不等式选讲复习
- 格式:doc
- 大小:317.50 KB
- 文档页数:4
选修4-5 不等式选讲资料不等式选讲知识点1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:0>-⇔>b a b a0=-⇔=b a b a 0<-⇔<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。
2、不等式的基本性质:①、如果a>b ,那么b<a ,如果b<a ,那么a>b 。
(对称性) ②、如果a>b ,且b>c ,那么a>c ,即a>b ,b>c ⇒a>c 。
③、如果a>b ,那么a+c>b+c ,即a>b ⇒a+c>b+c 。
推论:如果a>b ,且c>d ,那么a+c>b+d .即a>b , c>d ⇒a+c>b+d . ④、如果a>b ,且c>0,那么ac>bc ;如果a>b ,且c<0,那么ac<bc .⑤、如果a>b >0,那么nn b a >(n ∈N ,且n>1) ⑥、如果a>b >0,那么n n b a >(n ∈N ,且n>1)。
3,平均值不等式定理1:如果a 、b ∈R ,那么a 2+b 2≥2ab (当且仅当a =b 时取“=”号) 定理2(基本不等式):如果a ,b 是正数,那么 a +b2≥ab (当且仅当a =b 时取“=”号)说明:(1)我们称a +b2为a ,b 的算术平均数,称ab 为a ,b 的几何平均数,因而,此定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数.(2)a 2+b 2≥2ab 和a +b2≥ab 成立的条件是不同的:前者只要求a ,b 都是实数,而后者要求a ,b 都是正数.(3)“当且仅当”的含义是充要条件.定理3:如果+∈R c b a ,,,那么abc c b a 3333≥++(当且仅当c b a ==时取“=”)定理4:如果+∈R c b a ,,,那么33abc c b a ≥++。
2020年领军高考数学一轮复习(文理通用)专题76不等式选讲最新考纲1.理解绝对值不等式的几何意义,并了解下列不等式成立的几何意义及取等号的条件:|a+b|≤|a|+|b|(a,b∈R);|a-c|≤|a-b|+|b-c|(a,b∈R).2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c.3.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.基础知识融会贯通1.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.2.含有绝对值的不等式的性质(1)如果a,b是实数,则|a|-|b|≤|a±b|≤|a|+|b|,当且仅当ab≥0时,等号成立.(2)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.3.不等式证明的方法(1)比较法①作差比较法知道a>b⇔a-b>0,a<b⇔a-b<0,因此要证明a>b,只要证明a-b>0即可,这种方法称为作差比较法.②作商比较法由a >b >0⇔a b >1且a >0,b >0,因此当a >0,b >0时,要证明a >b ,只要证明ab >1即可,这种方法称为作商比较法. (2)综合法从已知条件出发,利用不等式的有关性质或定理,经过推理论证,最终推导出所要证明的不等式成立,这种证明方法叫做综合法,即“由因导果”的方法. (3)分析法从待证不等式出发,逐步寻求使它成立的充分条件,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等),从而得出要证的不等式成立,这种证明方法叫做分析法,即“执果索因”的方法.重点难点突破【题型一】绝对值不等式的解法【典型例题】已知函数f (x )=|2x ﹣1|+|x +a |,g (x )=x +2.(1)当a =﹣1时,求不等式f (x )<g (x )的解集; (2)设,且当,求a 的取值范围.【解答】解:(1)当a =﹣1时,不等式f (x )<g (x )化为|2x ﹣1|+|x ﹣1|﹣x ﹣2<0, (i )当x 时,不等式化为﹣(2x ﹣1)﹣(x ﹣1)﹣x ﹣2<0,解得0<x .(ii )当x ≤1时,不等式化为2x ﹣1﹣(x ﹣1)﹣x ﹣2<0,解得x ≤1,(iii )当x >1时,不等式化为2x ﹣1+x ﹣1﹣x ﹣2<0,解得1<x <2 综上,原不等式的解集为(0,2). (2)由﹣a ≤x ,得﹣2a ≤2x <1,﹣2a ﹣1≤2x ﹣1<0, 又0≤x +aa ,则f (x )=﹣(2x ﹣1)+x +a =﹣x +a +1, ∴不等式f (x )≤g (x )化为﹣x +a +1≤x +2, 得a ≤2x +1对x ∈[﹣a ,)都成立,故a≤﹣2a+1,即a,又a,故a的取值范围是(,].【再练一题】求不等式4﹣2|x+2|≤|x﹣1|的解集.【解答】解:①当x≤﹣2时,原不等式可化为4﹣2(x﹣2)≤1﹣x,解得x,此时x;②当﹣2<x<1时,原不等式可化为4﹣2(x﹣2)≤1﹣x,解得x≥﹣1,此时﹣1≤x<1;③当x≥1时,原不等式可化为4﹣2(x﹣2)≤x﹣1,解得x,此时x≥1.综上,原不等式的解集为(﹣∞,]∪[﹣1,+∞).思维升华解绝对值不等式的基本方法(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式.(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式.(3)利用绝对值的几何意义,数形结合求解.【题型二】利用绝对值不等式求最值【典型例题】已知函数f(x)=|x+1|,g(x)=2|x|+a.(1)当a=﹣1时,解不等式f(x)≤g(x);(2)若存在x0∈R,使得f(x0)g(x0),求实数a的取值范围.【解答】解:(1)a=﹣1时,由f(x)≤g(x)得,|x+1|≤2|x|﹣1;x≤﹣1时,﹣x﹣1≤﹣2x﹣1,解得:x≤﹣1;﹣1<x≤0时,x+1≤﹣2x﹣1,解得:﹣1<x;x>0时,x+1≤2x﹣1,解得:x≥2;∴不等式f(x)≤g(x)的解集为{x|x,或x≥2};(2)存在x0∈R,使得f(x0)g(x0),即存在x0∈R,使得|x0+1|≤|x0|;即存在x0∈R,使得|x0+1|﹣|x0|;设h(x)=|x+1|﹣|x|,则h(x)的最小值为﹣1;∴1;即a≥﹣2;∴实数a的取值范围为:[﹣2,﹣∞).【再练一题】已知函数f(x)=|2x﹣4|+|x+1|,(Ⅰ)解不等式f(x)≤9;(Ⅱ)若不等式f(x)<2x+a的解集为A,B={x|x2﹣3x<0},且满足B⊆A,求实数a的取值范围.【解答】解:(Ⅰ)f(x)≤9可化为|2x﹣4|+|x+1|≤9,故,或,或;…解得:2<x≤4,或﹣1≤x≤2,或﹣2≤x<﹣1;…不等式的解集为[﹣2,4];…(Ⅱ)易知B=(0,3);…所以B⊆A,又|2x﹣4|+|x+1|<2x+a在x∈(0,3)恒成立;…⇒|2x﹣4|<x+a﹣1在x∈(0,3)恒成立;…⇒﹣x﹣a+1<2x﹣4<x+a﹣1在x∈(0,3)恒成立;…故思维升华求含绝对值的函数最值时,常用的方法有三种(1)利用绝对值的几何意义.(2)利用绝对值三角不等式,即|a|+|b|≥|a±b|≥|a|-|b|.(3)利用零点分区间法.【题型三】绝对值不等式的综合应用【典型例题】已知不等式x+|x﹣a|≥1的解集为R.(1)求a的取值范围;(2)当a取得最小值时,请画出f(x)=x+|x﹣a|的图象.【解答】解:(1)∵x+|x﹣a|≥x﹣x+a=a,∴不等式x+|x﹣a|≥1的解集为R等价于a≥1,a的取值范围是[1,+∞)(2)由(1)知a=1,f(x)=x+|x﹣1|,图象如下:【再练一题】设函数f(x)=|2x﹣4|+1.(Ⅰ)求不等式f(x)≥x+3的解集;(Ⅱ)关于x的不等式f(x)﹣2|x+2|≥a在实数范围内有解,求实数a的取值范围.【解答】解:(Ⅰ)f(x)≥x+3,即|2x﹣4|+1≥x+3,则2|x﹣2|≥x+2,当x≥2时,解得x≥6,当x<2,解得x,所以原不等式的解集为(﹣∞,)∪(6,+∞)(Ⅱ)由不等式f(x)﹣2|x+2|≥a在实数范围内有解可得:a≤2|x﹣2|﹣2|x+2|+1在实数范围内有解,令g(x)=2|x﹣2|﹣2|x+2|+1,则a≤g(x)nax,因为g(x)=2|x﹣2|﹣2|x+2|+1≤2|(x﹣2)﹣(x+2)|+1=9,所以a≤g(x)max=9,即a∈(﹣∞,9].思维升华(1)解决与绝对值有关的综合问题的关键是去掉绝对值,化为分段函数来解决.(2)数形结合是解决与绝对值有关的综合问题的常用方法.