汽车密封条骨架聚丙烯材料耐热氧老化性能分析
- 格式:pdf
- 大小:1.61 MB
- 文档页数:4
第49卷第1期2021年2月塑料工业CHINAPLASTICSINDUSTRY聚丙烯防老化的研究进展∗何明宇1ꎬ董㊀晗1ꎬ靳小平2ꎬ买买提江 依米提1ꎬ∗∗(1.新疆大学化工学院石油天然气精细化工教育部和自治区重点实验室ꎬ新疆乌鲁木齐830046ꎻ2.新疆大学化学学院ꎬ新疆乌鲁木齐830046)㊀㊀摘要:分析了聚丙烯老化的过程和机理ꎬ综述了近十几年来国内外关于聚丙烯老化的研究手段和方法ꎬ主要包括自然老化试验和人工老化试验ꎻ以及提高聚丙烯防老化能力的研究进展ꎬ主要包括改善晶体结构㊁分子改性或制备㊁添加助剂和添加填料等ꎬ最后对聚丙烯防老化的研究发展进行了展望ꎮ关键词:聚丙烯ꎻ防老化ꎻ老化试验ꎻ抗氧剂ꎻ共混填料中图分类号:TQ325 1+4㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1005-5770(2021)02-0001-06doi:10 3969/j issn 1005-5770 2021 02 001开放科学(资源服务)标识码(OSID):ResearchProgressofPolypropyleneAnti ̄agingHEMing ̄yu1ꎬDONGHan1ꎬJINXiao ̄ping2ꎬYIMITMamatjian1(1.KeylaboratoryofOilandGasFineChemicalsꎬMinistryofEducationandXinjiangUyghurAutonomousRegionꎬCollegeofChemicalEngineeringꎬXinjiangUniversityꎬUrumqi830046ꎬChinaꎻ2.CollegeofChemicalꎬXinjiangUniversityꎬUrumqi830046ꎬChina)Abstract:Theprocessandmechanismsofpolypropyleneagingwereanalyzedꎬandtheresearchmethodsonpolypropyleneagingathomeandabroadinthepasttenyearsweresummarizedꎬincludingnaturalagingtestandartificialagingtest.Andtheresearchprogressonimprovingtheanti ̄agingabilityofpolypropylenewassummarized.Itmainlyincludedtheimprovementofthecrystalstructureꎬmolecularmodificationorpreparationꎬaddingadditivesandaddingfillersandsoon.Finallyꎬtheresearchanddevelopmentofpolypropyleneanti ̄agingwereprospected.Keywords:PolypropyleneꎻAnti ̄agingꎻAgingTestꎻAntioxidantꎻBlendedFiller聚丙烯(PP)是一种外观为白色㊁无味㊁无毒的石油基高分子树脂材料ꎬ其晶体结构规整且具备分子弹性ꎬ因此有好的力学性能和易成型加工性能ꎬ在汽车工业㊁包装及建材家具等方面有着广泛的应用ꎬ是全球使用量最大的五种通用树脂之一[1]ꎮ但是由于PP作为非极性的树脂ꎬ无论是等规㊁间规还是无规的PP和其他极性聚合物或者无机填料等的相容性很差ꎬ需通过加入相容剂来降低两相间的界面张力改善其相容性ꎬ同时PP分子中特殊的叔碳结构导致其叔氢原子反应活性很高ꎬ当暴露于不同的条件下ꎬ会因为各种可能的影响导致其老化降解表面出现裂纹和沟壑ꎬ造成性能上的退化甚至失效ꎬ如升高的温度㊁剪切力和存在的氧气量是加工过程中降解的主要因素以及在使用过程中受到的气压差㊁温差和光照也是加速老化的原因ꎬ暴露于这些因素中会引起PP材料热机械或热氧化降解ꎬ这些缺点限制了PP制品的进一步推广使用[2-3]ꎮ因此为了提高PP的使用价值以及拓宽PP制品的市场需求ꎬ必须对PP进行防老化处理ꎮ本文首先浅析了PP的老化过程和机理ꎬ综述了目前国内外学者对PP的老化试验研究方法和手段以及概括了提高PP防老化能力的研究进展ꎬ最后对PP防老化的研究发展方向进行了展望ꎬ期望为PP新型防老化技术提供借鉴和参考ꎮ1㊀PP的老化过程和机理PP(分子结构式如图1所示)的老化降解过程实质是涉及许多自由基的自催化自由基链反应ꎬ它的降解过程中存在许多自由基ꎬ例如ROOH㊁HO ㊁ROO 和RO 等ꎮ导致PP老化降解的内因主要与PP的分子结构有关ꎬ分子中没有吸收发射波长为290~340nm的发色基团且叔碳C H键能为410kJ/molꎬ具有很高的反应活性ꎬ因此易被氧化[4]ꎮPP分子的老化主要是外部因素导致的ꎬ在氧化降解反应中主要存在两个周期性反应ꎬ如图2所示ꎮ图1㊀PP的分子结构式Fig1㊀MolecularstructureofPP1∗国家自然科学基金资助项目(21474082ꎬ21764013)ꎬ自治区研究生科研创新项目(XJ2020G033)∗∗通信作者:买买提江 依米提ꎬ男ꎬ1969年生ꎬ教授ꎬ主要从事耐候性高分子材料及其性能研究ꎮmmtj10@sina com作者简介:何明宇ꎬ男ꎬ1995年生ꎬ硕士研究生ꎬ主要从事高分子材料防老化与复合材料的研究ꎮ812278897@qq com塑㊀料㊀工㊀业2021年㊀㊀图2㊀PP的老化降解过程Fig2㊀ThedegradationprocessofPP在两个循环中ꎬPP被连续氧化形成大量的低分子化合物ꎬ反应过程通常分为三个阶段:链引发㊁链增长(或链转移ꎬ链支化)和链终止:反应过程中产生的自由基PH表示聚合物ꎬP 表示聚合物大分子基团ꎮ在第一个循环过程中ꎬ主要发生链引发反应和氧化反应ꎻ在第二个循环过程中ꎬ主要发生链增长反应(即自由基数目增加)ꎮ因此ꎬ在整个循环过程中大分子链发生解缠㊁分解和断裂ꎬ分子量大大降低ꎬ导致物理和力学性能降低ꎻ另一方面ꎬ在反应过程中ꎬ由于无序交联ꎬ经常形成无序网格ꎬ并使聚合物发黄变脆㊁表面开裂ꎬ热稳定性降低ꎬ最终使其失去使用价值ꎬ减少使用寿命ꎮ2㊀PP老化试验的研究方法和进展评价PP的老化性能ꎬ可通过自然环境老化试验和人工加速老化试验来进行研究和测量ꎬ近年来国内外有关学者研究了在不同环境下PP的老化规律和行为ꎮ自然环境老化试验是将试验材料放到特定暴露场所直接受到特定气候条件作用ꎬ并且一般试验时间较长ꎬ有的可达数月甚至数年ꎬ所得到的数据较符合真实的使用环境ꎬ具有真实可靠和成本低的特点ꎮColom等[5]在自然老化2 5a和人工老化5000h的氙灯箱中ꎬ研究了用于制造西班牙巴塞罗那奥林匹克体育场座椅的PP的降解情况ꎬ结果显示自然环境老化后样品的性能好于人工老化样品ꎬ具有更好的热稳定性和结晶度ꎮMashael等[6]在沙特阿拉伯的Riyadh市进行了三种PP样品为期6个月的自然老化试验ꎬ结果显示材料的光老化是由表面开始的ꎬ之后逐渐进入材料的内部ꎬ且添加的滑石粉可以一定程度上增加PP的稳定性ꎮ买买提江等[7]以全球第二大干热试验站吐鲁番自然环境试验研究中心户外暴晒场为耐候性PP的自然老化试验点ꎬ对PP进行了为期12个月的户外暴晒试验ꎬ结果表明试样PP暴晒90d后断裂伸长率和冲击强度保持率分别降至6 