八年级第二学期周周练2一次函数的性质及应用练习
- 格式:docx
- 大小:148.05 KB
- 文档页数:4
一次函数——基本性质◆一次函数的基本性质1-1.已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.1-2.已知一次函数y=mx+2m﹣10(m≠0).(1)当m为何值时,这个函数为正比例函数?(2)当m为何值时,这个函数y的值随着x值的增大而减小?(3)当m为何值时,这个函数的图象与直线y=x﹣4的交点在y轴上?1-3.已知y﹣2与3x﹣4成正比例函数关系,且当x=2时,y=3.(1)写出y与x之间的函数解析式;(2)若点P(a,﹣3)在这个函数的图象上,求a的值;(3)若y的取值范围为﹣1≤y≤1,求x的取值范围.1-4.已知y与x成正比例函数,当x=1时,y=2.求:(1)求y与x之间的函数关系式;(2)求当x=﹣1时的函数值;(3)如果当y的取值范围是0≤y≤5,求x的取值范围.1-5.已知一次函数y=﹣2x﹣2.(1)根据关系式画出函数的图象.(2)求出图象与x轴、y轴的交点A、B的坐标,(3)求A、B两点间的距离.(4)在坐标轴上有点C,使得AB=AC,写出C的坐标.◆一次函数与待定系数法2-1.一次函数y=kx+b,当﹣1≤x≤1时,相应的函数值是0≤y≤3.试求k、b的值.2-2.一次函数的图象过点A(﹣1,2)和点B(1,﹣4).(1)求该一次函数表达式.(2)若点P(m﹣1,n1)和点Q(m+1,n2)在该一次函数的图象上,求n1﹣n2的值.2-3.已知y与2x﹣1成正比例,当x=3时,y=10.(1)求y与x之间的函数关系式;(2)当y=﹣2时,求x的值.◆一次函数与面积3-1.如图,直线l1:y=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线AB上一点,另一直线l2:y =kx+4经过点P.(1)求点A、B坐标;(2)求点P坐标和k的值;(3)若点C是直线L2与x轴的交点,点Q是x轴上一点,当△CPQ的面积等于3时,求出点Q的坐标.3-2.在平面直角坐标系中,已知直线l:y=﹣x+2交x轴于点A,交y轴于点B,直线l上的点P(m,n)在第一象限内,设△AOP的面积是S.(1)写出S与m之间的函数表达式,并写出m的取值范围.(2)当S=3时,求点P的坐标.(3)若直线OP平分△AOB的面积,求点P的坐标.3-3.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,点P为正比例函数y=kx(k>0)的图象上一点,且S:S△BOP=1:2,求k的值.△AOP3-4.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣2),B(1,4)两点,并且交x轴于点C,交y轴于点D.(1)求一次函数的解析式;(2)求点C和点D的坐标;(3)求△DOB的面积3-5.已知y=y1+y2,且y1与x成反比例,y2与x﹣2成正比例,当x=1时,y=1;当x=﹣3时,y=13,求:(1)y与x之间的函数解析式;(2)当x=3时,求y的值.3-6.已知一次函数y=kx+3与x轴交于点A(2,0),与y轴交于点B.(1)求一次函数的表达式及点B的坐标;(2)画出函数y=kx+3的图象;(3)过点B作直线BP与x轴交于点P,且OP=2OA,求△ABP的面积.3-7.如图,直线l交x轴于A(﹣4,0),交y轴于B(0,6),C(m,3)是直线l上的一点.(1)求直线AB,OC的表达式;(2)在直线AB上找一点P,使S△OCP=S△OAB,求出点P的坐标.练习1.在如图所示的平面直角坐标系中.画出函数y=2x+4的图象.(1)若该函数图象与x轴交于点A,与y轴交于点B,求△AOB的面积;(2)利用该函数图象直接写出:当y<0时,x的取值范围.2.在直角坐标系中,已知点A(4,0),B(0,2),点P(x,y)在第一象限内,且x+2y=4,设△AOP的面积是S.(1)写出S与x之间的函数关系式,并求出x的取值范围;(2)当S=3时,求点P的坐标;(3)若直线OP平分△AOB的面积时,求点P的坐标.3.已知一次函数:y1=﹣|k|x+b(k,b为常数且k≠0).(1)若函数图象经过(2,4),(4,0)两点,求k与b的值;(2)若﹣1≤x≤3时,3≤y≤5,求此一次函数的解析式.4.已知函数y=(2n﹣8)x﹣n﹣3.(1)若函数图象经过原点,求n的值;(2)若这个函数是一次函数,且图象经过二、三、四象限,求n的正整数值.5.已知一次函数y=(2m+3)x+m﹣1,(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴上的截距为﹣3,求m的值;(3)若函数图象平行于直线y=x+1,求m的值;(4)若该函数的值y随自变量x的增大而减小,求m的取值范围;(5)该函数图象不经过第二象限,求m的取值范围.6.如图,一次函数y=kx+b的图象与x轴、y轴分别相交于E、F两点,点E的坐标为(﹣6,0),OF=3.(1)求k与b的值;(2)若P是直线EF上的一个动点且满足△POE的面积为6,求点P的坐标.7.如图,Rt△ABO的顶点A在直线y=﹣x﹣k上,AB⊥x轴于B,且S△ABO=,AB:BO=3:1,点C在该直线上,且点C的纵坐标是﹣1.(1)点A的坐标;(2)求直线AC的解析式;(3)求△AOC的面积.一次函数——基本性质(解析)◆一次函数的基本性质1-1.已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.【解答】解:(1)∵函数图象经过原点,∴m﹣3=0,且2m+1≠0,解得:m=3;(2)∵函数图象在y轴的截距为﹣2,∴m﹣3=﹣2,且2m+1≠0,解得:m=1;(3)∵函数的图象平行直线y=3x﹣3,∴2m+1=3,解得:m=1;(4)∵y随着x的增大而减小,∴2m+1<0,解得:m<﹣.1-2.