【题型四】用综合法与分析法证明不等式【典型例题】用综合法或分析法证明:(1)求证2.(2)已知a+b+c=1,a,b,c为正实数,证明8.【解答】证明(1)要证2,只需证明()2>()2,即证明22,也就是证明42>40,上式显然成立,故原结论成立.(2)(分析法)要证明8,∵a+b+c=1,只要证明••8,∵,,,∴相乘可得;(综合法)∵a,b,c为正实数,∴,,,∴••8,∵a+b+c=1,∴8.【再练一题】已知函数f(x)=x3,x∈[0,1].(1)用分析法证明:f(x)≥1﹣x+x2;(2)证明:.【解答】证明:(1)∵x ∈[0,1],∴x +1∈[1,2]. 要证明:f (x )≥1﹣x +x 2,只要证明:x 3(x +1)+1≥(x +1)(1﹣x +x 2), 只要证明:x 4≥0, 显然成立,∴f (x )≥1﹣x +x 2; (2)∵1﹣x +x 2=(x )2,当且仅当x时取等号,∵f (),f (x )≥1﹣x +x 2,∴f (x ),(2)∵0≤x ≤1,∴x 3≤x , ∴f (x )≤x ,设g (x )=x ,x ∈[0,1],∴g ′(x )=10,∴g (x )在[0,1]上单调递增, ∴f (x )≤g (1), 综上所述明. 思维升华 用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野. 所以(a +b )3≤8,因此a +b ≤2.基础知识训练1.已知()()0f x x a a =−>.(1)若函数()()()2F x f x f x =+的最小值为3,求实数a 的值;(2)若2a =时,函数()()()g x f x f x =−−的最大值为k ,且()230,0m n k m n +=>>.求123m n+的最小值.【答案】(1)6(2)2 【解析】解:(1)0a >,2aa ∴<,∴函数()()3222232x a x aa F x x a x a x x a a a x x ⎧⎪−>⎪⎪⎛⎫=−+−=≤≤⎨ ⎪⎝⎭⎪⎪⎛⎫−<⎪ ⎪⎝⎭⎩∴当2a x =时,函数()F x 的最小值为322a aF ⎛⎫== ⎪⎝⎭,6a ∴=.(2)当2a =时,()22g x x x =−−+,()()22224x x x x −−+≤−−+=,4k ∴=,所以234m n +=因为()12112134123442343434n m m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,所以当343n m m n =,即2n =,1m =时,123m n +最小值为2 2.选修4-5:不等式选讲 已知正实数,ab 满足2a b+=. ≤(Ⅱ) 若对任意正实数,a b ,不等式|1||3|x x ab +−−≥恒成立,求实数x 的取值范围. 【答案】(Ⅰ)见解析.(Ⅱ)3[,)2+∞. 【解析】(Ⅰ)22()262()212a b a b=+++≤+++=≤(Ⅱ)对正实数,a b 有a b +…所以2≤,解得1ab ≤,当且仅当a b =时等号成立. 因为对任意正实数,a b ,|1||3|x x ab +−−≥恒成立, 所以|1||3|1x x +−−≥恒成立.当1x ≤−时,不等式化为1(3)1x x −−−−≥,整理得41−≥,所以不等式无解; 当13x −<<时,不等式化为1(3)1x x +−−≥,解得332x ≤≤; 当3x ≥时,不等式化为1(3)1x x +−−≥,整理得41≥,不等式恒成立. 综上可得x 的取值范围是3[,)2+∞. 3.已知函数()||,f x x x a a R =+∈. (1)若()()111f f +−>,求a 的取值范围; (2)若0a <,对,(,]x y a ∀∈−∞−,不等式3(2)4f x y y a≤+++恒成立,求a 的取值范围. 【答案】(1)30.1/mol L NaHCO ;(2)[)3,0−. 【解析】(1)由()()111f f +−>得111a a +−−>, 若1a ≤−,则111a a −−+−>,显然不成立; 若11a −<<,则111a a ++−>,12a >,即112a <<; 若1a ≥,则111a a +−+>,即21>,显然成立, 综上所述,a 的取值范围是30.1/mol L NaHCO . (2)由题意知,要使得不等式恒成立,只需3))42((max min f x y ay ≤+++, 当(,]x a ∈−∞−时,()()f x x x a =−+,所以2()24maxa a f x f ⎛⎫=−= ⎪⎝⎭;因为223344a y y a +++≥−,所以23442a a ≤−,解得31a −≤≤,结合0a <,所以a 的取值范围是[)3,0−. 4.已知函数()3f x x =−. (1)解不等式()241f x x −+≤;(2)当()1f m ≤,()22f n ≤时,存在,m n R ∈,使得42131m n a −−>−,求实数a 的取值范围。
不等式选讲一、线性规划例 变量,x y 满足430352501x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,求下列表达式的最值(1) 设y z x = (2) 2yz x =-(3) 3z x y =- (4) 3z x y =+ (5) 22z x y =+练习:1. 设变量,x y 满足-100+20015x y x y y ≤⎧⎪≤≤⎨⎪≤≤⎩,则2+3x y 的最大值为A .20B .35C .45D .552. 已知实数,x y 满足121y y x x y m ≥⎧⎪≤-⎨⎪+≤⎩,如果目标函数z x y =-的最小值是-1,求m 的值;3. 若x ,y 满足约束条件1122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,目标函数2z ax y =+仅在点(1,0)处取得最小值,则a的取值范围是 ( )A .(1-,2)B .(4-,2)C .(4,0]-D . (2,4)-二、均值不等式(1)已知x >0,y >0,且x 1+y9=1,求x +y 的最小值;(2)已知x <45,求函数y =4x -2+541-x 的最大值(3)若x ,y ∈(0,+∞)且2x +8y -xy =0,求x +y 的最小值(4)若-4<x <1,求22222x x y x -+=-的最大值.(5)已知函数f (x )=x 2+ax +11x +1(a ∈R),若对于任意x ∈N *,f (x )≥3恒成立,则a 的取值范围是________.(6)已知正实数,x y ,12x y +=,求213x y x y++-的最小值。
(7)已知x >0,y >0,且31x y xy +-=-,求x y +的范围。
(8)已知x >0,y >0,且31x y xy +-=-,求xy 的范围。
(9)(2014·南昌模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.、三、绝对值不等式1.已知函数,,(1)当时,求不等式的解集;(2)若不等式的解集包含,求的取值范围。
【最新】数学《不等式选讲》高考复习知识点一、141.设x ∈R ,则“31x <”是“1122x -<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】分别求解三次不等式和绝对值不等式确定x 的取值范围,然后考查充分性和必要性是否成立即可. 【详解】 由31x <可得1x <, 由1122x -<可得01x <<, 据此可知“31x <”是“1122x -<”的必要而不充分条件. 故选B . 【点睛】本题主要考查不等式的解法,充分性与必要性的判定等知识,意在考查学生的转化能力和计算求解能力.2.不等式|1||2|x x a +--<无实数解,则a 的取值范围是( ) A .(,3)-∞ B .(3,)-+∞ C .(,3]-∞- D .(,3)-∞-【答案】C 【解析】 【分析】利用绝对值不等式的性质||||||a b a b -≤-,因此得出||||a b -的范围, 再根据无实数解得出a 的范围。
【详解】解:由绝对值不等式的性质可得,||1||2|||(1)(2)|3x x x x +--++-=„,即|1||2|3x x +---…. 因为|1||2|x x a +--<无实数解 所以3a ≤-,故选C 。
【点睛】本题考查了绝对值不等式的性质,利用绝对值不等式的性质解出变量的范围是解决问题的关键。
