模式识别-第二章(简单模板匹配和模式
- 格式:pdf
- 大小:763.80 KB
- 文档页数:47
图像模式识别的方法介绍2.1图像模式识别的方法图像模式识别的方法专门多,从图像模式识别提取的特点对象来看,图像识别方法可分为以下几种:基于形状特点的识别技术、基于色彩特点的识别技术以及基于纹理特点的识别技术。
其中,基于形状特点的识别方法,其关键是找到图像中对象形状及对此进行描述,形成可视特点矢量,以完成不同图像的分类,常用来表示形状的变量有形状的周长、面积、圆形度、离心率等。
基于色彩特点的识别技术要紧针对彩色图像,通过色彩直方图具有的简单且随图像的大小、旋转变换不敏锐等特点进行分类识别。
基于纹理特点的识别方法是通过对图像中专门具有结构规律的特点加以分析或者那么是对图像中的色彩强度的分布信息进行统计来完成。
从模式特点选择及判别决策方法的不同可将图像模式识别方法大致归纳为两类:统计模式(决策理论)识别方法和句法(结构)模式识别方法。
此外,近些年随着对模式识别技术研究的进一步深入,模糊模式识别方法和神经网络模式识别方法也开始得到广泛的应用。
在此将这四种方法进行一下说明。
2.1.1句法模式识别关于较复杂的模式,如采纳统计模式识别的方法,所面临的一个困难确实是特点提取的问题,它所要求的特点量十分庞大,要把某一个复杂模式准确分类专门困难,从而专门自然地就想到如此的一种设计,即努力地把一个复杂模式分化为假设干较简单子模式的组合,而子模式又分为假设干基元,通过对基元的识别,进而识别子模式,最终识别该复杂模式。
正如英文句子由一些短语,短语又由单词,单词又由字母构成一样。
用一组模式基元和它们的组成来描述模式的结构的语言,称为模式描述语言。
支配基元组成模式的规那么称为文法。
当每个基元被识别后,利用句法分析就能够作出整个的模式识别。
即以那个句子是否符合某特定文法,以判别它是否属于某一类别。
这确实是句法模式识别的差不多思想。
句法模式识别系统要紧由预处理、基元提取、句法分析和文法推断等几部分组成。
由预处理分割的模式,经基元提取形成描述模式的基元串〔即字符串〕。
模板匹配及其类型
《模板匹配及其类型》
模板匹配是一种在计算机领域中常用的技术,用于在大规模的数据中查找与特定模式或模板相似的项。
它的核心思想是通过比较待匹配的数据与已知的模板之间的相似度,来确定是否存在匹配。
1. 字符串匹配:这是最常见的模板匹配类型,用于在文本数据中查找与特定字符串模式匹配的项。
例如,在一个文本文件中查找特定的单词或短语。
2. 图像匹配:在计算机视觉领域,模板匹配用于在图像中查找与特定图像模式相似的区域。
它可以用于对象识别、目标跟踪等任务。
3. 数据挖掘:在数据挖掘中,可以使用模板匹配来发现数据集中的模式或规律。
例如,通过比较不同数据集的特征,可以找到相似的数据集或模式。
4. 音频和视频匹配:在音频和视频处理中,可以使用模板匹配来识别特定的音频或视频模式。
它可以用于语音识别、音乐识别、视频内容分析等任务。
5. 生物信息学:在生物信息学领域,模板匹配用于在生物序列中查找相似的模式。
例如,在基因序列分析中,可以使用模板匹配来查找特定的基因或蛋白质序列。
总的来说,模板匹配是一种通用的技术,可以应用于各种领域和任务。
它的关键在于定义合适的模板和相似度度量方法,以准确地识别和匹配数据中的模式。
谢谢大家!。
机器视觉目标识别方法解析:Blob分析法、模板匹配法、深度学习法Blob分析法(BlobAnalysis)在计算机视觉中的Blob是指图像中的具有相似颜色、纹理等特征所组成的一块连通区域。
Blob分析(BlobAnalysis)是对图像中相同像素的连通域进行分析(该连通域称为Blob)。
其过程就是将图像进行二值化,分割得到前景和背景,然后进行连通区域检测,从而得到Blob块的过程。