已知一次函数y=mx+2m﹣10(m≠0).(1)当m为何值时,这个函数为正比例函数?(2)当m为何值时,这个函数y的值随着x值的增大而减小?(3)当m为何值时,这个函数的图象与直线y=x﹣4的交点在y轴上?【解答】解:(1)y=mx+2m﹣10(m≠0).∵函数为正比例函数,∴2m﹣10=0,解得:m=5,(2)一次函数y=mx+2m﹣10(m≠0).∵函数y的值随着x值的增大而减小,∴m<0且m≠0,(3)∵函数的图象与直线y=x﹣4的交点在y轴上,∴x=0,y=﹣4,把x=0,y=﹣4代入y=mx+2m﹣10得,m=31-3.已知y﹣2与3x﹣4成正比例函数关系,且当x=2时,y=3.(1)写出y与x之间的函数解析式;(2)若点P(a,﹣3)在这个函数的图象上,求a的值;(3)若y的取值范围为﹣1≤y≤1,求x的取值范围.【解答】解:(1)设y﹣2=k(3x﹣4),将x=2、y=3代入,得:2k=1,解得k=,∴y﹣2=(3x﹣4),即y=x;(2)将点P(a,﹣3)代入y=x,得:a=﹣3,解得:a=﹣2;(3)当y=﹣1时,x=﹣1,解得:x=﹣,当y=1时,x=1,解得:x=,故﹣≤x≤.1-4.已知y与x成正比例函数,当x=1时,y=2.求:(1)求y与x之间的函数关系式;(2)求当x=﹣1时的函数值;(3)如果当y的取值范围是0≤y≤5,求x的取值范围.【解答】解:(1)设y=kx,将x=1、y=2代入,得:k=2,故y=2x;(2)当x=﹣1时,y=2×(﹣1)=﹣2;(3)∵0≤y≤5,∴0≤2x≤5,解得:0≤x≤.1-5.已知一次函数y=﹣2x﹣2.(1)根据关系式画出函数的图象.(2)求出图象与x轴、y轴的交点A、B的坐标,(3)求A、B两点间的距离.(4)在坐标轴上有点C,使得AB=AC,写出C的坐标.【解答】解:(1)函数图象如右图所示;(2)∵y=﹣2x﹣2,∴当x=0时,y=﹣2,当y=0时,x=﹣1,∴图象与x轴、y轴的交点A、B的坐标分别为(﹣1,0),(0,﹣2);(3)∵点A(﹣1,0),点B(0,﹣2),∴OA=1,OB=2,∴AB==,即A、B两点间的距离是;(4)由(3)知,AB=,∵点C在坐标轴上,AB=AC,∴当C在x轴上时,点C的坐标为(﹣1﹣,0)或(﹣1+,0),当点C在y轴上时,点C的坐标为(0,2),由上可得,点C的坐标为:(﹣1﹣,0)、(﹣1+,0)或(0,2).◆一次函数与待定系数法2-1.一次函数y=kx+b,当﹣1≤x≤1时,相应的函数值是0≤y≤3.试求k、b的值.【解答】解:分两种情况:①当k>0时,把x=﹣1,y=0;x=1,y=3代入一次函数的解析式y=kx+b(k≠0),得,解得,则这个函数的解析式是y=x+;②当k<0时,把x=﹣1,y=3;x=1,y=0代入一次函数的解析式y=kx+b(k≠0),得,解得,则这个函数的解析式是y=﹣x+;综上可得,k=,b=或k=﹣,b=.2-2.一次函数的图象过点A(﹣1,2)和点B(1,﹣4).(1)求该一次函数表达式.(2)若点P(m﹣1,n1)和点Q(m+1,n2)在该一次函数的图象上,求n1﹣n2的值.【解答】解:(1)设一次函数表达式为:y=kx+b,∵一次函数的图象过点A(﹣1,2)和点B(1,﹣4).∴,解得:,∴一次函数表达式为:y=﹣3x﹣1;(2)∵点P(m﹣1,n1)和点Q(m+1,n2)在该一次函数的图象上,∴,解得:n1﹣n2=6.2-3.已知y与2x﹣1成正比例,当x=3时,y=10.(1)求y与x之间的函数关系式;(2)当y=﹣2时,求x的值.【解答】解:(1)设y=k(2x﹣1).∵当x=3时,y=10.∴10=k(6﹣1).∴k=2.∴y=2(2x﹣1)=4x﹣2.∴y与x之间的函数关系式为:y=4x﹣2.(2)由题意得:4x﹣2=﹣2.∴x=0.◆一次函数与面积3-1.如图,直线l1:y=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线AB上一点,另一直线l2:y =kx+4经过点P.(1)求点A、B坐标;(2)求点P坐标和k的值;(3)若点C是直线L2与x轴的交点,点Q是x轴上一点,当△CPQ的面积等于3时,求出点Q的坐标.【解答】解:(1)y=﹣x+2与x轴,y轴分别交于A,B两点,令x=0,则y=2,令y=0,则x=2,故点A、B的坐标分别为:(2,0)、(0,2);(2)点P(m,3)为直线AB上一点,则﹣m+2=3,解得:m=﹣1,故点P(﹣1,3);将点P的坐标代入y=kx+4得:3=﹣k+4,解得k=1;故点P的坐标为(﹣1,3),k=1;(3)∵直线y=x+4与x轴的交点为C,∴C(﹣4,0),∵P(﹣1,3),△CPQ的面积等于3,∴CQ•y P=3,即CQ×3=3,∴CQ=2,∴Q点的坐标为(﹣6,0)或(﹣2,0).3-2.在平面直角坐标系中,已知直线l:y=﹣x+2交x轴于点A,交y轴于点B,直线l上的点P(m,n)在第一象限内,设△AOP的面积是S.(1)写出S与m之间的函数表达式,并写出m的取值范围.(2)当S=3时,求点P的坐标.(3)若直线OP平分△AOB的面积,求点P的坐标.【解答】解:(1)∵直线l:y=﹣x+2交x轴于点A,交y轴于点B,∴A(4,0),B(0,2),∵P(m,n)∴S=×4×(4﹣m)=4﹣m,即S=4﹣m.∵点P(m,n)在第一象限内,∴m+2n=4,∴,解得0<m<4;(2)当S=3时,4﹣m=3,解得m=1,此时y=(4﹣1)=,故点P的坐标为(1,);(3)若直线OP平分△AOB的面积,则点P为AB的中点.∵A(4,0),B(0,2),∴点P的坐标为(2,1).3-3.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,点P为正比例函数y=kx(k>0)的图象上一点,且S:S△BOP=1:2,求k的值.