3.已知函数()f x 是定义在[1,2]a a -上的偶函数,且当0x >时,()f x 单调递增,则关于x 的不等式(1)()f x f a ->的解集为 ( ) A .45[,)33B .2112(,][,)3333--⋃ C .12[,)33⋃45(,]33D .随a 的值而变化【答案】C 【解析】试题分析:∵函数()f x 是定义在[1,2]a a -上的偶函数,∴1-a=2a ,∴a=13,故函数()f x 的定义的定义域为22[,]33-,又当203x <≤时,()f x 单调递增,∴11113(1)()(1)(){23313x f x f f x f x ->->⇔->⇔-≤,解得1233x ≤<或4533x <≤,所以不等式(1)()f x f a ->的解集为12[,)33⋃45(,]33,故选C考点:本题考查了抽象函数的运用点评:此类问题往往利用偶函数的性质()()f x f x =避免了讨论,要注意灵活运用4.设集合{}1,R A x x a x =-<∈,{}15,R B x x x =<<∈.若A B =∅I ,则实数a 的取值范围是()A .{}06a a ≤≤B .{}64a a a ≤≥或C .{}06a a a ≤≥或D .{}24a a ≤≤【答案】C 【解析】 【分析】根据公式()0x a a a x a <>⇔-<<解出集合A ,再根据交集的运算即可列出关系式,求解即可。
不等式选讲(用基本不等式证明不等式)一、用基本不等式证明不等式1.(2014年1卷)若0,0a b >>,且11a b +=.证明: (1) 求33a b +的最小值;(2)是否存在,a b ,使得236a b +=?并说明理由.【解析】(I11a b =+≥,得2ab ≥,且当a b == 故33a b+≥≥,且当a b ==时取等号.所以33a b +的最小值为(II )由(I)知,23a b +≥≥6>,从而不存在,a b , 使得236a b +=.2.(2013年2卷)设均为正数,且,证明:(1) (2) 【解析】(Ⅰ)2222222,2,2a b ab b c bc c a ca +≥+≥+≥得 222a b c ab bc ca ++≥++由题设得()21a b c ++=,即2222221a b c ab bc ca +++++=. 所以()31ab bc ca ++≤,即13ab bc ca ++≤ (Ⅱ)∵2222,2,2a b c b a c b a c b c a+≥+≥+≥ ,,a b c 1a b c ++=13ab bc ca ++≤2221a b c b c a++≥∴222()2()a b c a b c a b c b c a+++++≥++ 即222a b c a b c b c a++≥++ ∴2221a b c b c a++≥3.(2019年1卷)已知a ,b ,c正数,且满足abc=1.证明: (1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++.【解析】(1)1abc = 111111abc bc ac ab a b c a b c ⎛⎫∴++=++⋅=++ ⎪⎝⎭ ()()()()2222222222222a b c a b b c c a ab bc ac ++=+++++≥++当且仅当a b c ==时取等号, ()22211122a b c a b c ⎛⎫∴++≥++ ⎪⎝⎭,即:222111a b c a b c ++++≥ (1) ()()()()()()3333a b b c c a a b b c c a +++++≥+++,当且仅当a b c ==时取等号又a b +≥b c +≥a c +≥(当且仅当a b c ==时等号同时成立)()()()3333a b b c c a ∴+++++≥⨯=又1abc()()()33324a b b c c a ∴+++++≥4.已知正数x 、y 、z ,且1xyz =.(1)证明:222x y z y z x y++≥+; (2)证明:()()()22212x y y z z x +++++≥.【详解】(1)因为x 、y 、z 为正数,且1xyz =,所以222x y y z +≥==, 当且仅当32y zx =时等号成立,即4y x =时,等号成立;同理22y z z x +≥,22x z y x +≥22222x y z y z x z y ⎛⎛⎫++≥++ ⎪ ⎝⎭⎝⎭,即222x y z y z x z y++≥+,当且仅当1x y z ===时等号成立;(2)因为()()()222x y y z z x +++++≥由二元均值不等式得x y +≥y z +≥,z x +≥,当且仅当x y z ==时,等号同时成立,所以()24x y xy +≥,()24y z yz +≥,()24z x xz +≥, ()()()()22226464x y y z z x xyz ∴+++≥=,因此,()()()22212x y y z z x +++≥=++,当且仅当1x y z ===时,等号同时成立.【点睛】本题考查利用三元和二元均值不等式证明不等式,考查推理能力,属于中等题.5.(2020年3卷)设a ,b ,c ∈R ,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;(2)用max{a ,b ,c}表示a ,b ,c 中的最大值,证明:max{a ,b ,c}.【详解】(1)2222()2220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. 1,,,abc a b c =∴均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<; (2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=. 当且仅当b c =时,取等号,a ∴≥,即3max{,,}4a b c .。
不等式选讲高考导航考试要求重难点击命题展望1.理解绝对值的几何意义,并能用它证明绝对值三角不等式等较简单的不等式.①|a+b|≤|a|+|b|;②|a-b|≤|a-c|+|c-b|.2.能用绝对值的几何意义解几类简单的绝对值型不等式,如|ax+b|≤c或|ax+b|≥c,以及|x-a|+|x-b|≥c或|x-a|+|x-b|≤c类型.3.了解证明不等式的基本方法:比较法、综合法、分析法、反证法和放缩法.4.了解数学归纳法的原理及其使用范围,会用它证明一些简单不等式及其他问题.5.了解柯西不等式的几种不同形式:二维形式(a2+b2)(c2+d2)≥(ac+bd)2、向量形式|α|·|β|≥|α·β|、一般形式∑∑∑===•nininiiiiibaba112122)(≥,理解它们的几何意义.掌握柯西不等式在证明不等式和求某些特殊类型的函数极值中的应用.6.了解排序不等式的推导及意义并能简单应用.7.会用数学归纳法证明贝努利不等式:.)1,0,1>(>1)1(的正整数为大于nxxnxx n≠-++本章重点:不等式的基本性质;基本不等式及其应用、绝对值型不等式的解法及其应用;用比较法、分析法、综合法证明不等式;柯西不等式、排序不等式及其应用.本章难点:三个正数的算术——几何平均不等式及其应用;绝对值不等式的解法;用反证法、放缩法证明不等式;运用柯西不等式和排序不等式证明不等式.本专题在数学必修5“不等式”的基础上,进一步学习一些重要的不等式,如绝对值不等式、柯西不等式、排序不等式以及它们的证明,同时了解证明不等式的一些基本方法,如比较法、综合法、分析法、反证法、放缩法、数学归纳法等,会用绝对值不等式、平均值不等式、柯西不等式、排序不等式等解决一些简单问题.高考中,只考查上述知识和方法,不对恒等变形的难度和一些技巧作过高的要求.知识网络§1 绝对值型不等式典例精析题型一解绝对值不等式【例1】设函数f(x)=|x-1|+|x-2|.(1)解不等式f(x)>3;(2)若f(x)>a对x∈R恒成立,求实数a的取值范围.【解析】(1)因为f (x )=|x -1|+|x -2|=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,11,<,23x x x x x所以当x <1时,3-2x >3,解得x <0; 当1≤x ≤2时,f (x )>3无解; 当x >2时,2x -3>3,解得x >3.所以不等式f (x )>3的解集为(-∞,0)∪(3,+∞).(2)因为f (x )=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,1<1,,23x x x x x 所以f (x )min =1.因为f (x )>a 恒成立,所以a <1,即实数a 的取值范围是(-∞,1). 【变式训练1】设函数f (x )=|x +1|+|x -2|+a . (1)当a =-5时,求函数f (x )的定义域; (2)若函数f (x )的定义域为R ,试求a 的取值范围.