4%和5 6%ꎬ氧元素增加了23 21%ꎬ重均相对分子质量从24 2万降至8 07万ꎬ表面出现大量宽度为3 05μm的裂纹ꎬ完全失去使用价值ꎮ张舒宁等[8]分别在几个不同类型的自然暴晒试验场和人工加速老化试验条件下研究免喷涂PP材料的老化行为ꎬ认为紫外线辐射和水是造成PP材料老化的主要因素ꎬ人工加速条件(辐照度0 55W/m2@340nmꎬ光照和黑暗时的黑板温度分别为70ħ和38ħꎬ箱体温度分别为47ħ和38ħ)的加速老化倍率约是琼海自然暴晒的2倍ꎮ王维等[9]选取了4种PP防老化编织布ꎬ进行自然老化和人工加速老化试验ꎮ测试结果显示ꎬ相同单位面积质量㊁老化母料掺量高的PP编织布耐人工加速老化的性能更好ꎬ且由人工加速老化和自然老化时间的比值关系推出加速比率ꎬ对于不同单位面积质量㊁不同老化母料掺量的PP防老化编织布ꎬ对应的老化加速比率也不尽相同ꎮ人工加速老化试验是将试验样品放在试验设备中ꎬ设定一定的光㊁氧㊁湿度和热等因素参数ꎬ且设定的环境参数均可较容易地保持相对稳定ꎬ得到的数据有很好的重复性ꎮ目前常用的聚合物人工加速老化试验方法有湿热老化㊁热氧老化㊁氙灯或紫外灯光源暴露以及使用耐候试验机等ꎬ典型的人工加速老化试验箱如图3所示ꎻ常用的相关标准有ASTMG154-2006㊁GB/T16422 1 2019和GB/T3512 2014等ꎮ杨旭东等[10]采用UVA ̄351型紫外荧光灯管作为光源ꎬ通过调节其数目改变紫外线辐射强度ꎬ检验紫外线辐射强度对PP光氧老化的影响ꎬ结果显示在3种不同辐射强度下达到同样的累积紫外线辐射能时ꎬ2根灯管和4根灯管老化条件下PP的强力下降程度一致ꎬ但与8根灯管老化条件下有所不同ꎮ刘斌等[11]利用EH18型湿热试验箱ꎬ以全程动态注射成型加工的方式改善PP制品的微观结构ꎬ使其结晶区分子结构紧密ꎬ阻滞了水分和热向制品内部侵蚀ꎬ从而提高了材料的抗湿热老化性能ꎮSchmidt等[12]对比了PP纤维在氙弧灯产生的紫外光和自然光下发生光老化的速率ꎬ结果表明紫外光下纤维断裂强度和断裂伸长率下降的速率是自然光的4~6倍ꎬ且在自然光下造成纤维表面老化的范围更大一些ꎮYu等[13]研究了热氧风化对短玻璃纤维增强PP复合材料老化行为的影响ꎮ认为在不添加炭黑和紫外吸收剂的情况下ꎬ热氧风化对PP的力学性能㊁熔解温度和结晶度有显著影响ꎬ且降解过程不仅发生在PP表面ꎬ而且还延伸到基体内部和界面ꎮHe等[14]研究了PP/棉杆木质素复合材料在室内热氧老化30d前后的性能和结构变化ꎬ结果表明纯PP材料在热氧老化30d后表面出现了沟壑和裂纹ꎬ逐渐失去使用价值ꎬ而添加棉杆木质素可以有效地增强PP的抗氧化性能ꎮ蔡航等[15]利用TSN ̄408型氙灯老化箱对汽车内饰用PP材料进行1400h的人工加速老化试验ꎬ结果发现随着老化的进行ꎬPP的拉伸强度及弯曲强度均呈先提升后降低的趋势ꎬ冲击强度呈一直下降的趋势ꎬ2第49卷第2期何明宇ꎬ等:聚丙烯防老化的研究进展且老化后聚合碳链氧化断裂产生羧酸类降解产物ꎮ图3㊀紫外人工加速老化试验箱Fig3㊀Ultravioletartificial ̄acceleratedagingtestchamber3㊀提高PP防老化性能的方法提高PP防老化性能的方法主要分为以下四种方法:改善晶体结构ꎬ提高分子耐热性ꎻ分子改性或制备ꎬ通过在分子中引入一些交联结构或功能基团提高分子间作用力ꎬ进而增强分子刚性和防老化能力ꎻ添加助剂例如光稳定剂㊁抗氧剂等ꎻ添加填料ꎬ通过均聚共混的方式提高整个复合材料体系的防老化能力ꎮ3 1㊀改善晶体结构PP材料的在实际的老化中ꎬ晶体结构和结晶度等因素将影响光的透过和氧的扩散ꎬ进而影响其老化进程ꎬ即PP的老化行为与其晶体性能有密切的关系ꎮ成核剂是一种可以帮助聚合物异相成核结晶的物质ꎬ异相成核时成核位点大大增加ꎬ形成的球晶数量也增加ꎬ球晶尺寸变小ꎬ结晶度升高ꎬ可提高PP的耐热性能[16]ꎮYang等[17]采用超临界CO2的方法在β-成核剂NꎬN-二环己基-2ꎬ6-萘二甲酰胺(β ̄NAs)的作用下进行成核发泡ꎬ制备了可循环利用㊁机械强度高㊁绝热性能好且具备一定防老化能力的PP泡沫材料ꎬ为聚合物发泡材料在降低能耗和耐久使用领域提供了很大的应用前景ꎮAtagur等[18]为了验证鹅耳枥(CB)粉末是否可以增强PP防老化性能ꎬ制备了PP/CB复合材料ꎬ结果证明CB在复合材料体系中可以作为成核剂对PP产生异相成核的作用ꎬ提高了PP的结晶以及力学性能㊁黏弹度和热性能等ꎬ进而提高了PP/CB复合材料的耐久能力ꎮ3 2㊀分子改性或制备从分子结构层面上改善PP的防老化能力可以对其进行分子链功能化改性ꎬ如接枝㊁嵌段等ꎬ或者是直接制备具有一定抗氧化能力的PP母料等ꎮManteghi等[19]为了延长PP的热氧化稳定性ꎬ防止抗氧剂的损失ꎬ通过在含羧酸部分的酚类稳定剂与胺功能化PP之间形成酰胺键而制备了一种PP材料ꎬ结果表明酚类稳定剂的固定化可以提高PP的热氧化稳定性ꎬ共混物表现出优越的热稳定性和低挥发性ꎮ于振等[20]利用紫外光表面接枝技术将丙烯酸(AA)接枝到PP膜表面ꎬ制备了一种抗氧化膜(PP ̄g ̄PAA)ꎬ该种薄膜具有良好的力学性能和阻隔性能ꎬ能够有效螯合过渡金属离子ꎬ具备作为一种非释放型的抗氧化包装薄膜应用于食品包装保护方面的潜力ꎮ王仁龙[21]使用PP粉料与各种光稳定剂㊁抗氧剂共混挤出ꎬ制备出PP类集装袋用防老化母料ꎮ3 3㊀添加助剂3 3 1㊀光稳定剂PP制品的防老化的解决手段主要集中于减少紫外线吸收和抑制光氧化ꎬ可以添加光稳定剂来进行改善ꎬ常用的光稳定剂种类和用途如表1所示ꎮ邹志明[22]将添加紫外吸收剂㊁光屏蔽剂㊁复合防老化母料的共聚PP进行紫外辐照后ꎬ认为该种母料PP的各项力学性能保持率都比较高ꎬ具有明显的抗紫外辐照老化作用ꎮ但是大部分光稳定剂由于卫生性㊁环保问题已经几乎被弃用ꎬ目前市售PP中添加的防老化助剂主要以各类抗氧剂为主ꎮ表1㊀光稳定剂的种类和主要功能Tab1㊀Typesandmainfunctionsoflightstabilizers光屏蔽剂紫外吸收剂激发态猝灭剂氧化物分解剂化合物种类炭黑㊁TiO2㊁ZnO等领羟基二苯甲酮㊁苯三嗪等镍的含S㊁N㊁P有机配体配合物镍的含S㊁N㊁P有机配体配合物主要功能反射和吸收紫外线吸收紫外线㊁转化能量转化激发态能量分解聚合物中的 OOH基团辅助功能捕获自由基㊁猝灭激发态捕获自由基淬灭单线态氧淬灭单线态氧3 3 