△AOP【解答】解:当x=0时,y=2x+2=2,则B(0,2),当y=0时,2x+2=0,解得x=﹣1,则A(﹣1,0),设P(t,kt),∵S△AOP:S△BOP=1:2,即S△BOP=2S△AOP,∴•|t|•2=2••1•|kt|,∴|k|=1,而k>0,∴k=1.3-4.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣2),B(1,4)两点,并且交x轴于点C,交y轴于点D.(1)求一次函数的解析式;(2)求点C和点D的坐标;(3)求△DOB的面积【解答】解:(1)把A(﹣2,﹣2),B(1,4)代入y=kx+b得,解得.所以一次函数解析式为y=2x+2;(2)令y=0,则0=2x+2,解得x=﹣1,所以C点的坐标为(﹣1,0),把x=0代入y=2x+2得y=2,所以D点坐标为(0,2),(3)S△BOD=2×1=1.3-5.已知y=y1+y2,且y1与x成反比例,y2与x﹣2成正比例,当x=1时,y=1;当x=﹣3时,y=13,求:(1)y与x之间的函数解析式;(2)当x=3时,求y的值.【解答】解:(1)根据题意设y1=,y2=b(x﹣2),即y=y1+y2=+b(x﹣2),将x=1时,y=1;x=﹣3时,y=13分别代入得:,解得:k=﹣,b=﹣,则y=﹣﹣(x﹣2);(2)当x=3时,y=﹣﹣=﹣3.3-6.已知一次函数y=kx+3与x轴交于点A(2,0),与y轴交于点B.(1)求一次函数的表达式及点B的坐标;(2)画出函数y=kx+3的图象;(3)过点B作直线BP与x轴交于点P,且OP=2OA,求△ABP的面积.【解答】解:(1)将点A(2,0)代入直线y=kx+3,得0=2k+3,解得k=﹣,∴y=﹣x+3.当x=0时,y=3.∴B(0,3);(2)一次函数的图象如图所示:(3)∵A(2,0),∴OA=2,∵点P在x轴上,且OP=2OA,∴OP=2OA=4,∴P(4,0)或(﹣4,0),∴AP=2或6,∵S△ABP=,∴S△ABP==3或S△ABP==9,∴△ABP的面积为3或9.3-7.如图,直线l交x轴于A(﹣4,0),交y轴于B(0,6),C(m,3)是直线l上的一点.(1)求直线AB,OC的表达式;(2)在直线AB上找一点P,使S△OCP=S△OAB,求出点P的坐标.【解答】解:(1)设直线AB的表达式为y=kx+b(k≠0),∵点A(﹣4,0),B(0,6)在直线AB上,∴,∴,∴直线AB的表达式为y=x+6,∵C(m,3)是直线l上的一点,∴m+6=3,解得:m=﹣2,∴C(﹣2,3),设直线OC的表达式为:y=nx(n≠0),把C(﹣2,3)代入得:﹣2n=3,∴n=﹣,∴直线OC的表达式为:y=﹣x;(2)∵S△OCP=S△OAB,∴S△OCP=×=8,设P(x,x+6),分两种情况:①当点P在第一象限时,过P作PD⊥x轴于D,过C作CE⊥x轴于E,∵C(﹣2,3),∴OE=2,CE=3,∴S△OCP=(3+x+6)•(x+2)﹣=8,解得:x=,∴P(,7);②当点P在第三象限时,同理得:P(﹣,﹣1);综上,点P的坐标为P(,7)或(﹣,﹣1)练习1.在如图所示的平面直角坐标系中.画出函数y=2x+4的图象.(1)若该函数图象与x轴交于点A,与y轴交于点B,求△AOB的面积;(2)利用该函数图象直接写出:当y<0时,x的取值范围.【解答】解:∵函数y=2x+4,∴当x=0,y=4,当y=0时,x=﹣2,即该函数图象过点(0,4),(﹣2,0),所画的函数图象如右图所示;(1)由图象可得,点A(﹣2,0),点B(0,4),则OA=2,OB=4,故△AOB的面积是=4;(2)由图象可得,当y<0时,x的取值范围是x<﹣2.2.在直角坐标系中,已知点A(4,0),B(0,2),点P(x,y)在第一象限内,且x+2y=4,设△AOP的面积是S.(1)写出S与x之间的函数关系式,并求出x的取值范围;(2)当S=3时,求点P的坐标;(3)若直线OP平分△AOB的面积时,求点P的坐标.【解答】解:∵x+2y=4,∴y=(4﹣x),∴S=×4×(4﹣x)=4﹣x,即S=4﹣x.∵点P(x,y)在第一象限内,且x+2y=4,∴,解得0<x<4;(2)当S=3时,4﹣x=3,解得x=1,此时y=(4﹣1)=,故点P的坐标为(1,);(3)若直线OP平分△AOB的面积,则点P为AB的中点.∵A(4,0),B(0,2),∴点P的坐标为(2,1).3.已知一次函数:y1=﹣|k|x+b(k,b为常数且k≠0).(1)若函数图象经过(2,4),(4,0)两点,求k与b的值;(2)若﹣1≤x≤3时,3≤y≤5,求此一次函数的解析式.【解答】解:(1)∵函数图象经过(2,4),(4,0)两点,∴,解得|k|=2,b=8,∴k=2,b=8或k=﹣2,b=8;(2)由题意可知点(﹣1,3)、(3,5)或(﹣1,5)、(3,3)都在一次函数:y1=﹣|k|x+b(k,b为常数且k≠0)图象上,则有:或,解得或(舍去),∴此一次函数的解析式为y=﹣x+.4.已知函数y=(2n﹣8)x﹣n﹣3.(1)若函数图象经过原点,求n的值;(2)若这个函数是一次函数,且图象经过二、三、四象限,求n的正整数值.【解答】解:(1)∵函数y=(2n﹣8)x﹣n﹣3的图象经过原点,∴﹣n﹣3=0,解得:n=﹣3.(2)∵这个函数是一次函数,且图象经过二、三、四象限,∴,解得:﹣3<n<4.∴n的正整数值为1、2、3.5.已知一次函数y=(2m+3)x+m﹣1,(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴上的截距为﹣3,求m的值;(3)若函数图象平行于直线y=x+1,求m的值;(4)若该函数的值y随自变量x的增大而减小,求m的取值范围;(5)该函数图象不经过第二象限,求m的取值范围.