复变函数6.3_辐角原理及其应用
- 格式:ppt
- 大小:881.50 KB
- 文档页数:19
第六章教学课题:第三节 辐角原理及其应用教学目的:1、掌握作为残数定理直接应用的零点与极点个数定理2、理解辐角原理及其应用;3、充分掌握Rouche 定理及其应用;教学重点:残数定理直接应用的零点与极点个数定理教学难点:Rouche 定理及其应用教学方法:启发式、讨论式教学手段:多媒体与板书相结合教材分析:零点与极点个数定理、辐角原理及其应用、Rouche 定理及其应用都是复变函数论中的一些重要的理论,它对于考察函数的零点和极点的分布时非常方便。
教学过程:1、对数残数 残数理论的重要应用之一就是计算积分⎰'C dz z f z f i )()(21π他称为f(z)的对数残数,显然,函数f(z)的零点和奇点都可能是)()(z f z f '的奇点。
引理6.4(1)设a 是f(z)的n 级零点,则a 必为函数)()(z f z f '的一级极点,并且 n z f z f s az ='=)()(Re (2)设b 为f(z)的m 级极点。
则b 必为函数)()(z f z f '的一级极点,并且 m z f z f s bz -='=)()(Re 定理6.9设C 是一条围线,f(z)合条件(1)f(z)在C 的内部除可能有极点外是解析的;(2)f(z)在C 上解析且不为零。
则有C z f C f P C f N C f P C f N dz z f z f i C 在分别表示与式中)(),(),(),,(),()()(21-='⎰π内部对零点与极点的个数。
证明;由第五章习题(二)14,可知f(z)在C 内部至多有有限个零点和极点,设)2,1(,p k a k =为f(z) 在C 内部的不同零点,其级相应地位为k n ;)2,1(q j b j =为f(z) 在C 内部的不同极点,其级相应地位为j m 则根据引理6.4知)()(z f z f '在C 内部及C 上除去在C 内部有一级极点)2,1(,p k a k =及)2,1(q j b j =外均是解析的,故有残数定理及引理6.4得),(),(])()([Re ])()([Re )()(211111C f P C f N m n z f z f s z f z f s dz z f z f i p k q j j k p k q j b a z C j k -=-+='+'='∑∑∑∑⎰=====π2.辐角原理:对数残数有一个实际意义,我们将它写成⎰'C dz z f z f i )()(21π=⎰C dz z f dz d i )]([ln 21π=⎰C z f d i )(ln 21π =⎰⎰+C Cz f d i z f d i )](arg )(ln [21π 函数)(ln z f 是z 的单值函数,当0z z 从起绕行围线C 一周回到0z 时有 )(ln )(ln )(ln 00z f z f z f d C -=⎰=0,另一方面,当0z z 从起眼正方向绕行围线C 一周回到0z 时,)(arg z f 的值可能改变。
复变函数的应用数学与应用数学班数学是一门很抽象的学科,而复变函数更是如此,如果直接想象很难和实际联系起来。
经过两年的大学学习就目前学习的知识而言,感觉和复变函数联系比较紧密的是有两方面,一是电流方面;二是在信号方面。
我们日常中的电流都是交流三相的,而相位如果通过三角函数计算的话较为复杂和抽象,很多工程问题无法解决,引入虚数则较大简化了计算的过程,是很多工程问题迎刃而解。
可以通过RCL电路我们也用虚数去处理相角关系,但电感本身并不是虚的。
这是人为的定义,但这也在一定意义上揭示了虚数有可能存在的某些物理特征。
成功而且巧妙的解决了电流的相位问题。
我们打电话,发短信是通过电磁波传递信号,在信号方面也极大的应用了复变函数。
信号分析和其他领域使用复数可以方便的表示周期信号。
模值|z|表示信号的幅度,辐角arg(z)表示给定频率的正弦波的相位。
利用傅立叶变换可将实信号表示成一系列周期函数的和。
这些周期函数通常用形式如下的复函数的实部表示:其中ω对应角频率,复数z包含了幅度和相位的信息。
于是当我们要的信息得以传递。
所以,不管是我们使用家用电器,用手机问候远方的朋友,还是使用卫星电视观看电视剧,我们无时无刻不在接触着这位很抽象而无处不在的朋友——复变函数。
一、复变函数的简介复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况,它的一般形式是:bia ,其中i是虚数单位。
