a 、b 的夹角为45︒,且满足||4a =,1()(23)122a b a b +⋅-=,则||b =_________;b 在a 方向上的投影等于_____________. 13.平面上有三个点(2,)A y -,(0,)2y B ,(,,)C x y ,若AB BC ⊥,则动点的轨迹方程为______________.14.将函数2y x =的图象F 按向量(3,2)a =-平移到'F ,则'F 对应的函数解析式为_________________.15.把点(2,2)A 按向量(2,2)a =-平移到点B ,此时点B 分OC (O 为坐标原点)的比为2-,则点C 的坐标为____________.16.在ABC ∆中,60BAC ∠=︒,||1AC =,||4AB =,则ABC ∆的面积为____,||BC =_____________.答案1.B2.C3.B4.D5.B6.A7.B8.59.(2,1)-- 10.2- 11.(1,2)-,(2,1)--12 1 13.28y x =14.2(3)2y x =-- 15.(0,2)16。
课时跟踪检测(一) 平面向量的概念A 级——学考合格性考试达标练1.下列说法中正确的个数是( )①身高是一个向量;②∠AOB 的两条边都是向量;③温度含零上和零下温度,所以温度是向量;④物理学中的加速度是向量.A .0B .1C .2D .3解析:选B 身高只有大小,没有方向,故①不是向量,同理③不是向量;对②,∠AOB 的两条边只有方向,没有大小,不是向量;④是向量.故选B.2.下列说法正确的是( )A .若|a |=|b |,则a =±bB .零向量的长度是0C .长度相等的向量叫相等向量D .共线向量是在同一条直线上的向量解析:选B 对A ,当|a |=|b |时,由于a ,b 方向是任意的,a =±b 未必成立,所以A 错误;对B ,零向量的长度是0,正确;对C ,长度相等的向量方向不一定相同,故C 错误;对D ,共线向量不一定在同一条直线上,故D 错误.故选B.3.汽车以120 km /h 的速度向西走了2 h ,摩托车以45 km/h 的速度向东北方向走了2 h ,则下列命题中正确的是( )A .汽车的速度大于摩托车的速度B .汽车的位移大于摩托车的位移C .汽车走的路程大于摩托车走的路程D .以上都不对解析:选C 速度和位移是向量,由向量不能比较大小可知A 、B 错;汽车走的路程为240 km ,摩托车走的路程为90 km ,故C 正确.故选C.4.如图,在矩形ABCD 中,可以用同一条有向线段表示的向量是( )A.DA ―→和BC ―→B.DC ―→和AB ―→C.DC ―→和BC ―→D.DC ―→和DA ―→解析:选B DC ―→和AB ―→方向相同且长度相等,是相等向量,故可以用同一条有向线段表示.故选B.5.若|AB ―→|=|AD ―→|且BA ―→ =CD ―→,则四边形ABCD 的形状为( )A .平行四边形B .矩形C .菱形D .等腰梯形解析:选C ∵BA ―→=CD ―→,∴四边形ABCD 为平行四边形.又∵|AB ―→|=|AD ―→|,∴平行四边形ABCD 相邻两边相等,故四边形ABCD 为菱形.故选C.6.下列叙述:(1)单位向量都相等;(2)若一个向量的模为0,则该向量的方向不确定;(3)共线的向量,若起点不同,则终点一定不同;(4)方向不同的两个向量一定不平行.其中正确的有________.(填所有正确的序号)解析:(1)错误.单位向量模都相等,但是方向不一定相同.(2)正确.若一个向量的模为0,则该向量是零向量,其方向不确定,是任意的.(3)错误.共线的向量,若起点不同,但终点有可能相同.(4)错误.方向相反的两个向量一定平行.答案:(2)7.若a 为任一非零向量,b 为单位向量,下列各式:(1)|a |>|b |;(2)a ∥b ;(3)|a |>0;(4)|b |=±1;(5)若a 0是与a 同向的单位向量,则a 0=b .其中正确的是________.(填序号)解析:对(1),不一定有|a |>|b |;对(2),a 与b 方向不一定相同或相反;对(3),非零向量的模必大于0,即|a |>0;对(4),向量的模非负;对(5),a 0与b 方向不一定相同.综上可知(3)正确.答案:(3)8.已知|AB ―→|=1,|AC ―→|=2,若∠ABC =90°,则|BC ―→|=________.解析:由勾股定理可知,BC =AC 2-AB 2=3,所以|BC ―→|= 3.答案: 39.如图是4×3的矩形(每个小方格的边长都是1),在起点和终点都在小方格的顶点处的向量中,与向量AB ―→平行且模为2的向量共有几个?与向量AB ―→方向相同且模为32的向量共有几个?解:(1)依题意,每个小方格的两条对角线中,有一条对角线对应的向量及其相反向量都和AB ―→平行且模为 2.因为共有12个小方格,所以满足条件的向量共有24个. (2)易知与向量AB ―→方向相同且模为32的向量共有2个.10.已知四边形ABCD 中,AB ―→=DC ―→且|AB ―→|=|AC ―→|,tan D =3,判断四边形ABCD的形状.解:∵在四边形ABCD 中,AB ―→=DC ―→,∴四边形ABCD 是平行四边形.∵tan D =3,∴B =D =60°.又|AB ―→|=|AC ―→|,∴△ABC 是等边三角形.∴AB =BC ,∴四边形ABCD 是菱形.B 级——面向全国卷高考高分练1.已知在平面内点O 固定,且|OA ―→|=2,则A 点构成的图形是( )A .一个点B .一条直线C .一个圆D .不能确定解析:选C 由于|OA ―→|=2,所以A 点构成一个以O 为圆心,半径为2的圆.故选C.2.已知D 为平行四边形ABPC 两条对角线的交点,则|PD ―→||AD ―→|的值为( ) A.12B.13 C .1 D .2解析:选C 因为四边形ABPC 是平行四边形,D 为对角线BC 与AP 的交点,所以D为P A 的中点,所以|PD ―→||AD ―→|的值为1.故选C. 3.[多选]如图,在菱形ABCD 中,∠DAB =120°,则以下说法正确的是( )A .