【解析】(1)由题设知|x +1|+|x -2|-5≥0,如图,在同一坐标系中作出函数y =|x +1|+|x -2|和y =5的图象,知定义域为(-∞,-2]∪[3,+∞).(2)由题设知,当x ∈R 时,恒有|x +1|+|x -2|+a ≥0,即|x +1|+|x -2|≥-a ,又由(1)知|x +1|+|x -2|≥3, 所以-a ≤3,即a ≥-3. 题型二 解绝对值三角不等式【例2】已知函数f (x )=|x -1|+|x -2|,若不等式|a +b |+|a -b |≥|a |f (x )对a ≠0,a 、b ∈R 恒成立,求实数x 的范围.【解析】由|a +b |+|a -b |≥|a |f (x )且a ≠0得|a +b |+|a -b ||a |≥f (x ).又因为|a +b |+|a -b ||a |≥|a +b +a -b ||a |=2,则有2≥f (x ).解不等式|x -1|+|x -2|≤2得12≤x ≤52.【变式训练2】(2010深圳)若不等式|x +1|+|x -3|≥a +4a对任意的实数x 恒成立,则实数a 的取值范围是 .【解析】(-∞,0)∪{2}.题型三 利用绝对值不等式求参数范围 【例3】(2009辽宁)设函数f (x )=|x -1|+|x -a |. (1)若a =-1,解不等式f (x )≥3; (2)如果∀x ∈R ,f (x )≥2,求a 的取值范围. 【解析】(1)当a =-1时,f (x )=|x -1|+|x +1|. 由f (x )≥3得|x -1|+|x +1|≥3,①当x ≤-1时,不等式化为1-x -1-x ≥3,即-2x ≥3,不等式组⎩⎨⎧-3≥)(1,≤x f x 的解集为(-∞,-32];②当-1<x ≤1时,不等式化为1-x +x +1≥3,不可能成立,不等式组⎩⎨⎧-3≥)(1,≤<1x f x 的解集为∅;③当x >1时,不等式化为x -1+x +1≥3,即2x ≥3,不等式组⎩⎨⎧3≥)(1,>x f x 的解集为[32,+∞).综上得f (x )≥3的解集为(-∞,-32]∪[32,+∞).(2)若a =1,f (x )=2|x -1|不满足题设条件.若a <1,f (x )=⎪⎩⎪⎨⎧+-++-1,≥1),(-2<1,<,1,≤,12x a x x a a a x a xf (x )的最小值为1-a .由题意有1-a ≥2,即a ≤-1.若a >1,f (x )=⎪⎩⎪⎨⎧+-++-,≥1),(-2,<<1,11,≤,12a x a x a x a x a xf (x )的最小值为a -1,由题意有a -1≥2,故a ≥3.综上可知a 的取值范围为(-∞,-1]∪[3,+∞).【变式训练3】关于实数x 的不等式|x -12(a +1)2|≤12(a -1)2与x 2-3(a +1)x +2(3a +1)≤0 (a ∈R )的解集分别为A ,B .求使A ⊆B 的a 的取值范围.【解析】由不等式|x -12(a +1)2|≤12(a -1)2⇒-12(a -1)2≤x -12(a +1)2≤12(a -1)2,解得2a ≤x ≤a 2+1,于是A ={x |2a ≤x ≤a 2+1}.由不等式x 2-3(a +1)x +2(3a +1)≤0⇒(x -2)[x -(3a +1)]≤0,①当3a +1≥2,即a ≥13时,B ={x |2≤x ≤3a +1},因为A ⊆B ,所以必有⎩⎨⎧++1,3≤1,2≤22a a a 解得1≤a ≤3;②当3a +1<2,即a <13时,B ={x |3a +1≤x ≤2},因为A ⊆B ,所以⎩⎨⎧++2,≤1,2≤132a a a 解得a =-1.综上使A ⊆B 的a 的取值范围是a =-1或1≤a ≤3.总结提高1.“绝对值三角不等式”的理解及记忆要结合三角形的形状,运用时注意等号成立的条件.2.绝对值不等式的解法中,||x <a 的解集是(-a ,a );||x >a 的解集是(-∞,-a )∪(a ,+∞),它可以推广到复合型绝对值不等式||ax +b ≤c ,||ax +b ≥c 的解法,还可以推广到右边含未知数x 的不等式,如||3x +1≤x -1⇒1-x ≤3x +1≤x -1.3.含有两个绝对值符号的不等式,如||x -a +||x -b ≥c 和||x -a +||x -b ≤c 型不等式的解法有三种,几何解法和代数解法以及构造函数的解法,其中代数解法主要是分类讨论的思想方法,这也是函数解法的基础,这两种解法都适宜于x 前面系数不为1类型的上述不等式,使用范围更广.§2 不等式的证明(一)典例精析题型一 用综合法证明不等式【例1】 若a ,b ,c 为不全相等的正数,求证: lg a +b 2+lg b +c 2+lg a +c 2>lg a +lg b +lg c .【证明】 由a ,b ,c 为正数,得lga +b 2≥lg ab ;lg b +c 2≥lg bc ;lg a +c2≥lg ac . 而a ,b ,c 不全相等,所以lg a +b 2+lg b +c 2+lg a +c2>lg ab +lg bc +lg ac =lg a 2b 2c 2=lg(abc )=lg a +lg b +lg c .即lg a +b 2+lg b +c 2+lg a +c 2>lg a +lg b +lg c .【点拨】 本题采用了综合法证明,其中基本不等式是证明不等式的一个重要依据(是一个定理),在证明不等式时要注意结合运用.而在不等式的证明过程中,还要特别注意等号成立的条件是否满足.【变式训练1】已知a ,b ,c ,d 都是实数,且a 2+b 2=1,c 2+d 2=1.求证:|ac +bd |≤1. 【证明】因为a ,b ,c ,d 都是实数,所以|ac +bd |≤|ac |+|bd |≤a 2+c 22+b 2+d 22=a 2+b 2+c 2+d 22.又因为a 2+b 2=1,c 2+d 2=1,所以|ac +bd |≤1. 题型二 用作差法证明不等式【例2】 设a ,b ,c 为△ABC 的三边,求证:a 2+b 2+c 2<2(ab +bc +ca ). 【证明】a 2+b 2+c 2-2(ab +bc +ca )=(a -b )2+(b -c )2+(c -a )2-a 2-b 2-c 2=[(a -b )2-c 2]+[(b -c )2-a 2]+[(c -a )2-b 2].而在△ABC 中,||b -a <c ,所以(a -b )2<c 2,即(a -b )2-c 2<0.同理(a -c )2-b 2<0,(b -c )2-a 2<0,所以a 2+b 2+c 2-2(ab +bc +ca )<0. 故a 2+b 2+c 2<2(ab +bc +ca ).【点拨】 不等式的证明中,比较法特别是作差比较法是最基本的证明方法,而在牵涉到三角形的三边时,要注意运用三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.【变式训练2】设a ,b 为实数,0<n <1,0<m <1,m +n =1,求证:a 2m +b 2n≥(a +b )2.【证明】因为a 2m +b 2n -(a +b )2=na 2+mb 2mn -nm (a 2+2ab +b 2)mn=na 2(1-m )+mb 2(1-n )-2mnab mn=n 2a 2+m 2b 2-2mnab mn =(na -mb )2mn≥0,所以不等式a 2m +b 2n≥(a +b )2成立.题型三 用分析法证明不等式【例3】已知a 、b 、c ∈R +,且a +b +c =1. 求证:(1+a )(1+b )(1+c )≥8(1-a )(1-b )(1-c ).【证明】因为a 、b 、c ∈R +,且a +b +c =1,所以要证原不等式成立, 即证[(a +b +c )+a ][(a +b +c )+b ][(a +b +c )+c ] ≥8[(a +b +c )-a ][(a +b +c )-b ][(a +b +c )-c ],也就是证[(a +b )+(c +a )][(a +b )+(b +c )][(c +a )+(b +c )]≥8(b +c )(c +a )(a +b ).① 因为(a +b )+(b +c )≥2(a +b )(b +c )>0, (b +c )+(c +a )≥2(b +c )(c +a )>0, (c +a )+(a +b )≥2(c +a )(a +b )>0, 三式相乘得①式成立,故原不等式得证.【点拨】 本题采用的是分析法.从待证不等式出发,分析并寻求使这个不等式成立的充分条件的方法叫分析法,概括为“执果索因”.分析法也可以作为寻找证题思路的方法,分析后再用综合法书写证题过程.【变式训练3】设函数f (x )=x -a (x +1)ln(x +1)(x >-1,a ≥0).(1)求f (x )的单调区间;(2)求证:当m >n >0时,(1+m )n <(1+n )m . 