【解答】解:(1)∵函数图象经过原点,∴m﹣1=0,解得m=1;(2)∵函数图象在y轴上的截距为﹣3,∴当x=0时,y=﹣3,即m﹣1=﹣3,解得m=﹣2;(3)∵函数图象平行于直线y=x+1,∴2m+3=1,解得m=﹣1;(4)∵该函数的值y随自变量x的增大而减小,∴2m+3<0,解得m<﹣;(5)∵该函数图象不经过第二象限,∴,解得﹣<m≤1.6.如图,一次函数y=kx+b的图象与x轴、y轴分别相交于E、F两点,点E的坐标为(﹣6,0),OF=3.(1)求k与b的值;(2)若P是直线EF上的一个动点且满足△POE的面积为6,求点P的坐标.【解答】解:(1)∵OF=3,∴F(0,3),∴b=3,把E的坐标为(﹣6,0)代入直线y=kx+3得,﹣6k+3=0,解得:k=,(2)如图,∴设P(x,y),∵S△POE=OE•|y|=×6×|y|=6,∴|y|=2,即y=2或y=﹣2,∵P是直线EF上的一个动点,∴当y=2时,即2=x+3,解得:x=﹣2,∴P(﹣2,2),当y=﹣2时,即﹣2=x+3,解得:x=﹣10,∴P(﹣10,﹣2),综上,点P的坐标为(﹣2,2)或(﹣10,﹣2).7.如图,Rt△ABO的顶点A在直线y=﹣x﹣k上,AB⊥x轴于B,且S△ABO=,AB:BO=3:1,点C在该直线上,且点C的纵坐标是﹣1.(1)点A的坐标;(2)求直线AC的解析式;(3)求△AOC的面积.【解答】解;(1)∵顶点A在直线y=﹣x﹣k上,AB⊥x轴于B,且S△ABO=,AB:BO=3:1,∴S△ABO=OB•AB==,∴OB=1,AB=3,∴A(﹣1,3);(2)∵顶点A在直线y=﹣x﹣k上,∴3=1﹣k,∴k=﹣2,∴直线AC的解析式为y=﹣x+2;(3)直线y=﹣x+2中,令y=0,则x=2,∴直线AC与y轴的交点D的坐标为(2,0),∵点C的纵坐标是﹣1.∴S△AOC=S△AOD+S△COD=+=4.。
《一次函数的性质及运用》专题练习(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.下列图像中,表示y是x的函数有( )A.1个B.2个C.3个D.4个2.下列函数中自变量的取值范围选取错误的是( )A.y=x2中x取全体实数B.y=11x-中x≠0C.y=11x+中x≠-1 D.y=1x-中x≥13.某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x升,如果每升汽油2.6元,则油箱内汽油的总价y(元)与x(升)之间的函数关系是( )A.y=2.6x(0≤x≤20) B.y=2.6x+26(0<x<30)C.y=2.6x+10(0≤x<20) D.y=2.6x+26(0≤x≤20)4.在某次实验中,测得两个变量m和v之间的4组对应数据如下表:则m与v之间的关系最接近于下列各关系式中的( )A.v=2m B.v=m2+1 C.v=3m-1 D.v=3m+15.已知一次函数y=kx+b,若当x增加3时,y减小2,则k的值是( )A.-23B.-32C.23D.326.在直线y=12x+12上且到x轴或y轴距离为1的点有( )A.1个B.2个C.3个D.4个7.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图像如图所示,则关于x的不等式k1x+b>k2x的解为( )A.x>-1 B.x<-1 C.x<-2 D.无法确定8.如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费_______元.( )A.8 B.7.4 C.7 D.6.89.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图像可能是( )10.一天晚饭后,小明陪妈妈从家里出去散步,下图描述了他们散步过程中离家的距离s(m)与散步时间t(min)之间的函数关系,下面的描述符合他们散步情景的是( )A.从家出发,到了一家书店,看了一会儿书就回家了B.从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段,18分钟后开始返回二、填空题(每小题3分,共24分)11.已知函数y=1231xx--,x=_______时,y的值是0;x=_______时,y的值是1;x=_______时,函数没有意义.12.已知一次函数y=ax+b(a,b是常数),x与y的部分对应值如下表:那么不等式ax+b>0的解集是_______.13.已知y=(m+3)x28m-是正比例函数,则m=_______.14.当直线y=2x+b与直线y=kx-1平行时,k=_______,b≠_______.15.一个长为120m、宽为100 m的矩形场地要扩建成—个正方形场地,设长增加xm,宽增加ym,则y与x的函数关系式是_______,自变量的取值范围是,且y是x的_______函数.16.直线y=kx+b与直线y=23x-平行,且与直线y=213x+交于y轴上同一点,则该直线的解析式为_______.17.甲、乙两人沿相同路线前往离学校12 km的地方参加植树活动,图中l甲,l乙分别表示甲、乙两人前往目的地所行驶的路程s(km)随时间t(min)变化的函数图像,则每分钟乙比甲多行驶_______km.18.五一某超市搞促销活动:①一次性购物不超过150元不享受优惠;②一次性购物超过150元但不超过500元一律九折;③一次性购物超过500元一律八折.王宁两次购物分别付款120元,432元,若王宁一次性购买与上两次相同的商品,则应付款_______元,三、解答题(共46分)19.(4分)某工人上午7点上班至11点下班,一开始他用15分钟做准备工作,接着每隔15分钟加工完1个零件.(1)求他在上午时间y(时)与加工完零件x(个)之间的函数关系式;(2)他加工完第一个零件是几点?(3)8点整他加工完几个零件?(4)上午他可加工完几个零件?20.(8分)已知点Q与点P(2,3)关于x轴对称,一个一次函数的图像经过点Q,且与y 轴的交点M与原点距离为5,求这个一次函数的解析式.21.