与AB ―→相等的向量只有一个(不含AB ―→)B .与AB ―→的模相等的向量有9个(不含AB ―→)C.BD ―→的模恰好为DA ―→的模的3倍D.CB ―→与DA ―→不共线解析:选ABC 与AB ―→相等的向量只有DC ―→,A 正确;由已知条件可得|AB ―→|=|BA ―→|=|BC ―→|=|CB ―→|=|AC ―→|=|CA ―→|=|DC ―→|=|CD ―→|=|DA ―→|=|AD ―→|,B 正确;如图,过点B 作DA 的垂线交DA 的延长线于E ,因为∠DAB =120°,四边形ABCD 为菱形,所以∠BDE =∠ABE =30°,在Rt △BED 中,|DB ―→|=|DE ―→|cos 30°,在Rt △AEB 中,|AE ―→|=12|AB ―→|=12|AD ―→|,所以|DB ―→|=32|DA ―→|32=3|DA ―→|,C 正确;CB ―→与DA ―→方向相同,大小相等,故CB ―→=DA ―→,CB ―→与DA ―→共线,D 错误.故选A 、B 、C.4.给出下列命题:①若|a |=0,则 a =0;②若|a |=|b |,则a =b ;③若a ∥b ,则|a |=|b |.其中,正确的命题有( )A .0个B .1个C .2个D .3个解析:选A ①忽略了0与0的区别,a =0;②混淆了两个向量的模相等和与两个向量相等的概念,|a |=|b |只能说明它们的长度相等,它们的方向并不确定;③两个向量平行,可以得出它们的方向相同或相反,未必得到它们的模相等.故选A.5.四边形ABCD 满足AD ―→=BC ―→,且|AC ―→|=|BD ―→|,则四边形ABCD 是________(填四边形ABCD 的形状).解析:∵AD ―→=BC ―→,∴AD ∥BC 且|AD ―→|=|BC ―→|,∴四边形ABCD 是平行四边形.又|AC ―→|=|BD ―→|知该平行四边形对角线相等,故四边形ABCD 是矩形.答案:矩形6.如图所示,每个小正方形的边长都是1,在其中标出了6个向量,在这6个向量中:(1)有两个向量的模相等,这两个向量是________,它们的模都等于________.(2)存在着共线向量,这些共线的向量是________,它们的模的和等于________. 解析:结合图形可知,(1)|CH ―→|=|AE ―→|=10.(2)DG ―→与HF ―→共线,|DG ―→|=22,|HF ―→|=32,故|DG ―→|+|HF ―→|=5 2.答案:(1)CH ―→,AE ―→ 10 (2)DG ―→,HF ―→ 5 27.如图,D ,E ,F 分别是正三角形ABC 各边的中点.(1)写出图中所示与向量DE ―→长度相等的向量;(2)写出图中所示与向量FD ―→相等的向量;(3)分别写出图中所示向量与向量DE ―→,FD ―→共线的向量.解:(1)与DE ―→长度相等的向量是EF ―→,FD ―→,AF ―→,FC ―→,BD ―→,DA ―→,CE ―→,EB ―→.(2)与FD ―→相等的向量是CE ―→,EB ―→.(3)与DE ―→共线的向量是AC ―→,AF ―→,FC ―→;与FD ―→共线的向量是CE ―→,EB ―→,CB ―→.C 级——拓展探索性题目应用练在直角坐标系中画出下列向量,使它们的起点都是原点O ,并求终点的坐标.(1)|a |=2,a 的方向与x 轴正方向的夹角为60°,与y 轴正方向的夹角为30°;(2)|a |=4,a 的方向与x 轴正方向的夹角为30°,与y 轴正方向的夹角为120°;(3)|a |=42,a 的方向与x 轴正方向、y 轴正方向的夹角都是135°.解:如图所示.如何学好数学高中学生不仅仅要“想学”,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动为主动。
2019-2020年高考数学二轮复习练酷专题课时跟踪检测二平面向量与复数理1.(xx·全国卷Ⅲ)复平面内表示复数z =i(-2+i)的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:选C z =i(-2+i)=-2i +i 2=-1-2i ,故复平面内表示复数z =i(-2+i)的点位于第三象限.2.(xx·全国卷Ⅲ)设复数z 满足(1+i)z =2i ,则|z |=( ) A.12 B.22 C. 2 D .2解析:选C 因为z =2i 1+i =2i 1-i1+i 1-i=i(1-i)=1+i ,所以|z |= 2.3.(xx·沈阳模拟)已知平面向量a =(3,4),b =⎝ ⎛⎭⎪⎫x ,12,若a ∥b ,则实数x 的值为( )A .-23 B.23 C.38 D .-38解析:选C ∵a ∥b ,∴3×12=4x ,解得x =38.4.(xx 届高三·西安摸底)已知非零单位向量a ,b 满足|a +b |=|a -b |,则a 与b -a 的夹角是( )A.π6 B.π3 C.π4 D.3π4解析:选D 由|a +b |=|a -b |可得(a +b )2=(a -b )2,即a ·b =0,而a ·(b -a )=a ·b -a 2=-|a |2<0,即a 与b -a 的夹角为钝角,结合选项知选D.5.(xx·湘中模拟)已知向量a =(x ,3),b =(x ,-3),若(2a +b )⊥b ,则|a |=( ) A .1 B. 2 C. 3 D .2解析:选D 因为(2a +b )⊥b ,所以(2a +b )·b =0,即(3x ,3)·(x ,-3)=3x 2-3=0,解得x =±1,所以a =(±1,3),|a |=±12+32=2.6.(xx·广西五校联考)设D 是△ABC 所在平面内一点,AB ―→=2DC ―→,则( ) A .BD ―→=AC ―→-32AB ―→B .BD ―→=32AC ―→-AB ―→C .BD ―→=12AC ―→-AB ―→D .BD ―→=AC ―→-12AB ―→解析:选A BD ―→=BC ―→+CD ―→=BC ―→-DC ―→=AC ―→-AB ―→-12AB ―→=AC ―→-32AB ―→.7.