【解析】(1)f ′(x )=1-a ln(x +1)-a ,①a =0时,f ′(x )>0,所以f (x )在(-1,+∞)上是增函数; ②当a >0时,f (x )在(-1,aa -1e -1]上单调递增,在[aa-1e -1,+∞)单调递减.(2)证明:要证(1+m )n <(1+n )m ,只需证n ln(1+m )<m ln(1+n ),只需证ln(1+m )m <ln(1+n )n.设g (x )=ln(1+x )x (x >0),则g ′(x )=x1+x -ln(1+x )x 2=x -(1+x )ln(1+x )x 2(1+x ). 由(1)知x -(1+x )ln(1+x )在(0,+∞)单调递减, 所以x -(1+x )ln(1+x )<0,即g (x )是减函数, 而m >n ,所以g (m )<g (n ),故原不等式成立.总结提高1.一般在证明不等式的题目中,首先考虑用比较法,它是最基本的不等式的证明方法.比较法一般有“作差比较法”和“作商比较法”,用得较多的是“作差比较法”,其中在变形过程中往往要用到配方、因式分解、通分等计算方法.2.用综合法证明不等式的过程中,所用到的依据一般是定义、公理、定理、性质等,如基本不等式、绝对值三角不等式等.3.用分析法证明不等式的关键是对原不等式的等价转换,它是从要证明的结论出发,逐步寻找使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立.4.所谓“综合法”、“分析法”其实是证明题的两种书写格式,而不是真正意义上的证明方法,并不像前面所用的比较法及后面要复习到的三角代换法、放缩法、判别式法、反证法等是一种具体的证明方法(或者手段),而只是两种互逆的证明题的书写格式.§3 不等式的证明(二)典例精析题型一 用放缩法、反证法证明不等式【例1】已知a ,b ∈R ,且a +b =1,求证:(a +2)2+(b +2)2≥252.【证明】 方法一:(放缩法) 因为a +b =1,所以左边=(a +2)2+(b +2)2≥2[(a +2)+(b +2)2]2=12[(a +b )+4]2=252=右边.方法二:(反证法)假设(a +2)2+(b +2)2<252,则 a 2+b 2+4(a +b )+8<252.由a +b =1,得b =1-a ,于是有a 2+(1-a )2+12<252.所以(a -12)2<0,这与(a -12)2≥0矛盾.故假设不成立,所以(a +2)2+(b +2)2≥252.【点拨】 根据不等式左边是平方和及a +b =1这个特点,选用重要不等式a 2 + b 2≥ 2(a + b 2)2来证明比较好,它可以将具备a 2+b 2形式的式子缩小.而反证法的思路关键是先假设命题不成立,结合条件a +b =1,得到关于a 的不等式,最后与数的平方非负的性质矛盾,从而证明了原不等式.当然本题也可以用分析法和作差比较法来证明.【变式训练1】设a 0,a 1,a 2,…,a n -1,a n 满足a 0=a n =0,且有 a 0-2a 1+a 2≥0, a 1-2a 2+a 3≥0, …a n -2-2a n -1+a n ≥0, 求证:a 1,a 2,…,a n -1≤0.【证明】由题设a 0-2a 1+a 2≥0得a 2-a 1≥a 1-a 0. 同理,a n -a n -1≥a n -1-a n -2≥…≥a 2-a 1≥a 1-a 0.假设a 1,a 2,…,a n -1中存在大于0的数,假设a r 是a 1,a 2,…,a n -1中第一个出现的正数. 即a 1≤0,a 2≤0,…,a r -1≤0,a r >0,则有a r -a r -1>0,于是有a n -a n -1≥a n -1-a n -2≥…≥a r -a r -1>0. 并由此得a n ≥a n -1≥a n -2≥…≥a r >0.这与题设a n =0矛盾.由此证得a 1,a 2,…,a n -1≤0成立. 题型二 用数学归纳法证明不等式 【例2】用放缩法、数学归纳法证明: 设a n =1×2+2×3+…+n (n +1),n ∈N *,求证:n (n +1)2<a n <(n +1)22. 【证明】 方法一:(放缩法)n 2<n (n +1)<n +(n +1)2,即n <n (n +1)<2n +12.所以1+2+…+n <a n <12[1+3+…+(2n +1)].所以n (n +1)2<a n <12·(n +1)(1+2n +1)2,即n (n +1)2<a n <(n +1)22.方法二:(数学归纳法)①当n =1时,a 1=2,而1<2<2,所以原不等式成立.②假设n =k (k ≥1)时,不等式成立,即k (k +1)2<a k <(k +1)22.则当n =k +1时,a k +1=1×2+2×3+…+k (k +1)+(k +1)(k +2),所以k (k +1)2+(k +1)(k +2)<a k +1<(k +1)22+(k +1)(k +2).而k (k +1)2+(k +1)(k +2)>k (k +1)2+(k +1)(k +1)=k (k +1)2+(k +1)=(k +1)(k +2)2,(k +1)22+(k +1)(k +2)<(k +1)22+(k +1)+(k +2)2=k 2+4k +42=(k +2)22. 所以(k +1)(k +2)2<a k +1<(k +2)22.故当n =k +1时,不等式也成立.综合①②知当n ∈N *,都有n (n +1)2<a n <(n +1)22.【点拨】 在用放缩法时,常利用基本不等式n (n +1)<n +(n +1)2将某个相乘的的式子进行放缩,而在上面的方法二的数学归纳法的关键步骤也要用到这个公式.在用数学归纳法时要注意根据目标来寻找思路.【变式训练2】已知数列8×112×32,8×232×52,…,8n (2n -1)2(2n +1)2,…,S n 为其前n 项和,计算得S 1=89,S 2=2425,S 3=4849,S 4=8081,观察上述结果推测出计算S n 的公式且用数学归纳法加以证明. 【解析】猜想S n =(2n +1)2-1(2n +1)2(n ∈N +).证明:①当n =1时,S 1=32-132=89,等式成立.②假设当n =k (k ≥1)时等式成立,即S k =(2k +1)2-1(2k +1)2.则S k +1=S k +8(k +1)(2k +1)2(2k +3)2=(2k +1)2-1(2k +1)2+8(k +1)(2k +1)2(2k +3)2=(2k +1)2(2k +3)2-(2k +1)2(2k +1)2(2k +3)2=[2(k +1)+1]2-1[2(k +1)+1]2.即当n =k +1时,等式也成立.综合①②得,对任何n ∈N +,等式都成立. 题型三 用不等式证明方法解决应用问题【例3】某地区原有森林木材存量为a ,且每年增长率为25%,因生产建设的需要每年年底要砍伐的木材量为b ,设a n 为n 年后该地区森林木材存量.(1)求a n 的表达式;(2)为保护生态环境,防止水土流失,该地区每年森林木材量应不少于79a ,如果b =1972a ,那么该地区今后会发生水土流失吗?若会,需要经过几年?(取lg 2=0.30)【解析】(1)依题意得a 1=a (1+14)-b =54a -b ,a 2=54a 1-b =54(54a -b )-b =(54)2a -(54+1)b ,a 3=54a 2-b =(54)3a -[(54)2+(54+1)]b ,由此猜测a n =(54)n a -[(54)n -1+(54)n -2+…+54-4[(54)n -1]b (n ∈N +).下面用数学归纳法证明:①当n =1时,a 1=54a -b ,猜测成立.②假设n =k (k ≥2)时猜测成立,即a k =(54)k a -4[(54)k -1]b 成立.那么当n =k +1时,a k +1=54a k -b =54⎩⎨⎧⎭⎬⎫(54)k a -4[(54)k -1]b -b =(54)k +1a -4[(54)k +1-1]b ,即当n =k +1时,猜测仍成立.由①②知,对任意n ∈N +,猜测成立.(2)当b =1972a 时,若该地区今后发生水土流失,则森林木材存量必须少于79a ,所以(54)n a -4[(54)n -1]·1972a <79a ,整理得(54)n >5,两边取对数得n lg 54>lg 5,所以n >lg 5lg 5-2lg 2=1-lg 21-3lg 2≈1-0.301-3×0.30=7.故经过8年该地区就开始水土流失.【变式训练3】经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/时)与汽车的平均速度v (千米/时)之间的函数关系为y =920vv 2+3v +1 600(v >0).