(8分)如图,一个正比例函数与一个一次函数的图像交于点A(4,3),一次函数的图像与y轴交于点B,且OA=OB,求这两个函数的解析式.22.(8分)某气象研究中心观测一场沙尘暴从发生到结束的全过程,开始时风速平均每小时增加2 km,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4 km,一段时间,风速保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减小1 km,最终停止.结合风速与时间的图像,回答下列问题:(1)在y轴括号内填入相应的数值;(2)沙尘暴从发生到结束,共经过多少小时?(3)求出当x≥25时,风速y(km/h)与时间x(h)之间的函数关系式;(4)若风速达到或超过20 km/h,称为强沙尘暴,则强沙尘暴持续多长时间?23.(8分)(2013.山西)某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要,两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是_______;乙种收费的函数关系式是_______;(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?24.(10分)如图①所示是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽的水匀速注入乙槽,甲、乙两个水槽中水的深度y( cm)与注水时间x(min)之间的关系如图②所示.根据图像提供的信息,解答下列问题:(1)图②中折线ABC表示_______槽中水的深度与注水时间的关系,线段DE表示_______槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B的纵坐标表示的实际意义是_______;(2)注水多长时间时,甲、乙两个水槽中水的深度相同?(3)若乙槽底面积为36 cm2(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112 cm3,求甲槽底面积.(壁厚不计,直接写出结果)参考答案1.B 2.B 3.D 4.B 5.A 6.C 7.B 8.B 9.A 10.D11.12251312.x<113.314.2-115.y=x+20 x≥0 一次16.y=-13x-1317.3 518.48019.(1)y=14x+714.(2)加工完第一个零件是7点30分.(3)8点整可加工完3个零件.(4)上午他可加工完15个零件.20.一次函数解析式为y=-4x+5或y=x-5.21.y=34x,y=2x-5.22.(1)8 32 (2)57小时.(3)y=-x+57( 25≤x≤57).(4)强沙尘暴持续30小时.23.(1)y1=0.1x+6 y2=0.12x.(2)甲种方式合算.24.(1)乙甲铁块的高度为14 cm (2)2 min (3)84(cm3).(4)甲槽底面积为60 cm2.。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】一次函数的图象与性质(基础)责编:杜少波【学习目标】1. 理解一次函数的概念,理解一次函数y kx b =+的图象与正比例函数y kx =的图象之间的关系;2. 能正确画出一次函数y kx b =+的图象.掌握一次函数的性质.利用函数的图象解决与一次函数有关的问题,还能运用所学的函数知识解决简单的实际问题.3. 对分段函数有初步认识,能运用所学的函数知识解决实际问题.【要点梳理】要点一、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,k ≠0)的函数,叫做一次函数.要点诠释:当b =0时,y kx b =+即y kx =,所以说正比例函数是一种特殊的一次函数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数k ,b 的要求,一次函数也被称为线性函数.要点二、一次函数的图象与性质1.函数y kx b =+(k 、b 为常数,且k ≠0)的图象是一条直线 ;当b >0时,直线y kx b =+是由直线y kx =向上平移b 个单位长度得到的;当b <0时,直线y kx b =+是由直线y kx =向下平移|b |个单位长度得到的.2.一次函数y kx b =+(k 、b 为常数,且k ≠0)的图象与性质:3. k 、b 对一次函数y kx b =+的图象和性质的影响:k 决定直线y kx b =+从左向右的趋势,b 决定它与y 轴交点的位置,k 、b 一起决定直线y kx b =+经过的象限.4. 两条直线1l :11y k x b =+和2l :22y k x b =+的位置关系可由其系数确定:(1)12k k ≠⇔1l 与2l 相交; (2)12k k =,且12b b ≠⇔1l 与2l 平行;【:391659 一次函数的图象和性质,待定系数法求函数的解析式】要点三、待定系数法求一次函数解析式一次函数y kx b =+(k ,b 是常数,k ≠0)中有两个待定系数k ,b ,需要两个独立条件确定两个关于k ,b 的方程,这两个条件通常为两个点或两对x ,y 的值.要点诠释:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法.由于一次函数y kx b =+中有k 和b 两个待定系数,所以用待定系数法时需要根据两个条件列二元一次方程组(以k 和b 为未知数),解方程组后就能具体写出一次函数的解析式.要点四、分段函数对于某些量不能用一个解析式表示,而需要分情况(自变量的不同取值范围)用不同的解析式表示,因此得到的函数是形式比较复杂的分段函数.解题中要注意解析式对应的自变量的取值范围,分段考虑问题.