简单来说,blob分析就是在一块“光滑”区域内,将出现“灰度突变”的小区域寻找出来。
举例来说,假如现在有一块刚生产出来的玻璃,表面非常光滑,平整。
如果这块玻璃上面没有瑕疵,那么,我们是检测不到“灰度突变”的;相反,如果在玻璃生产线上,由于种种原因,造成了玻璃上面有一个凸起的小泡、有一块黑斑、有一点裂缝,那么,我们就能在这块玻璃上面检测到纹理,经二值化(BinaryThresholding)处理后的图像中色斑可认为是blob。
而这些部分,就是生产过程中造成的瑕疵,这个过程,就是Blob分析。
Blob分析工具可以从背景中分离出目标,并可以计算出目标的数量、位置、形状、方向和大小,还可以提供相关斑点间的拓扑结构。
在处理过程中不是对单个像素逐一分析,而是对图像的行进行操作。
图像的每一行都用游程长度编码(RLE)来表示相邻的目标范围。
这种算法与基于像素的算法相比,大大提高了处理的速度。
针对二维目标图像和高对比度图像,适用于有无检测和缺陷检测这类目标识别应用。
常用于二维目标图像、高对比度图像、存在/缺席检测、数值范围和旋转不变性需求。
显然,纺织品的瑕疵检测,玻璃的瑕疵检测,机械零件表面缺陷检测,可乐瓶缺陷检测,药品胶囊缺陷检测等很多场合都会用到blob分析。
但另一方面,Blob分析并不适用于以下图像:1.低对比度图像; 2.必要的图像特征不能用2个灰度级描述; 3.按照模版检测(图形检测需求)。
总的来说,Blob 分析就是检测图像的斑点,适用于背景单一,前景缺陷不区分类别,识别精度要求不高的场景。
关于模式识别1.1.1 模式与模式识别随着20世纪40年代计算机的出现以及50年代人工智能的兴起,人们希望能用计算机来代替或扩展人类的部分脑力劳动,模式识别应运而生,并在20世纪60年代初迅速发展并成为一门新学科[1]。
广义地说,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或相似,都可以称之为模式;狭义地说,模式是通过对具体的个别事物进行观测所得到的具有时间和空间分布的信息;把模式所属的类别或同一类中模式的总体称为模式类(或简称为类)。
模式识别则是在某些一定量度或观测基础上把待识模式划分到各自的模式类中去,因此模式识别又常称作模式分类。
从处理问题的性质和解决问题的方法等角度,模式识别分为有监督的分类和无监督的分类两种。
二者的主要差别在于,各实验样本所属的类别是否预先已知。
一般说来,有监督的分类往往需要提供大量已知类别的样本,但在实际问题中,这是存在一定困难的,因此研究无监督的分类就变得十分有必要了。
模式还可分成抽象的和具体的两种形式。
前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。
我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、照片、文字、符号、生物传感器等对象的具体模式进行辨识和分类。
模式识别属于人工智能范畴,人工智能就是用机器去完成过去只有人类才能做的智能活动。
在这里,“智能”指的是人类在认识和改造自然的过程中表现出来的智力活动的能力。
虽然模式识别与人工智能关系很密切,但是发展到现在,它已经形成了独立的学科,有其自身的理论和方法。
在许多领域中,模式识别已有不少比较成功的实际应用。
模式识别是一门研究对象描述和分类方法的科学。
对于比较简单的问题,可以认为识别就是分类。
如,对于识别从“0”到“9”这十个阿拉伯数字的问题。
对于比较复杂的识别问题,就往往不能用简单的分类来解决,还需要对待识别模式的描述。
如,汉字识别;景物识别。
模式识别作为一门技术学科,目的就是要研究出能自动进行模式分类和描述的机器系统,以完成人类的模式识别的功能。
第一章引论1·1 概述1.1.1模式识别模式识别(Pattern Recognition):确定一个样本的类别属性(模式类)的过程,即把某一样本归属于多个类型中的某个类型。