(1)在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少?(精确到0.1千辆/时) (2)若要求在该时段内车流量超过10千辆/时,则汽车的平均速度应在什么范围内?【解析】(1)依题意,y =9203+(v +1 600v)≤9203+2 1 600=92083,当且仅当v =1 600v,即v =40时,上式等号成立,所以y max =92083≈11.1(千辆/时).(2)由条件得920vv 2+3v +1 600>10,整理得v 2-89v +1 600<0,即(v -25)(v -64)<0,解得25<v <64.答:当v =40千米/时时,车流量最大,最大车流量约为11.1千辆/时.如果要求在该时段内车流量超过10千辆/时,则汽车的平均速度应大于25千米/时且小于64千米/时.总结提高1.有些不等式,从正面证如果不易说清,可以考虑反证法,凡是含有“至少”、“唯一”或者其他否定词的命题适用反证法.在一些客观题如填空、选择题之中,也可以用反证法的方法进行命题正确与否的判断.2.放缩法是证明不等式特有的方法,在证明不等式过程中常常要用到它,放缩要有目标,目标在结论和中间结果中寻找.常用的放缩方法有:(1)添加或舍去一些项,如a 2+1>||a ,n (n +1)>n ; (2)将分子或分母放大(或缩小);(3)利用基本不等式,如n (n +1)<n +(n +1)2;(4)利用常用结论,如k +1-k =1k +1+k <12k,1k 2<1k (k -1)=1k -1-1k ; 1k 2>1k (k +1)=1k -1k +1(程度大); 1k 2<1k 2-1=1(k -1)(k +1)=12(1k -1-1k +1) (程度小). 3.用数学归纳法证明与自然数有关的不等式的证明过程与用数学归纳法证明其他命题一样,先要奠基,后进行假设与推理,二者缺一不可.§4 柯西不等式和排序不等式典例精析题型一 用柯西不等式、排序不等式证明不等式【例1】设a 1,a 2,…,a n 都为正实数,证明:a 21a 2+a 22a 3+…+a 2n -1a n +a 2n a 1≥a 1+a 2+…+a n .【证明】方法一:由柯西不等式,有(a 21a 2+a 22a 3+…+a 2n -1a n +a 2na 1)(a 2+a 3+…+a n +a 1)≥ (a 1a 2·a 2+a 2a 3·a 3+…+a n a 1·a 1)2=(a 1+a 2+…+a n )2. 不等式两边约去正数因式a 1+a 2+…+a n 即得所证不等式.方法二:不妨设a 1≤a 2≤…≤a n ,则a 21≤a 22≤…≤a 2n ,1a 1≥1a 2≥…≥1a n. 由排序不等式有a 21·1a 2+a 22·1a 3+…+a 2n -1·1a n +a 2n ·1a 1≥a 21·1a 1+a 22·1a 2+…+a 2n ·1a n =a 1+a 2+…+a n , 故不等式成立.方法三:由均值不等式有a 21a 2+a 2≥2a 1,a 22a 3+a 3≥2a 2,…,a 2na 1+a 1≥2a n ,将这n 个不等式相加得 a 21a 2+a 22a 3+…+a 2n -1a n +a 2na 1+a 2+a 3+…+a n +a 1≥2(a 1+a 2+…+a n ),整理即得所证不等式. 【点拨】 根据所证不等式的结构形式观察是否符合柯西不等式、排序不等式的结构形式或有相似之处.将其配成相关结构形式是解决问题的突破口,有时往往要进行添项、拆项、重组、配方等方法的处理.【变式训练1】已知a +b +c =1,且a 、b 、c 是正数,求证:2a +b +2b +c +2c +a≥9.【证明】左边=[2(a +b +c )](1a +b +1b +c +1c +a )=[(a +b )+(b +c )+(c +a )](1a +b +1b +c +1c +a)≥(1+1+1)2=9,(或左边=[(a +b )+(b +c )+(c +a )](1a +b +1b +c +1c +a)=3+a +b b +c +a +b c +a +b +c a +b +b +c c +a +c +a a +b +c +a b +c≥3+2b ac b c b b a ++++•+2b a a c a c b a ++++•+2c b ac a c c b ++++•=9) 所以2a +b +2b +c +2c +a≥9.题型二 用柯西不等式求最值【例2】 若实数x ,y ,z 满足x +2y +3z =2,求x 2+y 2+z 2的最小值. 【解析】 由柯西不等式得,(12+22+32)(x 2+y 2+z 2)≥(x +2y +3z )2=4(当且仅当1=kx,2=ky,3=kz 时等号成立,结合x +2y +3z =2,解得x =17,y =27,z =37),所以14(x 2+y 2+z 2)≥4.所以x 2+y 2+z 2≥27.故x 2+y 2+z 2的最小值为27.【点拨】 根据柯西不等式,要求x 2+y 2+z 2的最小值,就要给x 2+y 2+z 2再配一个平方和形式的因式,再考虑需要出现定值,就要让柯西不等式的右边出现x +2y +3z 的形式,从而得到解题思路.由此可见,柯西不等式可以应用在求代数式的最值中.【变式训练2】已知x 2+2y 2+3z 2=1817,求3x +2y +z 的最小值.【解析】因为(x 2+2y 2+3z 2)[32+(2)2+(13)2]≥(3x +2y ·2+3z ·13)2≥(3x +2y +z )2,所以(3x +2y +z )2≤12,即-23≤3x +2y +z ≤23,当且仅当x =-9317,y =-3317,z =-317时,3x +2y +z 取最小值,最小值为-2 3. 题型三 不等式综合证明与运用【例3】 设x >0,求证:1+x +x 2+…+x 2n ≥(2n +1)x n .【证明】(1)当x ≥1时,1≤x ≤x 2≤…≤x n ,由排序原理:顺序和≥反序和得 1·1+x ·x +x 2·x 2+…+x n ·x n ≥1·x n +x ·x n -1+…+x n -1·x +x n ·1, 即1+x 2+x 4+…+x 2n ≥(n +1)x n .①又因为x ,x 2,…,x n ,1为序列1,x ,x 2,…,x n 的一个排列,于是再次由排序原理:乱序和≥反序和得1·x +x ·x 2+…+x n -1·x n +x n ·1≥1·x n +x ·x n -1+…+x n -1·x +x n ·1,即x+x3+…+x2n-1+x n≥(n+1)x n,②将①和②相加得1+x+x2+…+x2n≥(2n+1)x n.③(2)当0<x<1时,1>x>x2>…>x n.由①②仍然成立,于是③也成立.综合(1)(2),原不等式成立.【点拨】分类讨论的目的在于明确两个序列的大小顺序.【变式训练3】把长为9 cm的细铁线截成三段,各自围成一个正三角形,求这三个正三角形面积和的最小值.【解析】设这三个正三角形的边长分别为a、b、c,则a+b+c=3,且这三个正三角形面积和S满足:3S=34(a2+b2+c2)(12+12+12)≥34(a+b+c)2=934⇒S≥334.当且仅当a=b=c=1时,等号成立.总结提高1.柯西不等式是基本而重要的不等式,是推证其他许多不等式的基础,有着广泛的应用.教科书首先介绍二维形式的柯西不等式,再从向量的角度来认识柯西不等式,引入向量形式的柯西不等式,再介绍一般形式的柯西不等式,以及柯西不等式在证明不等式和求某些特殊类型的函数极值中的应用.2.排序不等式也是基本而重要的不等式.一些重要不等式可以看成是排序不等式的特殊情形,例如不等式a2+b2≥2ab.有些重要不等式则可以借助排序不等式得到简捷的证明.证明排序不等式时,教科书展示了一个“探究——猜想——证明——应用”的研究过程,目的是引导学生通过自己的数学活动,初步认识排序不等式的数学意义、证明方法和简单应用.3.利用柯西不等式或排序不等式常常根据所求解(证)的式子结构入手,构造适当的两组数,有难度的逐步调整去构造.对于具体明确的大小顺序、数目相同的两列数考虑它们对应乘积之和的大小关系时,通常考虑排序不等式.嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇。