(xx 届高三·云南调研)在▱ABCD 中,|AB ―→|=8,|AD ―→|=6,N 为DC 的中点,BM ―→=2MC ―→,则AM ―→·NM ―→=( )A .48B .36C .24D .12解析:选CAM ―→·NM ―→=(AB ―→+BM ―→)·(NC ―→+CM―→)=⎝ ⎛⎭⎪⎫AB ―→+23 AD ―→ ·⎝ ⎛⎭⎪⎫12 AB ―→-13 AD ―→ =12AB ―→2-29AD ―→2=12×82-29×62=24. 8.(xx 届高三·广西五校联考)已知a 为实数,若复数z =(a 2-1)+(a +1)i 为纯虚数,则a +i 2 0171-i=( )A .1B .0C .iD .1-i解析:选C 因为z =(a 2-1)+(a +1)i 为纯虚数,所以⎩⎪⎨⎪⎧a 2-1=0,a +1≠0,得a =1,则有1+i 2 0171-i =1+i 1-i =1+i 21+i 1-i=i.9.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD ―→ 在BA ―→方向上的投影是( )A .-3 5B .-322C .3 5 D.322解析:选A 依题意得,BA ―→=(-2,-1),CD ―→=(5,5),BA ―→ ·CD ―→=(-2,-1)·(5,5)=-15,|BA ―→|=5,因此向量CD ―→在BA ―→方向上的投影是BA ―→·CD ―→|BA ―→|=-155=-3 5.10.(xx 届高三·湖南五校联考)△ABC 是边长为2的等边三角形,向量a ,b 满足AB ―→=2a ,AC ―→=2a +b ,则向量a ,b 的夹角为( )A .30°B .60°C .120°D .150°解析:选C 法一:设向量a ,b 的夹角为θ,BC ―→=AC ―→-AB ―→=2a +b -2a =b ,∴|BC ―→|=|b |=2,|AB ―→|=2|a |=2,∴|a |=1,AC ―→2=(2a +b )2=4a 2+4a ·b +b 2=8+8cos θ=4,∴cos θ=-12,θ=120°.法二:BC ―→=AC ―→-AB ―→=2a +b -2a =b ,则向量a ,b 的夹角为向量AB ―→与BC ―→的夹角,故向量a ,b 的夹角为120°.11.(xx·长春模拟)在△ABC 中,D 为△ABC 所在平面内一点,且AD ―→=13AB ―→+12AC ―→,则S △BCDS △ABD=( ) A.16 B.13 C.12 D.23解析:选B 如图,由已知得,点D 在△ABC 中与AB 平行的中位线上,且在靠近BC 边的三等分点处,从而有S △ABD =12S △ABC ,S △ACD =13S △ABC ,S△BCD =⎝ ⎛⎭⎪⎫1-12-13S △ABC =16S △ABC,所以S △BCD S △ABD =13.12.(xx·全国卷Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ―→=λAB ―→+μAD ―→,则λ+μ的最大值为( )A .3B .2 2 C. 5 D .2 解析:选A 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为2x +y -2=0,点C 到直线BD 的距离为222+12=25,所以圆C :(x -1)2+(y-2)2=45.因为P 在圆C 上,所以P ⎝ ⎛⎭⎪⎫1+255cos θ,2+255sin θ.又AB ―→=(1,0),AD ―→=(0,2),AP ―→=λAB ―→+μAD ―→=(λ,2μ), 所以⎩⎪⎨⎪⎧1+255cos θ=λ,2+255sin θ=2μ,λ+μ=2+255cos θ+55sin θ=2+sin(θ+φ)≤3(其中tan φ=2),当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.13.(xx·成都模拟)若复数z =a i1+i(其中a ∈R ,i 为虚数单位)的虚部为-1,则a =________.解析:因为z =a i1+i =a i·1-i 1+i 1-i =a 2+a 2i 的虚部为-1,所以a 2=-1,解得a =-2.答案:-214.(xx·兰州诊断)已知向量OA ―→=(3,1),OB ―→=(-1,3),OC ―→=m OA ―→-n OB ―→(m >0,n >0),若m +n =1,则|OC ―→|的最小值为________.解析:由OA ―→=(3,1),OB ―→=(-1,3),得OC ―→=m OA ―→-n OB ―→=(3m +n ,m -3n ),因为m +n =1(m >0,n >0),所以n =1-m 且0<m <1,所以OC ―→=(1+2m,4m -3),则|OC ―→|=1+2m2+4m -32=20m 2-20m +10=20⎝ ⎛⎭⎪⎫m -122+5(0<m <1),所以当m =12时,|OC ―→|min = 5.答案: 515.(xx 届高三·石家庄调研)非零向量m ,n 的夹角为π3,且满足|n |=λ|m |(λ>0),向量组x 1,x 2,x 3由一个m 和两个n 排列而成,向量组y 1,y 2,y 3由两个m 和一个n 排列而成,若x 1·y 1+x 2·y 2+x 3·y 3所有可能值中的最小值为4m 2,则λ=________.解析:由题意:x 1·y 1+x 2·y 2+x 3·y 3的运算结果有以下两种可能:①m 2+m ·n +n 2=m 2+λ|m ||m |cos π3+λ2m 2=⎝⎛⎭⎪⎫λ2+λ2+1m 2;②m ·n +m ·n +m ·n =3λ|m ||m |cos π3=3λ2m 2.又λ2+λ2+1-3λ2=λ2-λ+1=⎝ ⎛⎭⎪⎫λ-122+34>0,所以3λ2m 2=4m 2,即3λ2=4,解得λ=83. 答案:8316.如图所示,已知正方形ABCD 的边长为1,点E 从点D 出发,按字母顺序D →A →B →C 沿线段DA ,AB ,BC 运动到点C ,在此过程中DE ―→·CD ―→的取值范围为________.