要点诠释:对于分段函数的问题,特别要注意相应的自变量变化范围.在解析式和图象上都要反映出自变量的相应取值范围.【典型例题】类型一、待定系数法求函数的解析式1、根据函数的图象,求函数的解析式.【思路点拨】由于此函数的图象过(0,2),因此b =2,可以设函数的解析式为2y kx =+,再利用过点(1.5,0),求出相应k 的值.【答案与解析】利用待定系数法求函数的解析式.解:设函数的解析式为y kx b =+.Q 它的图象过点(1.5,0),(0,2)41.50322k b k b b ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩∴∴ ∴该函数的解析式为423y x =-+. 【总结升华】用待定系数法时需要根据两个条件列二元一次方程组(以k 和b 为未知数),解方程组后就能具体写出一次函数的解析式.举一反三:【变式1】已知一次函数的图象与正比例函数2y x =的图象平行且经过(2,1)点,则一次函数的解析式为________.【答案】 23y x =-;提示:设一次函数的解析式为y kx b =+,它的图象与2y x =的图象平行,则2k =,又因为一次函数的图象经过(2,1)点,代入得1=2×2+b .解得3b =-. ∴ 一次函数解析式为23y x =-.【变式2】(2015春•广安校级月考)已知函数y1=2x﹣3,y2=﹣x+3.(1)在同一坐标系中画出这两个函数的图象.(2)求出函数图象与x轴围成三角形的面积.【答案】解:(1)函数y1=2x﹣3与x轴和y轴的交点是(1.5,0)和(0,﹣3),y2=﹣x+3与x轴和y轴的交点是(3,0)和(0,3),其图象如图:(2)设y1=2x﹣3,y2=﹣x+3的交点为点A,可得:,可得:,S△ABC=BC•1=×(3﹣1.5)×1=.类型二、一次函数图象的应用2、(2016春•南昌期末)电力公司为鼓励市民节约用电,采取按月用电量分段收费的办法,已知某户居民每月应缴电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解答下列问题.(1)分别写出当0≤x≤100和x>100时,y与x之间的函数关系式;(2)若该用户某月用电80度,则应缴费多少元?若该用户某月缴费105元,则该用户该月用了多少度电?【思路点拨】(1)对0≤x≤100段,列出正比例函数y=kx,对x≥100段,列出一次函数y=kx+b;将坐标点代入即可求出.(2)根据(1)的函数解析式以及图标即可解答即可.【答案与解析】解:(1)当0≤x≤100时,设y=kx,则有65=100k,解得k=0.65.∴y=0.65x .当x >100时,设y=ax +b ,则有, 解得 ∴y=0.8x ﹣15.(2)当用户用电80度时,该月应缴电费0.65×80=52(元).当用户缴费105元时,由105=0.8x ﹣15,解得x=150.∴该用户该月用电150度.【总结升华】本题主要考查一次函数的应用,关键考查从一次函数的图象上获取信息的能力. 举一反三:【变式】小高从家骑自行车去学校上学,先走上坡路到达点A ,再走下坡路到达点B ,最后走平路到达学校C ,所用的时间与路程的关系如图所示.放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是( )A.14分钟B.17分钟C.18分钟D.20分钟【答案】D ;提示:由图象可知,上坡速度为80米/分;下坡速度为200米/分;走平路速度为100米/分.原路返回,走平路需要8分钟,上坡路需要10分钟,下坡路需要2分钟,一共20分钟.类型三、一次函数的性质3、已知一次函数()()243y m x n =++-.(1)当m 、n 是什么数时,y 随x 的增大而增大;(2)当m 、n 是什么数时,函数图象经过原点;(3)若图象经过一、二、三象限,求m 、n 的取值范围.【答案与解析】解:(1)240m +>,即m >-2,n 为任何实数时,y 随x 的增大而增大;(2)当m 、n 是满足24030m n +≠⎧⎨-=⎩即23m n ≠-⎧⎨=⎩时,函数图象经过原点;(3)若图象经过一、二、三象限,则24030mn+>⎧⎨->⎩,即23mn>-⎧⎨<⎩.【总结升华】一次函数y kx b=+的图象有四种情况:①当k>0,b>0时,函数y kx b=+的图象经过第一、二、三象限,y的值随x 的值增大而增大;②当k>0,b<0时,函数y kx b=+的图象经过第一、三、四象限,y的值随x 的值增大而增大;③当k<0,b>0时,函数y kx b=+的图象经过第一、二、四象限,y的值随x 的值增大而减小;④当k<0,b<0时,函数y kx b=+的图象经过第二、三、四象限,y的值随x 的值增大而减小.4、(2015春•咸丰县期末)已知点A(4,0)及在第一象限的动点P(x,y),且x+y=5,0为坐标原点,设△OPA的面积为S.(1)求S关于x的函数解析式;(2)求x的取值范围;(3)当S=4时,求P点的坐标.【思路点拨】(1)根据题意画出图形,由x+y=5可知y=5﹣x,再由三角形的面积公式即可得出结论;(2)由点P(x,y)在第一象限,且x+y=5得出x的取值范围即可;(3)把S=4代入(1)中的关系式求出x的值,进而可得出y的值.【答案与解析】解:(1)如图所示,∵x+y=5,∴y=5﹣x,∴S=×4×(5﹣x)=10﹣2x;(2)∵点P(x,y)在第一象限,且x+y=5,∴0<x<5;(3)∵由(1)知,S=10﹣2x,∴10﹣2x=4,解得x=3,∴y=2,∴P(3,2).【总结升华】本题考查的是一次函数的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.举一反三: 【变式】函数(0)y kx k k =+≠在直角坐标系中的图象可能是( ).【答案】B ;提示:不论k 为正还是为负,k 都大于0,图象应该交于x 轴上方,故选B.。