2㊀抗氧剂抗氧剂是一种可以降低氧气副作用的物质ꎬ可以捕捉和中和自由基ꎬ减少其后续的损伤ꎬ提高使用寿命ꎮ主要作用机理为抗氧剂通过还原反应降低氧气含量ꎬ与聚合物之前氧化反应产生的过氧化物结合ꎬ中断连锁反应ꎮ添加抗氧剂提高PP的防老化能力是目前最为普遍的方法ꎬ近年来人们对此进行了广泛的研究ꎬ主要分为合成类抗氧剂和天然抗氧剂ꎮ张予东等[23]通过化学合成制备了没食子酸酯类抗氧剂ꎬ研究了其对PP抗氧化行为的影响ꎬ认为没食子酸酯类抗氧剂可以显著提高PP的抗氧化能力ꎮPeltzer等[24]对羟酪醇稳定PP的氧化热参数进行了测定ꎬ发现添加后PP提高了氧化诱导时间和氧化诱导温度ꎬ表现出了较好的抗氧化性能ꎮ但是化学合成的抗氧化剂具有较高的制备成本ꎬ实验过程中涉及的有机物质也会对人体和环境造成伤害和污染ꎬ因此学者更多把研究方向转向天然物质ꎬ寻找制备无毒无害的天然抗氧剂ꎮNanni等[25-26]和Musajan等[27]研究了在葡萄酒生产过程中产生的果皮㊁果籽㊁果柄和葡萄籽天然提取物对PP热稳定性的影响ꎬ并与常用的抗氧剂进行对比ꎬ结果显示葡萄籽天然提取物呈现出最好的抗氧化效果ꎮXia等[28]和Musajan等[29]分别研究了葛根素和磺化木质素作为天然抗氧剂对PP的抗氧化能力影响ꎮ热依扎[30]和Joaquin等[31]研究了几种传统抗氧剂下PP的抗氧化能力的不同ꎬ通过不同的复配比例和不同的添加种类寻找一种最好的抗氧剂体系ꎬ认为受阻酚类300型抗氧剂具有对PP最好的成型加工抗氧化能力ꎮ3塑㊀料㊀工㊀业2021年㊀㊀3 4㊀添加填料抗氧剂等助剂在聚合物体系中的添加量一般在0 1%~0 9%左右ꎬ并不会较多的改变整个聚合物体系的物理或化学性能ꎮ而聚合物复合材料体系中填料的添加量一般会加入的较多ꎬ形成除塑相以外的其他相ꎬ研究者们对加入填料而改善PP的防老化性能也做了较多的研究ꎮ3 4 1㊀无机纳米填料无机纳米填料主要包括纳米碳材料如石墨烯和碳纳米管等ꎬ以及纳米金属氧化物如ZnO和CaCO3等ꎮYang等[32]在其制备的PP/CaCO3复合材料在自然老化早期观察到填料颗粒的逐渐消失ꎬ提出了PP复合材料的消失填充机理ꎬ认为填充颗粒被嵌入到基体中ꎬ断裂发生在PP基体中ꎬ而不是在它们之间的界面处ꎮXue等[33]制备了3种具有不同表面结构的还原氧化石墨烯(rGO)ꎬ而后制备了PP/rGO纳米复合材料ꎬ认为rGO对PP的结晶行为㊁拉伸强度㊁导热性能和热稳定性均有显著提高ꎬ例如在一定范围内原料每增加1%质量分数的rGOꎬPP/rGO复合材料的结晶度㊁抗拉强度㊁最大热分解温度和热导率分别增加6 2%㊁20 5%㊁48 0ħ和54 5%ꎮMargolin等[34]采用原位聚合法制备了含石墨烯纳米板(GNP)和等规PP纳米复合材料ꎮ通过对PP光致化学发光的衰减ꎬ测量得到的纳米复合材料中过氧化氢自由基的终止动力学ꎮ结果显示在GNP的存在下ꎬ过氧化氢自由基的浓度显著下降ꎬ衰减速率显著增加ꎬGNP能够抑制自由基过程ꎮ同时ꎬGNP作为一种有效的催化剂ꎬ显著减少了纳米复合材料的氧化诱导次数ꎬ提高了纳米复合材料的防老化能力ꎮ3 4 2㊀大分子共混填料热塑性弹性体主要由橡胶相和塑料相两相构成ꎬ两相之间通常为物理交联ꎬ随着温度的变化交联程度可以可逆化ꎬ可用作聚合物的增韧剂ꎮYimit等[35]使用热塑性弹性体SBS增塑PPꎬ制备了PP/SBS复合材料并对其进行了户外老化试验ꎮ结果显示SBS的加入可以降低PP的玻璃化转变温度ꎬ有效改善其低温脆性ꎬ且对PP的抗老化能力有一定的提升ꎬ其中SBS添加量为30%时抗老化性能最好ꎮZhang等[36]和Ab ̄delkhalik等[37]分别用水合硅铝酸盐和磷酸季戊四醇等材料改性高岭土ꎬ制备了与PP不同含量的复合材料ꎬSEM图显示该种材料具有致密㊁多孔以及相干的碳层ꎬ放热量和放热速率得到了较好地控制ꎬ具有很好的阻燃和高温热稳定性ꎮ纤维增强树脂的复合材料是由高分子树脂和纤维经复合工艺ꎬ制作而成的一种功能型的新型材料ꎬ具有耐腐蚀性能好ꎬ质轻高强度等特点ꎮ潘利明等[38]使用玻璃纤维直接无捻粗纱为增强体ꎬ制备了增强PP的复合材料ꎬ研究了其力学性能㊁耐热氧老化性能的影响ꎮ结果显示该种玻璃纤维增强PP复合材料与未加玻璃纤维的相比ꎬ弯曲强度提高225%ꎬ缺口冲击强度提高475%ꎻ经150ħ热氧老化4000h后ꎬ材料的力学性能没有发生明显下降ꎮWang等[39]对玄武岩纤维增强PP复合材料(BFRPPs)和纯PP的力学性能㊁阻燃性能和热稳定性进行了研究和比较ꎮ结果显示在PP中加入玄武岩纤维形成了更致密㊁更连续的碳层ꎬ可有效地减少热量和氧气的传递ꎬ从而使BFRPPs具有更好的阻燃性能ꎮ木塑复合材料(WPC)是一种集木材和塑料优点ꎬ具有良好强度和抗腐蚀等性能的新型复合材料ꎬ木相可以来源于木粉㊁稻壳㊁秸秆等天然植物纤维ꎬ近年来使用木材增强PP防老化能力的研究也日益增多ꎮ于旻[40]使用麦秸(WS)为填料制备了WS/PP复合材料ꎬ系统地研究了人工加速老化和户外自然老化条件下WS/PP复合材料的老化规律和老化机理ꎮ结果显示木质素能够明显延长复合材料氧化诱导时间ꎬ适量的木质素能够起到抗氧化作用ꎬ延缓塑料基体的光降解ꎬ证明羟基对抗氧化性能力有较大贡献ꎻ在适当的配方下ꎬ木质素可作为木塑复合材料的生物防老剂ꎬ比使用工业抗氧剂更加环保ꎮYao等[41]以西部红雪松树皮为原料ꎬ生产了不同组分的树皮提取物㊁树皮纤维㊁未漂白纤维素颗粒和漂白纤维素颗粒ꎬ并将其与PP复合制成复合材料ꎮ结果显示存在于纤维素颗粒中的木质素显著提高了复合材料的热稳定性ꎬ且纤维素的加入减弱了复合材料的光降解ꎬ提高了紫外稳定性ꎮ4㊀结束语近些年来ꎬ人们对提高PP防老化能力的研究已经取得了一些成果ꎮ纵观PP防老化的各种方法可知ꎬ多数方法利弊并存ꎬ即有些方法效果好但成本太高不利于大规模量产ꎬ有些方法效果不理想但无毒㊁无害㊁无污染ꎮ未来的研究内容还应该侧重于寻找成本低㊁提取方法简单且防老化能力好的天然抗氧剂来取代传统的工业抗氧剂ꎬ以及提高共混聚合物体系相容性的研究ꎬ制备性能更加优异的PP基复合材料ꎮ随着社会的发展ꎬ石油资源的枯竭ꎬ人们会越来越重视传统石油基聚合物如PP的耐久性能和应用范围ꎬ未来PP的防老化研究将越来越受到重视ꎮ参㊀考㊀文㊀献[1]NATARAJANS.Introductiontoindustrialpolypropylene:PropertiesꎬcatalystsꎬprocessesbyDennisB.MalpassandElliotI.band[J].MaterialsandManufacturingProcessesꎬ2015ꎬ31(3):1-2.[2]IMARANKAꎬLOUJZꎬSHIVAKUMARKNꎬetal.Enhancementofelectricalandthermalconductivityofpoly ̄propylenebygraphenenanoplatelets[J].JournalofAppliedPolymerScienceꎬ2018ꎬ95(1):42-55. [3]JEONGJOꎬLIMYMꎬPARKJSꎬetal.Improvingthermalstabilityandmechanicalperformanceofpolypropyl ̄ene/polyurethaneblendpreparedbyradiation ̄basedtechniques[J].EuropeanPolymerJournalꎬ2017ꎬ65(6):60-65.[4]JIANCꎬGUIYZꎬSHIFHꎬetal.Studyonagingmechanismofpolypropylene[J].ChinaPlasticsꎬ2015ꎬ41(1):30-37.