选修4-5不等式选讲最新考纲:1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:(1)|a +b|≤|a|+|b|(a,b∈R).(2)|a-b|≤|a-c|+|c-b|(a,b∈R).2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c,|ax+b|≥c,|x-c|+|x-b|≥a.3.了解柯西不等式的几种不同形式,理解它们的几何意义,并会证明.4.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法、数学归纳法.ab≤0且|a ab≥0且|a定理2:如果a、b为正数,则≥,当且仅当a=b时,等号成立.定理3:如果a、b、c为正数,则≥,当且仅当a=b=c时,等号成立.定理4:(一般形式的算术—几何平均值不等式)如果a1、a2、…、a n为n个正数,则≥,当且仅当a1=a2=…=a n时,等号成立.4.柯西不等式(1)柯西不等式的代数形式:设a,b,c,d为实数,则(a2+b2)·(c2+d2)≥(ac+bd)2,当且仅当ad=bc时等号成立.(2)若a i,b i(i∈N*)为实数,则()()≥(i b i)2,当且仅当b i=0(i=1,2,…,n)或存在一个数k,使得a i=kb i(i=1,2,…,n)时,等号成立.(3)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α|·|β|≥|α·β|,当且仅当这两个向量同向或反向时等号成立.1(1)(2)(3)|(4)(5)[2AC[[答案] A3.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是() A.|a+b|+|a-b|>2 B.|a+b|+|a-b|<2C.|a+b|+|a-b|=2 D.不能比较大小[解析]|a+b|+|a-b|≤|2a|<2.[答案] B4.若a,b,c∈(0,+∞),且a+b+c=1,则++的最大值为()A.1 B.C. D.2[∴([5[为-2≤a[解|(1)(2)把这些根由小到大排序,它们把定义域分为若干个区间.(3)在所分区间上,去掉绝对值符号组成若干个不等式,解这些不等式,求出它们的解集.(4)这些不等式解集的并集就是原不等式的解集.解绝对值不等式的关键是恰当的去掉绝对值符号.(1)(2015·山东卷)不等式|x-1|-|x-5|<2的解集是()A.(-∞,4) B.(-∞,1)C.(1,4) D.(1,5)(2)(2014·湖南卷)若关于x的不等式|ax-2|<3的解集为,则a=________.[解题指导]切入点:“脱掉”绝对值符号;关键点:利用绝对值的性质进行分类讨论.[解析](1)当x<1时,不等式可化为-(x-1)+(x-5)<2,即-4<2,显然成立,所以此时不等当当(2)当当当[对点训练已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.[解](1)当a=-3时,f(x)=当x≤2时,由f(x)≥3得-2x+5≥3,解得x≤1;当2<x<3时,f(x)≥3无解;当x≥3时,由f(x)≥3得2x-5≥3,解得x≥4;所以f(x)≥3的解集为{x|x≤1或x≥4}.(2)f(x)≤|x-4|?|x-4|-|x-2|≥|x+a|.当?4右|x 1.是(2)[[解析](1)∵|x-1|+|x+2|≥|(x-1)-(x-2)|=3,∴a2+a+2≤3,解得≤a≤.即实数a的取值范围是.(2)解法一:根据绝对值的几何意义,设数x,-1,2在数轴上对应的点分别为P,A,B,则原不等式等价于P A-PB>k恒成立.∵AB=3,即|x+1|-|x-2|≥-3.故当k<-3时,原不等式恒成立.解法二:令y=|x+1|-|x-2|,则y=要使|x+1|-|x-2|>k恒成立,从图象中可以看出,只要k<-3即可.故k<-3满足题意.[答案](1)(2)(-∞,-3)解含参数的不等式存在性问题,只要求出存在满足条件的x即可;不等式的恒成立问题,可转化为最值问题,即f(x)<a恒成立?a>f(x)max,f(x)>a恒成立?a<f(x)min.(1)(2)[解-a?a-3≤x≤3.故(2)f不等式的证明方法很多,解题时既要充分利用已知条件,又要时刻瞄准解题目标,既不仅要搞清是什么,还要搞清干什么,只有兼顾条件与结论,才能找到正确的解题途径.应用基本不等式时要注意不等式中等号成立的条件.(2015·新课标全国卷Ⅱ)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a-b|<|c-d|的充要条件.[解题指导]切入点:不等式的性质;关键点:不等式的恒等变形.[证明](1)因为(+)2=a+b+2,(+)2=c+d+2,由题设a+b=c+d,ab>cd得(+)2>(+)2.因此+>+.(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.由a+(1)ab+bc+ac≤;(2)++≥1.[证明](1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca得a2+b2+c2≥ab+bc+ca. 由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1.所以3(ab+bc+ca)≤1,即ab+bc+ca≤.(2)因为+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即++≥a+b+c.所以++≥1.———————方法规律总结————————[12条件.3.[121[解析]|2x-1|<3?-3<2x-1<3?-1<x<2.[答案](-1,2)2.若不等式|kx-4|≤2的解集为{x|1≤x≤3},则实数k=__________.[解析]∵|kx-4|≤2,∴-2≤kx-4≤2,∴2≤kx≤6.∵不等式的解集为{x|1≤x≤3},∴k=2.[答案] 23.不等式|2x+1|+|x-1|<2的解集为________.[解析]当x≤-时,原不等式等价为-(2x+1)-(x-1)<2,即-3x<2,x>-,此时-<x≤-.当-<x<1时,原不等式等价为(2x+1)-(x-1)<2,即x<0,此时-<x<0.当x≥1时,原不等式等价为(2x +1)+(x-1)<2,即3x<2,x<,此时不等式无解,综上,原不等式的解为-<x<0,即原不等式的解集为.[答案]4[[5.[故[6.[3a-1+2a=[7.若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是__________.[解析]∵f(x)=|x+1|+|x-2|=∴f(x)≥3.要使|a|≥|x+1|+|x-2|有解,∴|a|≥3,即a≤-3或a≥3.[答案](-∞,-3]∪[3,+∞)8.已知关于x的不等式|x-a|+1-x>0的解集为R,则实数a的取值范围是__________.[解析]若x-1<0,则a∈R;若x-1≥0,则(x-a)2>(x-1)2对任意的x∈[1,+∞)恒成立,即(a-1)[(a+1)-2x]>0对任意的x∈[1,+∞)恒成立,所以(舍去)或对任意的x∈[1,+∞]恒成立,解得a<1.综上,a<1.[答案](-∞,1)9.设a,b,c是正实数,且a+b+c=9,则++的最小值为__________.[=≥2[10.[即∴[11[解析]∵|x-1|+|x|+|y-1|+|y+1|=(|1-x|+|x|)+(|1-y|+|1+y|)≥|(1-x)+x|+|(1-y)+(1+y)|=1+2=3,当且仅当(1-x)·x≥0,(1-y)·(1+y)≥0,即0≤x≤1,-1≤y≤1时等号成立,∴|x-1|+|x|+|y-1|+|y+1|的最小值为3.[答案] 312.若不等式|x+1|-|x-4|≥a+,对任意的x∈R恒成立,则实数a的取值范围是________.[解析]只要函数f(x)=|x+1|-|x-4|的最小值不小于a+即可.由于||x+1|-|x-4||≤|(x+1)-(x -4)|=5,所以-5≤|x+1|-|x-4|≤5,故只要-5≥a+即可.当a>0时,将不等式-5≥a+整理,得a2+5a+4≤0,无解;当a<0时,将不等式-5≥a+整理,得a2+5a+4≥0,则有a≤-4或-1≤a<0.综上可知,实数a的取值范围是(-∞,-4]∪[-1,0).[13(1)(2)[解若若若(2)f(x)作出函数f(x)的图象,如图所示.由图象可知,f(x)≥1,∴2a>1,a>,即a的取值范围为.14.(2015·新课标全国卷Ⅰ)已知函数f(x)=|x+1|-2|x-a|,a>0.(1)当a=1时,求不等式f(x)>1的解集;(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.[解](1)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0.当x≤-1时,不等式化为x-4>0,无解;当-1<x<1时,不等式化为3x-2>0,解得<x<1;当x≥1时,不等式化为-x+2>0,解得1≤x<2.(2)a+1,0),C(a,a15(1)(2)[解f(x).(2)若a=1,f(x)=2|x-1|,不满足题设条件;若a<1,f(x)=f(x)的最小值为1-a;若a>1,f(x)=f(x)的最小值为a-1.∴对于?x∈R,f(x)≥2的充要条件是|a-1|≥2,∴a的取值范围是(-∞,-1]∪[3,+∞).16.(2015·福建卷)已知a>0,b>0,c>0,函数f(x)=|x+a|+|x-b|+c的最小值为4.(1)(2)[解又(2)(42=即a当且仅当==,即a=,b=,c=时等号成立.故a2+b2+c2的最小值为.。