解析:以BC ,BA 所在的直线为x 轴,y 轴,建立平面直角坐标系如图所示,可得A (0,1),B (0,0),C (1,0),D (1,1).当E 在DA 上时,设E (x,1),其中0≤x ≤1, ∵DE ―→=(x -1,0),CD ―→=(0,1), ∴DE ―→·CD ―→=0;当E 在AB 上时,设E (0,y ), 其中0≤y ≤1,∵DE ―→=(-1,y -1),CD ―→=(0,1),∴DE ―→·CD ―→=y -1(0≤y ≤1),此时DE ―→·CD ―→的取值范围为[-1,0]; 当E 在BC 上时,设E (x,0),其中0≤x ≤1, ∵DE ―→=(x -1,-1),CD ―→=(0,1), ∴DE ―→·CD ―→=-1.综上所述,DE ―→·CD ―→的取值范围为[-1,0]. 答案:[-1,0]。
平面向量专题训练知识点回顾1.向量的三种线性运算及运算的三种形式。
向量的加减法,实数与向量的乘积,两个向量的数量积都称为向量的线性运算,前两者的结果是向量,两个向量数量积的结果是数量。
每一种运算都可以有三种表现形式:图形、符号、坐标语言。
主要内容列表如下:运 算图形语言符号语言坐标语言加法与减法→--OA +→--OB =→--OC→--OB -→--OA =→--AB记→--OA =(x 1,y 1),→--OB =(x 1,y 2) 则→--OA +→--OB =(x 1+x 2,y 1+y 2)AB OB --→=u u u r -→--OA =(x 2-x 1,y 2-y 1)→--OA +→--AB =→--OB实数与向量 的乘积→--AB =λ→aλ∈R记→a =(x,y) 则λ→a =(λx,λy)两个向量 的数量积→a ·→b =|→a ||→b | cos<→a ,→b >记→a =(x 1,y 1), →b =(x 2,y 2) 则→a ·→b =x 1x 2+y 1y 2(3)两个向量平行 :设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔a b λ=r r⇔x 1y 2-x 2y 1=0(4)两个向量垂直:设→a =(x 1,y 1), →b =(x 2,y 2),则→a ⊥→b⇔a 0b •=r r ⇔x 1x 2+y 1y 2=0 课堂精练一、选择题1. 已知平面向量a =,1x () ,b =2,x x (-), 则向量+a b ( )A 平行于x 轴 B.平行于第一、三象限的角平分线C.平行于y 轴D.平行于第二、四象限的角平分线2. 已知向量(1,2)=a ,(2,3)=-b .若向量c 满足()//+c a b ,()⊥+c a b ,则c =( ) A .77(,)93 B .77(,)39-- C .77(,)39 D .77(,)93--ECBA 3.已知向量(1,0),(0,1),(),a b c ka b k R d a b ===+∈=-,如果//c d 那么 ( ) A .1k =且c 与d 同向B .1k =且c 与d 反向C .1k =-且c 与d 同向D .1k =-且c 与d 反向 4已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b ( ) A.(21)--, B.(21)-,C.(10)-,D.(12),5.设P 是△ABC 所在平面内的一点,2BC BA BP +=u u u r u u u r u u u r,则( )A.0PA PB +=u u u r u u u r rB.0PC PA +=u u u r u u u r rC.0PB PC +=u u u r u u u r rD.0PA PB PC ++=u u u r u u u r u u u r r6.已知向量a = (2,1),a ·b = 10,︱a + b ︱=b ︱=( ) 7.设a 、b 、c 是单位向量,且a ·b =0,则()()a c bc -•-的最小值为( )A.2-2C.1-D.18已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a( )A .1BC .2D .49平面向量a 与b 的夹角为060,(2,0)a =,1b= 则2ab +=( )B.10.若向量a=(1,1),b=(-1,1),c=(4,2),则c=( )A.3a+bB. 3a-bC.-a+3bD. a+3b11.如图1, D ,E ,F 分别是∆ABC 的边AB ,BC ,CA 的中点,则 ( )A .0AD BE CF ++=u u u r u u u r u u u r rB .0BD CF DF -+=u u u r u u u r u u u r rC .0AD CE CF +-=u u u r u u u r u u u r rD .0BD BE FC --=u u u r u u u r u u u r r12.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0u u u r u u u r u u u r,那么( )A.AO OD =u u u r u u u rB.2AO OD =u u u r u u u rC.3AO OD =u u u r u u u rD.2AO OD =u u u r u u u r13.设非零向量a 、b 、c 满足c b a c b a =+==|,|||||,则>=<b a ,( )A .150° B.120° C.60° D.30°14.已知()()3,2,1,0a b =-=-,向量a b λ+与2a b -垂直,则实数λ的值为( )A.17-B.17C.16-D.1615.已知1,6,()2==-=g a b a b a ,则向量a 与向量b 的夹角是( )A .6πB .4π C .3π D .2π16.已知向量(1,1),(2,),x ==a b 若a +b 与-4b 2a 平行,则实数x 的值是 ( ) A .