[5]COLOMXꎬCANAVATEJꎬSUNOLJJꎬetal.Naturalandartificialagingofpolypropylene ̄polyethylenecopolymers[J].JournalofAppliedPolymerꎬ2010ꎬ87(10):1685-1692.4第49卷第2期何明宇ꎬ等:聚丙烯防老化的研究进展[6]MASHAELAS.Studyoftheeffectofweatheringinnaturalenvironmentonpolypropyleneanditscomposites:Morphologicalandmechanicalproperties[J].InternationalJournalofChemistryꎬ2011ꎬ3(1):129-141. [7]买买提江 依米提ꎬ艾买提江 萨伍提ꎬ郭春云ꎬ等.均聚聚丙烯在干热环境中耐候性能及结构表征[J].高分子材料科学与工程ꎬ2016ꎬ32(11):81-85.YIMITMꎬSAWUTAꎬGUOCYꎬetal.Weatherresist ̄anceandstructurecharacterizationofhomopolypropyleneindryheatenvironment[J].PolymerMaterialsScienceandEngineeringꎬ2016ꎬ32(11):81-85.[8]张舒宁ꎬ彭莉ꎬ刘洁ꎬ等.免喷涂聚丙烯材料自然暴晒与人工加速老化的相关性及其老化因素研究[J].中国塑料ꎬ2017ꎬ31(11):119-124.ZHANGSNꎬPENGLꎬLIUJꎬetal.Studyonthecorre ̄lationbetweennaturalexposureandartificialacceleratedagingofnon ̄sprayingpolypropylenematerialanditsagingfactors[J].ChinaPlasticsꎬ2017ꎬ31(11):119-124. [9]王维ꎬ王琦.聚丙烯防老化编织布之人工老化和大气老化性能对比研究[J].土工基础ꎬ2018ꎬ32(4):440-444.WANGWꎬWANGQ.Comparativestudyofartificialagingandatmosphericagingpropertiesofpolypropyleneanti ̄agingwovenfabric[J].GeotechnicalFoundationꎬ2018ꎬ32(4):440-444.[10]杨旭东ꎬ邱文灿ꎬ丁辛ꎬ等.紫外线辐射强度对聚丙烯长丝光氧老化的影响[J].纺织学报ꎬ2009ꎬ30(8):8-12.YANGXDꎬQIUWCꎬDINGXꎬetal.Theinfluenceofultravioletradiationintensityonthephotooxidationagingofpolypropylenefilament[J].JournalofTextileResearchꎬ2009ꎬ30(8):8-12.[11]刘斌ꎬ刘庆辉ꎬ瞿金平.动态注射成型聚丙烯制品的湿热老化性能研究[J].材料科学与工艺ꎬ2011ꎬ19(1):58-64ꎬ70.LIUBꎬLIUQHꎬQUJP.Researchonmoistureandheatagingperformanceofdynamicinjectionmoldedpolypropyleneproducts[J].MaterialsScienceandTechnologyꎬ2011ꎬ19(1):58-64ꎬ70.[12]SCHMIDTHꎬWITKOWSKABꎬKAMINSKAIꎬetal.Comparisonoftheratesofpolypropylenefibredegradationcausedbyartificiallightandsunlight[J].Fibres&TextilesinEasternEuropeꎬ2011ꎬ19(4):53-58. [13]YULCꎬYANXFꎬFORTING.Effectsofweatheringagingonmechanicalandthermalpropertiesofinjectionmoldedglassfiberreinforcedpolypropylenecomposites[J].JournalofPolymerResearchꎬ2018ꎬ25(11):40-49.[14]HEMꎬMUSAJANDꎬHASANGꎬetal.Effectsofcou ̄plingagentonantioxidantpropertiesandstructureofPP/cottonstalklignincomposites[J].PolishJournalofChemicalTechnologyꎬ2020ꎬ22(2):78-85. [15]蔡航ꎬ孟正华ꎬ许欢ꎬ等.汽车内饰用聚丙烯材料老化性能分析[J].塑料科技ꎬ2019ꎬ47(7):55-59.CAIHꎬMENGZHꎬXUHꎬetal.Analysisofagingperformanceofpolypropylenematerialsusedinautomobileinterior[J].PlasticScienceandTechnologyꎬ2019ꎬ47(7):55-59.[16]胡成浪ꎬ张才亮ꎬ盛仲夷.成核剂改性共聚聚丙烯的研究进展[J].塑料助剂ꎬ2020ꎬ140(2):5-10.HUCLꎬZHANGCLꎬSHENGZY.Researchprogressofnucleatingagentmodifiedcopolymerpolypropylene[J].PlasticAdditivesꎬ2020ꎬ140(2):5-10. [17]YANGCGꎬZHANGQꎬZHANGWLꎬetal.Highthermalinsulationandcompressivestrengthpolypropylenemicrocellularfoamswithhoneycombstructure[J].PolymerDegradationandStabilityꎬ2020ꎬ151(11):45-57.[18]ATAGURMꎬSEKIYꎬPASAOGLUYꎬetal.MechanicalandthermalpropertiesofCarpinasbetulusfiberfilledpolypropylenecomposites[J].PolymerCompositesꎬ2020ꎬ17(2):74-85.[19]MANTEGHIAꎬAHMADISꎬARABIH.Enhancedther ̄mo ̄oxidativestabilitythroughcovalentattachmentofhin ̄deredphenolicantioxidantonsurfacefunctionalizedpoly ̄propylene[J].Polymerꎬ2018ꎬ48(1):41-48. [20]于振ꎬ卢莉王景ꎬ卢立新ꎬ等.