多复分析是数学中研究多个复变量的全纯函数的性质和结构的分支学科,它和单复变函数有着很强的渊源,但其特有的困难和复杂性,导致在研究的重点和方法上,都和单复变函数论有明显的区别.因为多复变全纯函数的性质在很大程度上由定义区域的几何和拓扑性质所制约,因此,其研究的重点经历了一个由局部性质到整体性质的逐步的转移.它广泛地使用着微分几何学、代数几何、拓扑学、微分方程等相邻学科中的概念和方法,不断地开辟前进的道路,更新和拓展研究的内容和领域。
三角函数的幅角与辐角的应用在数学中,三角函数是一类重要的函数,广泛应用于物理、工程、计算机图形学等众多领域。
幅角和辐角是三角函数中一个重要的概念,对于理解和应用三角函数都起到关键作用。
一、幅角的概念与应用在三角函数中,幅角是指正弦、余弦、正切等函数对应值在单位圆上的位置。
它是以从正半轴到终边的角度测量方式来表示的。
幅角的范围通常取(-π, π]或[0, 2π)。
幅角在物理学中有广泛的应用。
例如,在机械振动的分析中,角频率和幅角是重要的参数。
幅角可以表示振动的相位差,可以帮助我们理解两个振动的关系。
此外,在电路中,幅角可以用来描述交流电信号的相位关系,对于设计和分析电路都是至关重要的。
二、辐角的概念与应用与幅角相对应的,辐角是指三角函数对应值的弧度测量方式。
它是以从正半轴到终边的弧长所对应的角度来表示的。
辐角的范围通常取[-π, π]或[0, 2π]。
辐角在数学和物理中都是非常重要的。
在几何学中,辐角的概念是描述角的大小的一种方式。
在解析几何中,辐角可以用来描绘曲线和参数方程。
在物理学中,辐角是分析周期性现象的必要工具。
例如,在交流电路中,电压和电流可以用正弦函数来表示,辐角可以用来描述它们之间的相位差。
在波动学中,辐角可以用来描述波的传播方向和波的相位。
三、三角函数幅角与辐角的关系幅角和辐角在三角函数中是密切相关的。
它们之间的关系可以通过幅角与辐角的转换来实现。
对于常见的三角函数,幅角和辐角的转换关系如下:1. 正弦函数:幅角θ = arcsin(sinθ) + 2πk (k为整数)2. 余弦函数:幅角θ = arccos(cosθ) + 2πk (k为整数)3. 正切函数:幅角θ = arctan(tanθ) + πk (k为整数)通过这些转换关系,我们可以在不同的坐标系统中使用幅角或辐角,以满足特定问题的需求。
四、幅角与辐角的计算方法在实际应用中,计算幅角和辐角是常见的需求之一。
对于已知三角函数值的情况,如何求解对应的幅角和辐角呢?对于正弦函数和余弦函数,可以使用反三角函数(arcsin和arccos)来计算幅角和辐角。
复变函数的应用复变函数的应用数学与应用数学班数学是一门很抽象的学科,而复变函数更是如此,如果直接想象很难和实际联系起来。
经过两年的大学学习就目前学习的知识而言,感觉和复变函数联系比较紧密的是有两方面,一是电流方面;二是在信号方面。
我们日常中的电流都是交流三相的,而相位如果通过三角函数计算的话较为复杂和抽象,很多工程问题无法解决,引入虚数则较大简化了计算的过程,是很多工程问题迎刃而解。
可以通过RCL电路我们也用虚数去处理相角关系,但电感本身并不是虚的。
这是人为的定义,但这也在一定意义上揭示了虚数有可能存在的某些物理特征。
成功而且巧妙的解决了电流的相位问题。
我们打电话,发短信是通过电磁波传递信号,在信号方面也极大的应用了复变函数。
信号分析和其他领域使用复数可以方便的表示周期信号。
模值|z|表示信号的幅度,辐角arg(z)表示给定频率的正弦波的相位。
利用傅立叶变换可将实信号表示成一系列周期函数的和。
这些周期函数通常用形式如下的复函数的实部表示:其中ω对应角频率,复数z包含了幅度和相位的信息。
于是当我们要的信息得以传递。
所以,不管是我们使用家用电器,用手机问候远方的朋友,还是使用卫星电视观看电视剧,我们无时无刻不在接触着这位很抽象而无处不在的朋友——复变函数。
一、复变函数的简介复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况,它的一般形式是:bia ,其中i是虚数单位。
多复分析是数学中研究多个复变量的全纯函数的性质和结构的分支学科,它和单复变函数有着很强的渊源,但其特有的困难和复杂性,导致在研究的重点和方法上,都和单复变函数论有明显的区别.因为多复变全纯函数的性质在很大程度上由定义区域的几何和拓扑性质所制约,因此,其研究的重点经历了一个由局部性质到整体性质的逐步的转移.它广泛地使用着微分几何学、代数几何、拓扑学、微分方程等相邻学科中的概念和方法,不断地开辟前进的道路,更新和拓展研究的内容和领域。