-2B .0C .1D .217.在ABC △中,AB =u u u r c ,AC =u u u r b .若点D 满足2BD DC =u u u r u u u r ,则AD =u u u r ( )A .2133+b cB .5233-c bC .2133-b c D .1233+b c 18.在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB =u u u r ,(1,3)AC =u u u r ,则BD =u u u r ( )A . (-2,-4)B .(-3,-5)C .(3,5)D .(2,4)19.设)2,1(-=,)4,3(-=,)2,3(=则=⋅+)2( ( )A.(15,12)-B.0C.3-D.11- 二、填空题1.若向量a r ,b r 满足12a b ==r r ,且a r 与b r 的夹角为3π,则a b +=r r .2.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ3.已知向量a 与b 的夹角为120o,且4==a b ,那么(2)+gb a b 的值为4.已知平面向量(2,4)a =r ,(1,2)b =-r .若()c a a b b =-⋅r r r r r ,则||c =r____________.5.a r ,b r 的夹角为120︒,1a =r,3b =r 则5a b -=r r .6.已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是7.若向量a 、b 满足b a b a 与,1==的夹角为120°,则b a b a ··+=8.已知向量(3,1)a =r ,(1,3)b =r , (,2)c k =r ,若()a c b -⊥r r r则k = .9.已知向量(3,1)a =r ,(1,3)b =r ,(,7)c k =r ,若()a c -r r∥b r ,则k = .10.在平面直角坐标系xoy 中,四边形ABCD 的边AB ∥DC,AD ∥BC,已知点A(-2,0),B (6,8),C(8,6),则D 点的坐标为__________.平面向量专题训练答案:一选择题1 C2 D3 D 4D 5 B 6 C 7 D 8 C 9 B 10 B11 A 12 A 13 B 14 A 15 C 16 D 17 A 18 B 19 C 二 填空题2 23 0 _4 285 76 -37 -18 09 5 10_(0,-2)。
平面向量一、选择题1、向量丽= (—1,2),貳= (3,4),则疋= A.(4,2)B.(-4,-2)C.(2,6) 答案:A.2、已知©心 是不共线向量,= 2^ + e 2 , b = Ae } -e 2 ,当a //b 时,实数兄等于t 1 宀 A・—1B.OC ・ --D ・—22答案:D3、已知平面向量a = (2,l), b =(兀,-2),若a // b ,则a+b 等于()A. (—2,—1)B. (2,1)C. (3,—1)D. (—3,1)答案:A4、己知二孑均为单位向量,它们的夹角为60° ,那么珂二()A ・J? B. J10 C ・勇D ・3答案:cb= (1, -1), c= (-1, 2),则2等于答案:B若:龙页+L 丽,,则实数入・A 的值分别是A. — a+—h 2 2D.6、平面直角坐标系xoy 中, 已知 A (1,0), B (0,1), C (-1, c) (c>0),1=1 I 0C I =2,D ・(一4,2)D. -1, vT A.V T,I B. 1, vT C・-vT,i答案:D二、填空题I N己知a = (4,2)Z = (6,y),且a与方共线,则y二 __________答案:32、若向量BA = (l?2)?G4 = (4,x),且丽与石的夹角为0。
,则BC = ______________答案:(一3,-6)答案:34、在平面直角坐标系xoy中,已知点A是半圆x2 + y2 -4% = 0 (2 < x < 4)上的一个动点,点C在线段OA的延长线上.当丙• OC = 20时,则点C的纵坐标的取值范围是__________ 答案:[-5,5] N5、如图,AB//MN,且2OA = OM , OP = xOA+yOB(其中x,yeR),则终点P落在阴影部分(含边界)时, /O A + x + 2的取値范围是x + 14 答案:[亍4]三、解答题1、在AABC屮,角A为锐角,记角4、B、C所对的边分别为a、b、c,设向量—♦—♦—♦—♦〃2 = (cos A,sin A), /i = (cos A,-sin A)且加与几的夹角为一•••• m ・ n- cos~ A 一 sin" A = cos 2A ,cos 2 A + sin 2A = \, nI 兀1••• m 〃二 m • n \ cos —= —• ............1 3 2(1) •/^/cos 2 i4 + (-sin A)2 = 1,(2) 若G = ",C =巧,求\ABC 的面积S.解: ・•・ cos2A =— ........................................................................ ...........................2•/ 0 < A< — ,0< 2A <2・・.2A = -9A = ~. .....................................................................36(2)(法一)•.•a = V7,c = VJ,A = Z 及a ,=戾+c 2 —2bccos4,A 7 = Z?2+3-3/?,即方= —1(舍去)或方=4・10分 故 S = —Z?csin A - y/3. ..............................2(法二a = ,c =观,A = 2,及—= —6 sin A sin C.