聚丙烯酸表面接枝改性聚丙烯抗氧化膜的制备与性能[J].高分子材料科学与工程ꎬ2020ꎬ36(7):134-139ꎬ148.YUZꎬLULWJꎬLULXꎬetal.Preparationandprop ̄ertiesofpolyacrylicacidgraftedmodifiedpolypropyleneanti ̄oxidationfilm[J].PolymerMaterialsScienceandEngineeringꎬ2020ꎬ36(7):134-139ꎬ148.[21]王仁龙.一种聚丙烯类集装袋用防老化母料及其制备方法[J].塑料包装ꎬ2020ꎬ30(3):97-102.WANGRL.Anti ̄agingmasterbatchforpolypropylenecontainerbagsandpreparationmethodthereof[J].PlasticPackagingꎬ2020ꎬ30(3):97-102.[22]邹志明.防老化母料对共聚级聚丙烯的抗紫外老化作用[J].合成材料老化与应用ꎬ2000(4):27-30ꎬ35.ZOUZM.Anti ̄agingeffectofanti ̄agingmasterbatchoncopolymergradepolypropylene[J].SyntheticMaterialAgingandApplicationꎬ2000(4):27-30ꎬ35. [23]张予东ꎬ刘欢ꎬ刘小明ꎬ等.没食子酸甲酯对聚丙烯抗氧化㊁流变及热分解行为的影响[J].化学研究ꎬ2017ꎬ28(1):120-126.5塑㊀料㊀工㊀业2021年㊀㊀ZHANGYDꎬLIUHꎬLIUXMꎬetal.Effectofmethylgallateontheantioxidationꎬrheologyandthermaldecom ̄positionbehaviorofpolypropylene[J].ChemicalRe ̄searchꎬ2017ꎬ28(1):120-126.[24]PELTZERMꎬJIMENEZA.DeterminationofoxidationparametersbyDSCforpolypropylenestabilizedwithhydroxytyrosol(3ꎬ4 ̄dihydroxy ̄phenylethanol)[J].JournalofThermalAnalysisandCalorimetryꎬ2009ꎬ96(1):243-248.[25]NANNIAꎬMESSORIM.Acomparativestudyofdifferentwinemakingby ̄productsderivedadditivesonoxi ̄dationstabilityꎬmechanicalandthermalproprietiesofpol ̄ypropylene[J].PolymerDegradationandStabilityꎬ2018ꎬ149(3):9-18.[26]NANNIAꎬBATTEGAZZOREDꎬFRACHEAꎬetal.ThermalandUVagingofpolypropylenestabilizedbywineseedswastesandtheirextracts[J].PolymerDegradationandStabilityꎬ2019ꎬ165(5):49-59.[27]MUSAJANDꎬMAMATJANMꎬBEKONRꎬetal.Im ̄pactofnaturalantioxidantsystemsontheoxidationresistanceandmechanicalpropertiesofpolypropylene[J].PolishJournalofChemicalTechnologyꎬ2020ꎬ22(1):68-74.[28]XIAHMꎬGAOHꎬSUNQQꎬetal.Puerarinꎬaneffi ̄cientnaturalstabilizerforbothpolyethyleneandpolypro ̄pylene[J].JournalofAppliedPolymerꎬ2020ꎬ97(2):96-108.[29]MUSAJANDꎬHASANGꎬHEMꎬetal.Freeradicalscavengingabilityofsodiumlignosulfonateanditsapplica ̄tioninfoodgradepolypropylene[J].PolishJournalofChemicalTechnologyꎬ2020ꎬ22(2):56-66. [30]热依扎 别坎.不同抗氧剂体系对聚丙烯抗氧化性能的应用研究[D].乌鲁木齐:新疆大学ꎬ2018.RIZAB.Researchontheapplicationofdifferentantioxidantsystemtotheantioxidantperformanceofpoly ̄propylene[D].Urumqi:XinjiangUniversityꎬ2018. [31]JOAQUINHFꎬEMILIORꎬJUANLꎬetal.Enhancingthethermalstabilityofpolypropylenebyblendingwithlowamountsofnaturalantioxidants[J].MacromolecularMa ̄terialsandEngineeringꎬ2019ꎬ304(11):12-20. [32]ZHAOJHꎬLIUXꎬYANGRꎬetal.Disappearanceofthefilleraninterestinginterfacialevolutionduringthepho ̄tooxidativeagingofpolypropylenecomposites[J].JournalofAppliedPolymerScienceꎬ2015ꎬ92(4):69-76.[33]XUEXDꎬCHENYꎬYINQꎬetal.Effectofoxygenfunctionalgroupsofreducedgrapheneoxideontheme ̄chanicalandthermalpropertiesofpolypropylenenanocom ̄posites[J].PolymerInternationalꎬ2018ꎬ87(5):36-43.[34]MARGOLINALꎬMONAKHOVATVꎬNEDOREZAVAPMꎬetal.Effectsofgrapheneonthermaloxidationofisotacticpolypropylene[J].PolymerDegradation&Stabilityꎬ2018ꎬ156:59-65.