样本(Sample):一个具体的研究(客观)对象。
如患者,某人写的一个汉字,一幅图片等。
模式(Pattern):对客体(研究对象)特征的描述(定量的或结构的描述),是取自客观世界的某一样本的测量值的集合(或综合)。
特征(Features):能描述模式特性的量(测量值)。
在统计模式识别方法中,通常用一个矢量表示,称之为特征矢量,记为模式类(Class):具有某些共同特性的模式的集合。
1.1.2 模式识别系统⑴特征提取从模式空间中选择最有利于模式分类的量作为特征,压缩模式维数,以便于处理,减少消耗。
特征提取一般以分类中使用的某种判决规则为准则。
所提取的特征使在某种准则下的分类错误最少。
为此需要考虑特征之间的统计关系,选用适当的正交变换,才能提取出最有效的特征。
⑵特征选择特征选择同样需要某种分类准则,在该准则下选择对分类贡献较大的特征,删除贡献较小的那些特征。
⑶学习和训练根据已知类别的样本确定分类判决准则矫正特征提取选择方法等⑷分类识别分类是把特征空间划分成类型空间。
把未知类别属性的样本确定为类型空间里的某一类型。
分类错误率越小越好,分类错误率的分析和计算比较困难。
影响分类错误率的因数–分类方法–分类器设计–提取的特征–样本质量等1.1.3模式识别的基本方法㈠统计模式识别理论基础:概率论,数理统计主要方法:线性、非线性分类、Bayes决策、聚类分析主要优点:1)比较成熟2)能考虑干扰噪声等影响3)识别模式基元能力强主要缺点:1)对结构复杂的模式抽取特征困难2)不能反映模式的结构特征,难以描述模式的性质3)难以从整体角度考虑识别问题㈡句法模式识别模式描述方法:符号串,树,图模式判定:是一种语言,用一个文法表示一个类,m类就有m个文法,然后判定未知模式遵循哪一个文法。
假如我们面前有一副画,我们能够轻松地分辨出哪里是山、哪里是水、哪里是树、哪里是人;假如我们面前有一幅字,我们也可以准确辨认出每个字是什么。
人们总是认为这些任务的完成和实现是理所当然,是再简单不过的了,但是很少有人会思考为什么可以做到准确的辨别。
其实很简单,正所谓“实践出真知”,人类是在先验知识和对以往多个此类事物的具体实例进行观察的基础上得到对此类事物整体性质和特点的认识的。
人在出生的那一刻,几乎什么都不知道,但随着时间的推移,每个人在成长过程中不断地进行学习,从而知道的越来越多,分辨不同事物并加以归类也就自然而然成了易事。
但是这对于机器来说,这些任务却非常繁重,且出错率远远高于人类。
让机器正确地辨别并归类不同事物,正是模式识别的主要任务。
模式和模式识别都有比较精确的定义。
广义来说,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或相似,都可以称之为模式;狭义来说,模式是通过对具体的个别事物进行观测得到的具有时间和空间分布的信息。
通常把模式所属的类别或同一类中模式的总体成为模式类,而“模式识别”则是要在某些一定量度或观测基础上把待识别模式划分到各自的模式类中去。
模式识别作为一门交叉学科,研究重点不是人类进行模式识别的神经生理学或生物学原理,而是研究如何通过一系列数学方法让机器来实现类人的识别能力。
人们普遍熟知的模式识别方法有四种:模板匹配、统计分类、句法或结构匹配和神经网络。
这四种方法并不一定是相互独立的:有时候相同的模式识别方法会有不同的解释,并且由于大型数据库的可用性和严格的性能的要求,没有单一的分类方法是最佳的,必须使用多种方法,就导致了多个模型之间的混合。
统计模式识别已经成功用于许多商业识别系统的设计。
在统计模式识别中,一个模式由被视为d维特征向量的一组d个特征或属性表示,利用统计决策理论中的一些已知概念,建立模式类之间的决策边界。
识别系统会在两种模式下运行:训练(学习)和分类(测试)。