2019年八年级数学下册《一次函数的图像和性质》练习题及答案大家在遇到各种类型的题型时,能否沉着应对,关键在于平时多做练习,下文是由查字典大学网为大家推荐的一次函数的图像和性质练习题及答案,一定要认真对待哦!第1题. 对于任何实数x,点M(x,x-3)一定不在第几象限? 答案:点M(x,x-3)在直线y=x-3上,而直线y=x-3不过第二象限,所以,对于任何实数x,点M(x,x-3)一定不在第二象限.第2题. 一次函数,如果,则x的取值范围是( )A. ?B. ?C. ?D.答案:B.第3题. 已知直线y=kx+b(k≠0)与x轴的交点在x轴的正半轴,下列结论:①k>0,b>0;②k>0,b0;④kA.1?B.2?C.3?D.4答案:B第4题. 如图所示,函数y=mx+m的图像中可能是( )答案:D第5题. 当自变量x增大时,下列函数值反而减小的是( ) A.?y=???????????????? B.y=2xC.y=???????????????D.y=-2+5x答案:C第6题. 正比例函数的图像如图,则这个函数的解析式为(? )A.y=x?B.y=-2xC.y=-x?D.答案:C第7题. 直线y=(2-5k)x+3k-2不过第一象限,则k需满足?????? ,写出一个满足上述条件的一个函数的解析式?????? .答案:,第8题. 直线y=4x-2与x轴的交点是?????? ,与y轴的交点是?????? .答案:第9题. 直线y=(2-5k)x+3k-2若经过原点,则k=?????? ;若直线与x轴交于点(-1,0),则k=?????? ,答案:第10题. 一次函数的图像经过的象限是____,它与x轴的交点坐标是____,与y轴的交点坐标是____,y随x的增大而____.答案:一、二、四象限,(2,0),(0,4),减小第11题. (1)已知关于x的一次函数y=(2k-3)x+k-1的图像与y轴交点在x轴的上方,且y随x的增大而减小,求k的取值范围;(2)已知函数y=(4m-3)x是正比例函数,且y随x的增大而增大,求m的取值范围.答案:(1)依题意,有,解得 ;(2)依题意,得,即时,y随x的增大而增大.第12题. 已知一次函数,当0≤x≤3时,函数y的最大值是(? ).A.0???B.3???C.-3???D.无法确定答案:B点拔:画图得的图象是一条线段,又,故y随x 的增大而减小,∴当x=0时,y的最大值等于3第13题. 下列图像中,不可能是关于x的一次函数y=mx-(m-3)的图像的是( )答案:C第14题. 在同一坐标内,函数关系式为y=kx+b(k、b为常数且k≠0)的直线有无数条,在这些直线中,不论怎样抽取,至少要抽几条直线,才能保证其中的两条直线经过完全相同的象限( )A.4?B.5?C.6?D.7答案:D第15题. 如图,直线l是一次函数y=kx+b的图像,看图填空:(1)?b=______,k=______;(2)?x=-20时,y=_______;(3)?当y=-20时,x=_______.答案:第16题. 若一次函数y=kx+b交于y轴的负半轴,且y的值随x的增大而减小,则k_____0,b______0.(填">"、"="、或"0,b>0?B.k>0,b0?D.k答案:B第22题. 一次函数y=-3x-4与x轴交于( ),与y轴交于( ),y随x的增大而___________.答案:,,减少第23题. 如果正比例函数 =3 和一次函数 =2 +k的图象的交点在第三象限,那么k的取值范围是???????????? .答案:k")答案:。
第02课一次函数图象性质同步练习【例1】如图,在直角坐标系中,直线y=kx+4与x轴正半轴交于一点A,与y 轴交于点B,已知△OAB的面积为10,求这条直线的解析式.【例2】已知一次函数y=﹣x+6的图象与x轴交于A,与y轴交于C,以O,A,C为顶点在第一象限作矩形OABC.(1)求点B的坐标,并在坐标系中画出函数y=﹣x+6的图象和矩形OABC.(2)若反比例函数y=(x>0)的图象与△OAC有公共点,求k的取值范围.(3)在线段AC上存在点P,以点P,B,C三点为顶点的三角形是等腰三角形,直接写出P点的坐标.【例3】如图正比例函数y=2x图像与一次函数y=kx+b图像交于点A(m,2),一次函数图像经过点B(-2,-1)与y轴交点为C与x轴交点为D.(1)求一次函数的解析式;(2)求C点的坐标;(3)求△AOD的面积。
【例4】已知一次函数y=kx﹣3k+6,回答下列问题:(1)若此函数的图象过原点,求k的值;(2)若此函数与y=3x﹣1平行,求它与坐标轴围成的三角形面积;(3)无论k取何值,该函数图象总经过一个定点,请你直接写出这个定点的坐标.【例5】如图,在平面直角坐标系中,已知一次函数y=0.5x+1的图象与x轴,y轴分别交于A,B两点,以AB为边在第二象限内作正方形ABCD.(1)求边AB的长;(2)求点C,D的坐标;(3)在x轴上是否存在点M,使△MDB的周长最小?若存在,请求出点M的坐标;若不存在,请说明理由.课堂同步练习一、选择题:1、一次函数y =2x +1的图像不经过( )A. 第一象限B.第二象限C.第三象限D.第四象限2、若正比例函数y=(1-4m)x 图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1>y 2,则m 取值范围是( )A.m <0B.m >0C. D.3、关于函数y=﹣2x+1,下列结论正确的是( )A.图象必经过点(﹣2,1)B.图象经过第一、二、三象限C.当x>时,y<0D.y随x的增大而增大4、已知y=(m﹣1)x+m+3的图象经过一二四象限,则m的范围( )A.﹣3<m<1B.m>1C.m<﹣3 D.m>﹣35、直线y=﹣x﹣2与直线y=x+3的交点为( )A.(,)B.(﹣,)C.(0,﹣2)D.