-csinA A /3/• sin C = -------- =——-f= • .......................................a 2丁712分9: a> c,0 < C < —, cosC = Vl -sin 2 A - [2 2V7•・• sin B = sin (7r - A-C) = sin(— + C) = — cosC +—sin C = ~^=6 2 2 J7 f asm B A••• b = ---- = 4.……sin A故 S = —hesin A = >/3.210分 12分f f 1 if设平面向&a = (cos x,sin x) , b =(——,函数 f(x) = a-h + \o 2 2 (I) 求函数/•(兀)的值域和函数的单调递增区间;9兀 2兀 2龙(II)当 = -<a< —— 时,求sin(2a+——)的值(1)计算〃2 •〃的值并求角A 的大小;解:依题意/(兀)=(cosx,sin x) •丄)+ 1 =<^cosx +丄sin 兀+ 1 .......................... (2 分)= sin(x +彳)+ 1• s 2?r • 冗、 • z 兀、 z it 、4 3 24sm(2a+——)=sin 2(a + —) = 2sm(a+—)cos(a + —) = -2x —x- = ----------------3 3 3 3 5 5 笳(4分)(I )函数/(兀)的值域是[0,2];(5分)TTTT 7T 、兀 7T 令一一+ 2^<x + -<- + 2^,解得——+ 2^<x<- + 2^2 3 2 6 6\兀 TT所以函数f(x)的单调增区间为[-—+ 2^,- + 2航](k G Z)....................6 6 jr Q 7t 4(II)由,f(Q )二 sin(a+m )+ l 二亍,得 sin(a+—) = — ,因为—<a<—,所以—<6Z+ —<^,得cos (6r+—) =...........(7分) (8分)(10 分)。
课时跟踪检测(一) 平面向量(小题练)A 级——12+4提速练一、选择题1.(2018·贵州模拟)已知向量a =(1,2),b =(m ,-1),若a ∥b ,则实数m 的值为( ) A.12 B .-12C .3D .-3解析:选B 由题意,得1×(-1)-2m =0,解得m =-12,故选B.2.(2018·福州模拟)已知a =(1,2),b =(-1,1),c =2a -b ,则|c |=( ) A.26 B .3 2 C.10D. 6解析:选B 因为c =2a -b =2(1,2)-(-1,1)=(3,3), 所以|c |=32+32=3 2.故选B.3.(2019届高三·广西五校联考)设D 是△ABC 所在平面内一点,AB ―→=2DC ―→,则( ) A .BD ―→=AC ―→-32AB ―→B .BD ―→=32AC ―→-AB ―→C .BD ―→=12AC ―→-AB ―→D .BD ―→=AC ―→-12AB ―→解析:选A BD ―→=BC ―→+CD ―→=BC ―→-DC ―→=AC ―→-AB ―→-12AB ―→=AC ―→-32AB ―→.4.(2018·云南调研)在▱ABCD 中,|AB |―→=8,|AD |―→=6,N 为DC 的中点,BM ―→=2MC ―→,则AM ―→·NM ―→=( )A .48B .36C .24D .12解析:选CAM ―→·NM ―→=(AB ―→+BM ―→)·(NC ―→+CM ―→)=⎝ ⎛⎭⎪⎫AB ―→+23 AD ―→ ·⎝ ⎛⎭⎪⎫12AB ―→-13 AD ―→ =12AB ―→2-29AD ―→2=12×82-29×62=24. 5.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD ―→在AB ―→方向上的投影是( )A.322B .-322C .3 5D .-3 5解析:选C 依题意得,AB ―→=(2,1),CD ―→=(5,5),AB ―→·CD ―→=(2,1)·(5,5)=15,|AB ―→|=5,因此向量CD ―→在AB ―→方向上的投影是AB ―→·CD ―→|AB ―→|=155=3 5.6.(2019届高三·湖南五市十校联考)△ABC 是边长为2的等边三角形,向量a ,b 满足AB ―→=2a ,AC ―→=2a +b ,则向量a ,b 的夹角为( )A .30°B .60°C .120°D .150°解析:选C BC ―→=AC ―→-AB ―→=2a +b -2a =b ,则向量a ,b 的夹角即为向量AB ―→与BC ―→的夹角,故向量a ,b 的夹角为120°.7.(2018·西工大附中四模)已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,点G 在△ABC 内,且满足GA ―→+GB ―→+GC ―→=0,GA ―→·GB ―→=0,若a 2+b 2=λc 2(λ∈R ),则λ=( )A .-5B .-2C .2D .5解析:选D 设BC 的中点为D ,连接GD (图略),则GB ―→+GC ―→=2GD ―→. 又GA ―→+GB ―→+GC ―→=0,所以2GD ―→=AG ―→, 所以A ,G ,D 三点共线,且AG =2GD .故AG ―→=23AD ―→=23×12(AB ―→+AC ―→)=13(AB ―→+AC ―→).同理可得BG ―→=13(BA ―→+BC ―→).由GA ―→·GB ―→=0,得19(AB ―→+AC ―→)·(BA ―→+BC ―→)=0,所以(AB ―→+AC ―→)·(AC ―→-2AB ―→)=0, 即|AC ―→|2-2|AB ―→|2-AB ―→·AC ―→=0,所以b 2-2c 2-bc ·b 2+c 2-a 22bc=0,化简得a 2+b 2=5c 2.又a 2+b 2=λc 2(λ∈R ),所以λ=5.故选D.8.