[35]YIMITMꎬNILGꎬDUYꎬetal.Mechanicalandagingpropertiesofpolypropyleneandstyrene ̄butadiene ̄styrenecompositesunderoutdoorandindoorconditions[J].StrengthofMaterialsꎬ2018ꎬ50(5):788-799. [36]ZHANGSꎬTANGWFꎬGUOJꎬetal.ImprovementofflameretardancyandthermalstabilityofpolypropylenebyP ̄typehydratedsilicaaluminatecontaininglanthanum[J].PolymerDegradationandStabilityꎬ2018ꎬ154(8):276-284.[37]ABDELKHALIKAꎬMAKHLOUFGꎬHASSANMA.Manufacturingꎬthermalstabilityꎬandflammabilityprop ̄ertiesofpolypropylenecontainingnewsinglemoleculeintu ̄mescentflameretardant[J].PolymersforAdvancedTechnologiesꎬ2019ꎬ50(2):65-75.[38]潘利明ꎬ王晓群ꎬ陆超超ꎬ等.玻纤增强聚丙烯抗菌防霉复合材料制备及性能[J].工程塑料应用ꎬ2020ꎬ48(5):57-62.PANLMꎬWANGXQꎬLUCCꎬetal.Preparationandpropertiesofglassfiberreinforcedpolypropyleneanti ̄bacterialandmildewproofcomposites[J].EngineeringPlasticsApplicationsꎬ2020ꎬ48(5):57-62.[39]WANGSꎬZHONGJꎬGUYꎬetal.Mechanicalproper ̄tiesꎬflameretardancyꎬandthermalstabilityofbasaltfiberreinforcedpolypropylenecomposites[J].PolymerCom ̄positesꎬ2020ꎬ78(6):50-62.[40]于旻.麦秸/废弃聚丙烯复合材料的老化特性研究[D].南京:南京农业大学ꎬ2015.YUM.Studyonagingcharacteristicsofwheatstraw/wastepolypropylenecomposites[D].Nanjing:NanjingAgriculturalUniversityꎬ2015.[41]YAOPꎬNAIRSSꎬCHENHYꎬetal.Applicationofdifferentbarkfractionsinpolypropylenecomposites:UVandthermalstability[J].PolymerCompositesꎬ2020(11):69-79.(本文于2020-10-26收到)6。
塑料聚丙烯(PP)检测/测试性能检测老化检测东标检测中心专业提供塑料检测、树脂检测、PP材料检测、PP材料分析、PP成分分析、PP配方分析等相关的测试项目。
共聚物型的PP材料有较低的热变形温度(100℃)、低透明度、低光泽度、低刚性,但是有更强的抗冲击强度,PP的冲击强度随着乙烯含量的增加而增大。
PP的维卡软化温度为150℃。
由于结晶度较高,这种材料的表面刚度和抗划痕特性很好。
PP不存在环境应力开裂问题。
具体的性能分析:力学性能聚丙烯的结晶度高,结构规整,因而具有优良的力学性能。
但在室温和低温下,由于本身的分子结构规整度高,所以冲击强度较差。
聚丙烯最突出的性能就是抗弯曲疲劳性,俗称百折胶。
热性能聚丙烯具有良好的耐热性,制品能在100℃以上温度进行消毒灭菌,在不受外力的条件下,150℃也不变形。
脆化温度为-35℃,在低于-35℃会发生脆化,耐寒性不如聚乙烯。
化学稳定性聚丙烯的化学稳定性很好,除能被浓硫酸、浓硝酸侵蚀外,对其它各种化学试剂都比较稳定;但低分子量的脂肪烃、芳香烃和氯化烃等能使聚丙烯软化和溶胀,同时它的化学稳定性随结晶度的增加还有所提高,所以聚丙烯适合制作各种化工管道和配件,防腐蚀效果良好。
电性能聚丙烯的高频绝缘性能优良,由于它几乎不吸水,故绝缘性能不受湿度的影响。
它有较高的介电系数,且随温度的上升,可以用来制作受热的电气绝缘制品。
它的击穿电压也很高,适合用作电气配件等。
抗电压、耐电弧性好,但静电度高,与铜接触易老化。
耐候性聚丙烯对紫外线很敏感,加入氧化锌、硫代二丙酸二月桂酯、碳黑或类似的乳白填料等可以改善其耐老化性能。
中英名称中文名称(聚丙烯)[1]英文名称Polypropyle ne性能特性(1)物理性能:聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90~.091g/cm3 ,是目前所有塑料中最轻的品种之一。
它对水特别稳定,在水中24h的吸水率仅为0.01%,分子量约8~15万之间。
成型性好,但因收缩率大,厚壁制品易凹陷。
制品表面光泽好,易于着色。
(2 )力学性能:聚丙烯的结晶度高,结构规整,因而具有优良的力学性能,其强度和硬度、弹性都比HDPE高,但在室温和低温下,由于本身的分子结构规整度高,所以冲击强度较差,分子量增加的时候,冲击强度也增大,但成型加工性能变差。
PP最突出的性能就是抗弯曲疲劳性,如用PP注塑一体活动铰链,能承受7X107次开闭的折迭弯曲而无损坏痕迹,干摩擦系数与尼龙相似,但在油润滑下,不如尼龙。
(3 )热性能:PP具有良好的耐热性,熔点在164~170 C,制品能在100 C以上温度进行消毒灭菌,在不受外力的,150 C也不变形。
脆化温度为-35 C,在低于-35 C会发生脆化,耐寒性不如聚乙烯。
(4 )化学稳定性:聚丙烯的化学稳定性很好,除能被浓硫酸、浓硝酸侵蚀外,对其它各种化学试剂都比较稳定,但低分子量的脂肪烃、芳香烃和氯化烃等能使PP 软化和溶胀,同时它的化学稳定性随结晶度的增加还有所提高,所以聚丙烯适合制作各种化工管道和配件,防腐蚀效果良好。
(5 )电性能:聚丙烯的高频绝缘性能优良,由于它几乎不吸水,故绝缘性能不受湿度的影响。
它有较高的介电系数,且随温度的上升,可以用来制作受热的电气绝缘制品,它的击穿电压也很高,适合用作电气配件等。
抗电压、耐电弧性好,但静电度高,与铜接触易老化。
(6 )耐候性:聚丙烯对紫外线很敏感,加入氧化锌、硫代丙酸二月桂酯、碳黑或类似的乳白填料等可以改善其耐老化性能。
PP 聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90~0.91g/cm3 ,是目前所有塑料中最轻的品种之一。
车外饰塑料零部件的耐温性试验Updated by Jack on December 25,2020 at 10:00 am车外饰塑料零部件的耐温性试验引言近年来,随着汽车轻量化的呼声越来越高,塑料制品在汽车中的用量持续增长。
目前,北美汽车中塑料的用量为平均每车118 kg左右,约占整车质量的10%,预计2010年将达到136 kg。
如图1所示,是美国汽车使用的塑料品种比例分布,从图上可以看出,美国汽车工业应用较多的塑料有PU、PP、PVC、ABS、PA和PE等,主要用来制造前后保险杠、空调进气隔栅、底部导流板、前后灯、后视镜护罩、车轮护罩和车身饰条等,据了解,世界每年在汽车领域的聚丙烯消费量约在45万t左右, 95%的欧洲汽车的前后保险杠是以聚丙烯为原材料制造的。