不等式选讲复习
一、知识点回顾 1、不等式的基本性质
①(对称性)a b b a >⇔>;②(传递性),a b b c a c >>⇒>
③(可加性)a b a c b c >⇔+>+;(同向可加性)d b c a d c b a +>+⇒>>,
(异向可减性)d b c a d c b a ->-⇒<>,
④(可积性)bc ac c b a >⇒>>0,;bc ac c b a <⇒<>0,
⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒>;(异向正数可除性)0,0a b a b c d c d
>><<⇒>
⑥(平方法则)
0(,1)n n a b a b n N n >>⇒>∈>且;⑦(开方法则)0,1)a b n N n >>∈>且 ⑧(倒数法则)b
a b a b a b a 110;110>⇒<<<⇒
>> 2、几个重要不等式 ①()22
2a b ab a b R +≥∈,, 变形公式:22
.2a b ab +≤
②(基本不等式) 2a b +≥()a b R +∈,;变形公式: a b +≥;2.2a b ab +⎛⎫≤ ⎪⎝⎭
用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.
③(三个正数的算术—几何平均不等式)3
a b c ++≥()a b c R +∈、、. ④()222
a b c ab bc ca a b R ++≥++∈,;⑤3333(0,0,0)a b c abc a b c ++≥>>> ⑥0,2b a ab a b >+≥若则;0,2b a ab a b
<+≤-若则 在上述6个不等式中,当且仅当a b =时取""=号 ⑦ 220;a x a x a x a x a >>⇔>⇔<->当时,或 22.x a x a a x a <⇔<⇔-<< ⑧绝对值三角不等式.a b a b a b -≤±≤+ 3、几个著名不等式
①平均不等式:1122a b a b --+≤≤≤+,a b R +∈(,当且仅当a b =时取""=号). (即调和平均≤几何平均≤算术平均≤平方平均).
②幂平均不等式:222212121...(...).n n a a a a a a n +++≥
+++
1122(,,,).x y x y R ∈ ④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈
⑤三维形式的柯西不等式:2222222
123123112233()()().a a a b b b a b a b a b ++++≥++
⑥一般形式的柯西不等式2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立. 柯西不等式中当且仅当
n n b a b a b a === 2211时,取“=”号。
⑧排序不等式(排序原理):
设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则
12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和)
, 当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.
4、不等式证明的几种常用方法
(1)常用方法有:比较法(作差,作商法)、综合法、分析法; (2)其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.
常见不等式的放缩方法:
①舍去或加上一些项,如221
31()();242a a ++>+ ②将分子或分母放大(缩小),如211,(1)k k k <- 211,(1)k
k k >+
*,1)k N k
>∈>
=⇒<等. 5、一元二次不等式的解法
求一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->解集的步骤:
一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根.
四画:画出对应函数的图象;五解集:根据图象写出不等式的解集.
规律:当二次项系数为正时,小于取中间,大于取两边.
6、高次不等式的解法:穿根法.
分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集. 7、分式不等式的解法:先移项通分标准化,则
()0()()0()
()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.
8、指数、对数不等式的解法:
⑴当1a >时,()()()()f x g x a a f x g x >⇔>;⑵当01a <<时, ()()()()f x g x a a f x g x >⇔<
⑶当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩
⑷当01a <<时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据指数、对数函数的性质转化. 9、含绝对值不等式的解法:
⑴定义法:(0).(0)
a a a a a ≥⎧=⎨-<⎩;⑵平方法:22()()()().f x g x f x g x ≤⇔≤ ⑶同解变形法,其同解定理有:
①(0);x a a x a a ≤⇔-≤≤≥②(0);x a x a x a a ≥⇔≥≤-≥或
③()()()()()(()0)f x g x g x f x g x g x ≤⇔-≤≤≥
④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或 规律:关键是去掉绝对值的符号.
10、含有两个(或两个以上)绝对值的不等式的解法:
规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.
11、含参数的不等式的解法
解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有:⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小.
12、恒成立问题
⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是:
①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨
∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:
①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩
⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤
⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥
13、存在成立问题
(1)存在D x ∈∃,使不等式)(x f a >成立⇔min )(x f a >
(2)存在D x ∈∃,使不等式)(x f a <成立⇔max )(x f a <
二、真题解析
1. 设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12
∉A . ①求a 的值;
②求函数f (x )=|x +a |+|x -2|的最小值.
2. 已知函数R m x m x f ∈--=|,2|)(,且0)2(≥+x f 的解集为]1,1[-。
(Ⅰ)求m 的值;
(Ⅱ)若R c b a ∈,,,且
m c b a =++31211,求证:932≥++c b a .
3. 设不等式211x -<的解集为M .
(Ⅰ)求集合M ;
(Ⅱ)若,a b M ∈,试比较1ab +与a b +的大小.
4. 已知函数()||f x x a =-。
(Ⅰ)若不等式()3f x ≤的解集为{}|15x x -≤≤,求实数a 的值;
(Ⅱ)在(Ⅰ)的条件下,若()(5)f x f x m ++≥对一切实数x 恒成立,求实数m 的取值范围。
5. 解不等式∣2x-1∣<∣x ∣+1。