已知△ABC 为等边三角形,AB =2,设点P ,Q 满足AP ―→=λAB ―→,AQ ―→=(1-λ)AC ―→,λ∈R ,若BQ ―→·CP ―→=-32,则λ=( )A.12B.1±22 C.1±102D.-3±222解析:选A 以点A 为坐标原点,AB 所在的直线为x 轴,过点A且垂直于AB 的直线为y 轴,建立平面直角坐标系,则A (0,0),B (2,0),C (1,3),∴AB ―→=(2,0),AC ―→=(1,3),又AP ―→=λAB ―→,AQ ―→=(1-λ)AC ―→,∴P (2λ,0),Q (1-λ,3(1-λ)),∴BQ ―→·CP ―→=(-1-λ,3(1-λ))·(2λ-1,-3)=-32,化简得4λ2-4λ+1=0,∴λ=12.9.(2018·西安八十三中二模)称d (a ,b )=|a -b |为两个向量a ,b 间的“距离”.若向量a ,b 满足:①|b |=1;②a ≠b ;③对任意t ∈R ,恒有d (a ,t b )≥d (a ,b ),则( )A .a ⊥bB .a ⊥(a -b )C .b ⊥(a -b )D .(a +b )⊥(a -b )解析:选C 由d (a ,t b )≥d (a ,b ),可知|a -t b |≥|a -b |,所以(a -t b )2≥(a -b )2,又|b |=1,所以t 2-2(a ·b )t +2(a ·b )-1≥0.因为上式对任意t ∈R 恒成立,所以Δ=4(a ·b )2-4[2(a ·b )-1]≤0,即(a ·b -1)2≤0,所以a ·b =1.于是b ·(a -b )=a ·b -|b |2=1-12=0,所以b ⊥(a -b ).故选C.10.(2018·河南林州检测)已知△ABC 的外接圆的圆心为O ,满足:CO ―→=m CA ―→+n CB ―→,4m +3n =2,且|CA ―→|=43,|CB ―→|=6,则CA ―→·CB ―→=( )A .36B .24C .24 3D .12 3解析:选A CO ―→·CA ―→=m CA ―→2+n CA ―→·CB ―→,因为O 为△ABC 的外心,所以12CA―→2=m CA ―→2+n |CA ―→|·|CB ―→|·cos∠BCA ,所以24=48m +243n ·cos∠BCA ,因为4m +3n =2,所以24=12(2-3n )+243n ·cos∠BCA ,又n ≠0,即cos ∠BCA =32,所以CA ―→·CB ―→=|CA ―→|·|CB ―→|cos ∠BCA =43×6×32=36.11.设e 1,e 2,e 3为单位向量,且e 3=12e 1+k e 2(k >0),若以向量e 1,e 2为两边的三角形的面积为12,则k 的值为( )A.32 B.22 C.52D.72解析:选A 设e 1,e 2的夹角为θ,则由以向量e 1,e 2为两边的三角形的面积为12,得12×1×1×sin θ=12,得sin θ=1,所以θ=90°,所以e 1·e 2=0.从而将e 3=12e 1+k e 2两边平方得1=14+k 2,解得k =32或k =-32(舍去).12.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圆内一点M ,若OC ―→=m OA ―→+n OB ―→(m >0,n >0),m +n =2,则∠AOB 的最小值为( )A.π6B.π3C.π2D.2π3解析:选D 将OC ―→=m OA ―→+n OB ―→平方得1=m 2+n 2+2mn cos ∠AOB , cos ∠AOB =1-m 2-n 22mn =1-m +n 2+2mn 2mn =-32mn +1≤-12(当且仅当m =n =1时等号成立),∵0<∠AOB <π,∴∠AOB 的最小值为2π3.二、填空题13.(2018·汕头模拟)已知向量a =(2,1),b =(3,m ).若(a +2b )∥(3b -a ),则实数m 的值是________.解析:a +2b =(2,1)+(6,2m )=(8,1+2m ),3b -a =(9,3m )-(2,1)=(7,3m -1),由(a +2b )∥(3b -a ),得8(3m -1)-7(1+2m )=0,解得m =32.答案:3214.(2018·长春模拟)已知平面内三个不共线向量a ,b ,c 两两夹角相等,且|a |=|b |=1,|c |=3,则|a +b +c |=________.解析:由平面内三个不共线向量a ,b ,c 两两夹角相等,可得夹角均为2π3,所以|a+b +c |2=a 2+b 2+c 2+2a ·b +2b ·c +2a ·c =1+1+9+2×1×1×cos2π3+2×1×3×cos 2π3+2×1×3×cos 2π3=4,所以|a +b +c |=2.答案:215.(2018·河北衡水中学三调)如图,已知平面内有三个向量OA ―→,OB ―→,OC ―→,其中OA ―→与OB ―→的夹角为120°,OA ―→与OC ―→的夹角为30°,且|OA ―→|=|OB ―→|=1,|OC ―→|=2 3.若OC ―→=λOA ―→+μOB ―→ (λ,μ∈R ),则λ+μ的值为________.解析:法一:如图所示,作平行四边形OB1CA 1,则OC ―→=OB ―→1+OA ―→1,因为OA ―→与OB ―→的夹角为120°,OA ―→与OC ―→的夹角为30°,所以∠B 1OC =90°.在Rt △B 1OC 中,∠OCB 1=30°,|OC |=23,所以|OB 1|=2,|B 1C |=4,所以|OA 1|=|B 1C |=4,所以OC ―→=4OA ―→+2OB ―→,所以λ=4,μ=2,所以λ+μ=6.法二:以O 为坐标原点,建立如图所示的平面直角坐标系,则A (1,0),B ⎝ ⎛⎭⎪⎫-12,32,C (3,3).由OC ―→=λOA ―→+μOB ―→,得⎩⎪⎨⎪⎧3=λ-12μ,3=0+32μ,解得⎩⎪⎨⎪⎧λ=4,μ=2.所以λ+μ=6.答案:616.(2018·渭南一模)在平行四边形ABCD 中,AD =1,∠BAD =30°,E 为CD 的中点,若AC ―→·BE ―→=1,则AB 的长为________.