这些塑料零部件除了满足汽车轻量、舒适、美观外的要求外,还必须满足汽车性能试验的要求。
耐温性能是评判塑料零部件质量与功能的重要指标之一,也是汽车零部件试验必检项目之一,特别是在一些环境比较恶劣、温度变化范围大、光照强烈的地区,如北美、北欧、热带赤道附近等,塑料零部件一旦失效,会对车辆的性能造成很大影响,所以车辆的耐温特性就更显重要。
本文讨论汽车塑料外饰件的耐温性能试验,其试验项目一般包括4种:耐寒性试验,耐热性试验,高低温循环试验,老化试验,介绍了这4种测试的机理、方法和性能要求,以期为后续的试验研究提供参考。
图:1温度对塑料件的影响机理温度影响材料性能主要是因为温度影响了材料的化学反应速率和光化学反应速度。
材料在太阳光照射下,温度对日光的射线效应就会显现,化学反应总是随着温度的升高而加速。
材料的温度每升高10℃,化学反应的速度就会翻倍。
热化学反应会在较高温度下发生,而在低温下这种反应则很慢或不会发生。
塑料的耐热性表示在温度升高时材料抵抗自身物理或化学变化引起的变形,软化,尺寸改变,强度下降的能力。
由于塑料材料大部分属于高分子材料,其耐热温度不高,不同材料的软化温度不同,而且塑料的热膨胀系数要比金属大3~10倍,容易受温度变化而影响尺寸的稳定性,因此,在实际使用中,塑料材料会受热软化,严重时会出现功能失效。
多手段研究分析聚丙烯的热氧老化机理摘要:聚丙烯作为一种常见的高分子材料,因其具备性能优异、易加工且价格低廉等优点而广泛应用于建筑防水等行业。
例如以聚丙烯为主要原料之一制备的热塑性聚烯烃(TPO)防水卷材,具有抗老化性好、拉伸性能优良、施工方便等优点,目前在国内的产量与销量均呈上升趋势,具有广阔的应用前景。
本文主要分析多手段研究分析聚丙烯的热氧老化机理。
关键词:聚丙烯;热氧老化;动态热机械分析法;红外光谱法;力学性能;表面形貌引言对聚丙烯片材进行热氧老化,采用动态热机械分析法、拉力机测试其机械性能、力学性能的变化,随着热氧老化时间的延长,聚丙烯的分子链段受到破坏,机械、力学性能显著下降。
FT-IR测试结果表明,聚丙烯片材在老化过程中存在诱导期,初期积聚能量,到一定程度后会迅速老化并发生大幅度降解。
超景深显微镜观察结果表明,聚丙烯片材在老化过程中,表面形貌出现了较大的缺陷,表层结构受到破坏。
1、实验部分1.1原料聚丙烯颗粒:荷兰利安德巴塞尔公司。
1.2设备动态热机械分析仪:DMA,瑞士METTLERTOLEDO公司;傅里叶变换红外光谱仪(FT-IR):IS50,美国ThermoFisher公司;超景深三维数码显微镜:SVM6,德国LeicaMicrosystem公司;微机控制电子万能试验机:ETM503B,深圳万测试验设备有限公司。
1.3样品制备将聚丙烯颗粒在215℃熔化后注塑成型制作聚丙烯片材,并放置在23℃、相对湿度50%的房间内养护7d。
养护结束后将聚丙烯片材放入烘箱进行115℃老化,分别老化0d、7d、15d、30d、45d、60d,取出静置至室温后进行性能测试。
1.4样品测试与表征在拉伸模式下,对聚丙烯片材进行动态热机械扫描测试,频率范围为0.1~100Hz,观察其模量随老化时间的变化;将聚丙烯片材裁成GB27789—2011《热塑性聚烯烃(TPO)防水卷材》规定的哑铃Ⅰ型,拉伸速度为(250±50)mm/min,测试其拉伸强度;采用傅里叶变换红外光谱仪对样品进行扫描,扫描次数为16次,扫描范围为4000~400cm-1,分辨率为4;采用400~4000倍镜头进行超景深显微测试,观察聚丙烯片材表面放大2000倍的形貌特征。
10.16638/ki.1671-7988.2019.06.041汽车密封条骨架聚丙烯材料耐热氧老化性能分析吴荣懿(上汽大众质保实验室,上海201805)摘要:文章对汽车密封条骨架聚丙烯材料耐热氧老化性能进行深入分析,从其热老化机理、挤出的生产工艺以及零件的断面设计等方面,系统地研究该材料老化的影响因素,以期碰到此类问题,能够给读者提供有效的改进方向和解决方案。
关键词:汽车密封条;聚丙烯;热氧老化中图分类号:U465 文献标识码:A 文章编号:1671-7988(2019)06-116-04Analysis on thermal oxygen resistance property of skeleton material polypropyleneof automobile’s sealingWu Rongyi( Saic-VW, Shanghai 201805 )Abstract: The thermal oxygen resistance property of skeleton material of automobile’s sealing has been studied from some aspects on oxygen aging mechanism, extrusion process and design of part’s cross section. Influence factors on thermal oxygen resistance property of the raw material have been analyzed systematically in order to provide effective optimized direction and solution method when people meet the similar problem.Keywords: automobile’s sealing; polypropylene; thermal oxygen resistanceCLC NO.: U465 Document Code: A Article ID: 1671-7988(2019)06-116-04前言聚丙烯(PP)具有密度小、强度高、耐化学性能好、加工工艺性好等特点,近年来已成为汽车用塑料中最为普遍,也是用量最大的非金属复合材料之一。
我国汽车工业对聚丙烯(PP)市场需求持续增长,主要因为PP能够与多种材料很好的混配,以较低的价格达到高流动性、超高韧性、高刚性、高耐热性,实现减重和轻量化等设计目标[1-4]。
目前,聚丙烯也广泛应用于汽车密封条,聚丙烯与EPDM /PP共挤出的车窗密封条,起到固定、防水、隔音和密封的作用。
聚丙烯在车窗密封条内外水切的骨架材料主要有PP6(PP-TD20 or PP/PE-TD20)、PP7(PP-TD30 or PP/PE-TD30)、PP10(PP-GF30 or PP/PE-GF30),根据使用环境和条件选择不同规格的改性聚丙烯,主要是通过滑石粉或玻纤进行增强改性。
改性聚丙烯能够增强塑料的机械性能(硬度高、强度高、韧性好),改善塑料的收缩性能和低温性能,且降低成本。
但由于聚丙烯(PP)树脂本身结构中存在不稳定的叔碳原子,使其在加工使用过程中极易受到光、热和氧等作用,发生热氧老化[5-8]。
而汽车密封条使用的聚丙烯复合材料体系中有滑石粉/玻纤等填料和其他添加物,更快地促使PP材料老化、变脆、龟裂,降低了汽车密封条热氧老化性能,缩短了零件的使用寿命[9-10]。
本文对汽车密封条骨架材料聚丙烯PP7耐热氧老化性能进行深入分析,从其热老化机理、挤出的生产工艺以及零件的断面设计等方面,系统地研究该材料老化的影响因素,以期碰到汽车密封条零件的此类问题时,能够提供有效的改进作者简介:吴荣懿(1984.03-),女,中级工程师,硕士,就职于上汽大众汽车有限公司质保实验室,主要从事汽车橡胶密封条制品的材料认可和失效分析研究工作。
116吴荣懿:汽车密封条骨架聚丙烯材料耐热氧老化性能分析117方向和解决方案。
1 缺陷描述某车型车窗密封条在认可过成中,根据大众标准VW44045[11],总成零件必须通过150℃/500h 的热老化实验,然而在150℃温度下经过400h 存放后,骨架材料PP7开始出现降解、脆化现象(如图1所示)。
PP7材料是含有30%滑石粉的聚丙烯,大部分采用注射成型工艺。
车窗密封条采用挤出成型工艺,PP7材料包覆铝带,冷却成型。
图1 热老化150℃存放400h 后PP7出现降解、脆化现象2 聚丙烯PP7开裂的原因分析2.1 聚丙烯PP7热老化机理聚丙烯是由丙烯聚合而制得的一种热塑性树脂,按照甲基排列位置分为等规聚丙烯、无规聚丙烯和间规聚丙烯三种。
甲基排列在分子主链的同一侧成为等规聚丙烯,若甲基无秩序的排列在分子主链的两侧称为无规聚丙烯,当甲基交替排列在分子主链的两侧称间规聚丙烯。
聚丙烯氧化反应的一般机理分为以下三步[12-13]:链引发:聚丙烯结构中的叔碳原子在光、热和氧的作用下极易生成自由基:RH →R *+H * RH+O 2→R *+HO 2链传递:自由基自动催化生成过氧化自由基和大分子过氧化物,过氧化物分解又产生自由基,自由基又可以和聚合物反应,使自由基不断传递,反应延续:R *+O 2→ROO * ROO *+RH →ROOH+R * ROOH →RO *+HO * 2ROOH →RO *+ROO *+H 2ORO *+RH →ROH+R **OH+RH →HOH+R *链终止:自由基相互结合生成稳定的产物,终止链反应:2RO 2*→ROOR+O 2 R *+RO 2*→ROOR2R *→R-R如上所述,PP 降解的化学变化主要是形成醛、酮、羧酸、酯和γ-内酮,物理变化主要在于分子链的断裂,高分子相对分子质量下降,进而造成一系列力学性能下降。
PP7的热氧化机理是在热氧化过程中产生的不稳定自由基和氢过氧化物,引起材料性能劣化的主要因素,抗氧剂的作用正是用来终止活性自由基和分解氢过氧化物的。
具有抑制自由基连锁反应作用的自由基抑制剂称为主抗氧剂,它包含胺类和酚类两大系列,用于工程塑料的主要是酚类抗氧剂。
具有分解氢过氧化作用的氢过氧化物分解剂称为辅助抗氧剂,主要包括硫代酯和亚磷酸酯两大类,通常与主抗氧剂并用。
2.2 挤出工艺对PP7热老化性能的影响如图2所示整个车窗密封条生产工艺,整个挤出过程中对PP7老化产生影响的主要在挤出机筒温度、机头温度和模具温度(如图3至图5)。
聚丙烯的熔点为164-170℃,分解温度在350-380℃,推荐流体温度在190-210℃。
经现场勘察,挤出工位的温度均符合工艺参数表,为最优状态。
如果降低温度会影响挤出零件的表观质量和稳定性。
因此,目前挤出工艺无改进余地。
图2 挤出工艺流程图图3 机筒温度图4 模具温度:191℃ 图5 口模处PP 表面温度:163℃2.3 零件厚度对PP7热老化性能的影响图6 不同PP 厚度耐热老化性能结果如图6所示制备不同厚度的聚丙烯测试样片,研究不同厚度的聚丙烯耐热老化性能,结果显示:PP 样片厚度越厚,汽车实用技术118 耐热老化性能越好,厚度为3.36mm 的测试样片,150℃下热老化时间可以到达840h 。
认可的车窗密封条零件PP7包含金属骨架的厚度在1.47mm 左右(如图7),实际PP7的厚度不足1mm ,因而由于零件厚度太薄影响其热老化性能。
图7 车窗密封条零件PP7骨架厚度2.4 金属骨架对PP7热老化性能的影响相同牌号的原材料已在类似零件的批量车型上使用,之前的零件可以顺利通过150℃/500h 的热老化实验,为什么该车型的车窗密封条却无法通过老化实验,从断面结构上进行分析,发现最大的区别在于该车型的车窗密封条骨架是由PP7和金属共挤,而之前批量车型的骨架只有纯PP7挤出(断面结构如表1所示)。
表1 不同零件断面材料示意图在聚合物中由于金属离子,特别是过渡金属离子(铜铁钴镍锰等)的存在,增加聚合物自动氧化速率,对橡胶、聚丙烯、聚氯乙烯等高分子聚合物有催化降解作用。
不同金属离子对PP7氧化的脆化作用不同(Cu 2+>Mn 2+>Mn 3+>Fe 2+> Ni 2+>Co 2+),目前选用的金属骨架是AlMn 0.5Mg 0.5,含有较多的锰离子,对材料的热氧老化有加速催化作用。
另外,该铝带表面有涂层PH80,增加橡胶与铝带的粘结性能,其主要含量如表2所示。
涂层中含有较多的二丙酮醇,有可能会与抗氧剂发生酯交换反应,从而对抗氧剂有一定的消耗。
表2 PH80主要成分和含量3 提高聚丙烯PP7热氧老化的技术方法综上所述,零件的挤出工艺符合工艺参数表,为最优状态;而零件断面设计中骨架材料PP7厚度太薄,其耐热氧老化性能不佳;而与PP7材料共挤的金属又会降低PP7耐热氧老化性能,同时金属表面的涂层也会与PP7配方中的抗氧剂发生酯化反应,消耗一定量的抗氧剂,进一步降低PP7耐热氧老化性能。
因此,针对该问题的材料改进方案就是添加更多含量的抗氧剂以及金属钝化剂,详见表3。
表3 PP7改进配方对比3.1 仪器与样品热重分析仪:美国TA ,TGAQ5000;差示扫描量热仪:美国TA ,DSC Q20;改进前后车窗密封条各2根(供货态以及经过热老化存放150℃/500h ),如表4所示。
表4 测试样品3.2 性能测试对改进前后的样品进行如下的热分析测试:1)差式扫描量热法DSC ——升温/Heating :N2,10K/min ,from 50℃ to 200℃;冷却/Cooling :N2,10K/min ,from 200℃ to 80℃;升温/Heating :N2,10K/min ,from 80℃ to 200℃。
2)热解重量分析TGA ——升温/Heating :N2,20K/min ,from 60℃ to 700℃;冷却/Cooling :N2,20K/min ,from 700℃ to 400℃;氧化/Oxidation :20K/min ,from 400℃到700℃。
3)氧化诱导OIT ——升温/Heating :N2,10K/min ,from 40℃ to 230℃;氧化/Oxidation :10K/min ,maintain 60min 。
3.3 结果与讨论图8 改进前后DSC 实验结果实验结果如图8至图10所示,从DSC 和TGA 的曲线看出,改进后材料经过150℃/500h 老化后,其熔点和初始分解温度比改进前高,表明优化后的材料耐热氧老化性能较好;从OIT 曲线看出,改进后材料氧化诱导时间远远大于改进前,再次证明材料优化方案有效。