解析:因为四边形ABCD 是平行四边形,E 为CD 的中点,所以AC ―→=AB ―→+AD ―→,BE ―→=BC ―→+CE ―→=AD ―→-12AB ―→,所以AC ―→·BE ―→=(AB ―→+AD ―→)·⎝ ⎛⎭⎪⎫AD ―→-12AB ―→ =AD ―→2-12AB ―→2+12AB ―→·AD ―→=1, 又AD ―→2=1,AB ―→·AD ―→=1×|AB ―→|×cos 30°=32|AB ―→|,所以1-12AB ―→2+34|AB ―→|=1,解得|AB ―→|=32或|AB ―→|=0(舍去).答案:32B 级——难度小题强化练1.(2018·全国卷Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB ―→=( ) A.34AB ―→-14AC ―→ B.14AB ―→-34AC ―→C.34AB ―→+14AC ―→ D.14AB ―→+34AC ―→ 解析:选A 法一:作出示意图如图所示.EB ―→=ED ―→+DB ―→=12AD―→+12CB ―→=12×12(AB ―→+AC ―→)+12(AB ―→-AC ―→)=34AB ―→-14AC ―→.故选A. 法二:不妨设△ABC 为等腰直角三角形,且∠A =π2,AB =AC =1.建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (0,1),D ⎝ ⎛⎭⎪⎫12,12,E ⎝ ⎛⎭⎪⎫14,14.故AB ―→=(1,0),AC ―→=(0,1),EB ―→=(1,0)-⎝ ⎛⎭⎪⎫14,14=⎝ ⎛⎭⎪⎫34,-14,即EB ―→=34AB ―→-14AC ―→.2.已知点P 是△ABC 内一点,且BA ―→+BC ―→=6BP ―→,则S △ABP S △ACP=( )A.12B.13C.14D.15解析:选C 设点D 为AC 的中点,在△ABC 中,BA ―→+BC ―→=2BD ―→,即2BD ―→=6BP ―→,所以BD ―→=3BP ―→,即P 为BD 的三等分点,所以S △ABP S △APD =12,又S △APD S △APC =12,所以S △ABP S △ACP =14.3.(2018·嘉兴一模)设平面向量OA ―→=(2,0),OB ―→=(0,1),点P 满足OP ―→=m2m 2+2n2OA ―→+2n m 2+n2OB ―→,其中m >0,n >0,O 为坐标原点,则点P 的轨迹的长度为( ) A.12 B.22 C.π2D.2π2解析:选D 设P (x ,y ),因为OA ―→=(2,0),OB ―→=(0,1),OP ―→=m2m 2+2n2OA ―→+2nm 2+n 2OB ―→=⎝⎛⎭⎪⎫2m2m 2+2n2,2n2m 2+2n 2,所以x =2m 2m 2+2n 2,y =2n 2m 2+2n2(其中m ,n >0),所以x 2+y 2=2(其中x ,y >0),则点P 的轨迹的长度为14×2π×2=2π2. 4.(2018·重庆模拟)已知Rt △ABC 中,AB =3,BC =4,AC =5,I 是△ABC 的内心,P 是△IBC 内部(不含边界)的动点,若AP ―→=λAB ―→+μAC ―→(λ,μ∈R ),则λ+μ的取值范围是( )A.⎝ ⎛⎭⎪⎫23,1B.⎝ ⎛⎭⎪⎫23,2 C.⎝ ⎛⎭⎪⎫712,1 D .(2,3)解析:选A 以B 为原点,BA ,BC 所在直线分别为x ,y 轴建立如图所示的平面直角坐标系,则B (0,0),A (3,0),C (0,4).设△ABC 的内切圆的半径为r ,因为I 是△ABC 的内心,所以(5+3+4)×r =4×3,解得r =1,所以I (1,1).设P (x ,y ),因为点P 在△IBC 内部(不含边界),所以0<x <1.因为AB ―→=(-3,0),AC ―→=(-3,4),AP ―→=(x -3,y ),且AP―→=λAB ―→+μAC ―→,所以⎩⎪⎨⎪⎧x -3=-3λ-3μ,y =4μ,得⎝ ⎛λ=1-13x -14y ,μ=14y ,所以λ+μ=1-13x ,又0<x <1,所以λ+μ∈⎝ ⎛⎭⎪⎫23,1,故选A. 5.已知a =⎝ ⎛⎭⎪⎫cos 2π3,sin 2π3,OA ―→=a -b ,OB ―→=a +b ,若△OAB 是以O 为直角顶点的等腰直角三角形,则△OAB 的面积为________.解析:因为OA ―→⊥OB ―→,所以OA ―→·OB ―→=(a -b )·(a +b )=0,化简得a 2-b 2=0,得|a |=|b |,又|OA ―→|=|OB ―→|,所以|OA ―→|2=|OB ―→|2,即(a -b )2=(a +b )2,得a ⊥b ,因为a =⎝⎛⎭⎪⎫cos 2π3,sin 2π3,所以|a |=cos22π3+sin 22π3=1,所以|a |=|b |=1,可得a ,b 是相互垂直的单位向量,所以|OA ―→|=|OB ―→|=2,所以△OAB 的面积S =12|OA―→|·|OB ―→|=1.答案:16.(2018·武汉调研)在矩形ABCD 中,AB =2,AD =1.边DC 上的动点P (包含点D ,C )与CB 延长线上的动点Q (包含点B )满足|DP ―→|=|BQ ―→|,则PA ―→·PQ ―→的最小值为________.解析:以点A 为坐标原点,分别以AB ,AD 所在直线为x 轴,y 轴建立如图所示的平面直角坐标系,设P (x ,1),Q (2,y ),由题意知0≤x ≤2,-2≤y ≤0.∵|DP ―→|=|BQ ―→|,∴|x |=|y |,∴x =-y .∵PA ―→=(-x ,-1),PQ ―→=(2-x ,y -1),∴PA ―→·PQ ―→=-x (2-x )-(y -1)=x 2-2x -y +1=x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34,∴当x =12时,PA ―→·PQ ―→取得最小值,为34.答案:34。