(0,3)6、如图,已知一次函数y=ax+b的图像为直线l,则关于x的不等式ax+b<1的解集为()A.x<0B.x>0C.x<1D.x<27、如图所示的计算程序中,y与x之间的函数关系所对应的图象应为( )A. B. C. D.8、直线-x+3向上平移m个单位后,与直线y=-2x+4的交点在第一象限,则m取值范围().A.-2<m<1B.m>-1C.-1<m<1D.m<19、如图,在平面直角坐标系中,矩形OABC 的边OA 、OC 分别在x 轴、y 轴的正半轴上,点B 在第一象限,直线y=232+-x 与边AB 、BC 分别交于点D 、E,若点B 的坐标为(m,1),则m 的值可能是( )A.﹣1 B.1 C.2 D.410、如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )A. B. C. D. 11、次函数分别与x 轴和y 轴交于A 、B 两点,在x 轴上取点C,使⊿ABC 为等腰三角形,则这样的点C 最多有( )A.1个B.2个C.3个 D.4个12、如图,把Rt △ABC 放在直角坐标系内,其中∠CAB=90°,BC=5,点A 、B 的坐标分别为(1,0),(4,0).将△ABC 沿x 轴向右平移,当点C 落在直线y=2x ﹣6上时,线段BC 扫过的面积为( )A.4B.8C.16D.8二、填空题:13、若函数y=(m -1)x +m 2-1是正比例函数,则m= .14、若一次函数y=(m ﹣3)x+m 2﹣9是正比例函数,则m 的值为 .15、过点(﹣1,7)的一条直线与x 轴,y 轴分别相交于点A,B,且与直线平行.则在线段AB 上,横、纵坐标都是整数的点的坐标是 .16、已知点P (a ,b)在一次函数y =2x -1的图像上,则2a -b +1= .17、一次函数y =2x 的图像沿x 轴正方向平移3个单位长度,则平移后的图像所对应函数表达式为 .18、点A 为直线y=-3x-4上的一点,且到两坐标轴距离相等,则A 点坐标为 .19、正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图方式放置,点A 1、A 2、A 3…和点C 1、C 2、C 3…分别在直线y=kx+b(k>0)和x 轴上.已知点B 1(1,1)、B 2(3,2),请写出点B 3坐标是 ,点B n 坐标是 。
2020年八年级数学下册一次函数图象性质与应用同步练习一、选择题1.若2y+1与x-5成正比例,则( )A.y是x的一次函数 B.y与x没有函数关系C.y是x的函数,但不是一次函数 D.y是x的正比例函数2.关于函数y=-x-2的图象,有如下说法:①图象过点(0,-2);②图象与x轴的交点是(-2,0);③由图象可知y随x的增大而增大;④图象不经过第一象限;⑤图象是与y=-x+2平行的直线.其中正确的说法有( )A.5个B.4个C.3个D.2个3.在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过...的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限4.某一次函数的图象经过点(1,2),且y随x的增大而减小,则这个函数的表达式可能是()A.y=2x+4B.y=3x﹣1C.y=﹣3x+1D.y=﹣2x+45.关于函数y=-2x+1,下列结论正确的是()A.图象必经过点(﹣2,1)B.图象经过第一、二、三象限C.图象与直线y=-2x+3平行D.y随x的增大而增大6.函数y=(m+1)x﹣(4m﹣3)的图象在第一、二、四象限,那么m的取值范围是()A.m<0.75B.-1<m<0.75C.m<﹣1D.m>﹣17.同一直角坐标系中,一次函数y=k1x+b与正比例函数y2=k2x的图象如图,则满足y1≥y2的x取值范1围是()A.x≤﹣2B.x≥﹣2C.x<﹣2D.x>﹣28.直线y=-x+3向上平移m个单位后,与直线y=-2x+4的交点在第一象限,则m的取值范围().A.-2<m<1B.m>-1C.-1<m<1D.m<19.如图,以两条直线l,l2的交点坐标为解的方程组是()110.一条直线y=kx+b,其中k+b=-5,kb=6,那么该直线经过()A. 第二、四象限B. 第一、二、三象C. 第一、三象限D. 第二、三、四象限11.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0 B.2 C.3 D.412.有一个安装有进出水管的30升容器,水管每单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信息给出下列说法:①每分钟进水5升;②当4≤x≤12时,容器中水量在减少;③若12分钟后只放水,不进水,还要8分钟可以把水放完;④若从一开始进出水管同时打开需要24分钟可以将容器灌满.以下说法中正确的有( )A.1个B.2个C.3个D.4个二、填空题13.已知一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,-2)和点B(1,0),则b=________,k=________.14.若一次函数y=-2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是________(写出一个即可).15.若点P(a,b)在第二象限内,则直线y=ax+b不经过第象限.16.已知直线y=2x﹣4,则此直线与两坐标轴围成的三角形面积为.17.已知m是整数,且一次函数y=(m+4)x+m+2的图象不过第二象限,则m为 .18.点A为直线y=-3x-4上的一点,且到两坐标轴距离相等,则A点坐标为.三、解答题19.如图,在直角坐标系中,直线y=kx+4与x轴正半轴交于一点A,与y轴交于点B,已知△OAB的面积为10,求这条直线的解析式.20.已知一次函数y=(3-k)x-2k2+18(1)k为何值时,它的图像经过原点(2)k为何值时,它的图像经过点(0,-2)(3)k为何值时,它的图像与y轴的交点在x轴上方(4)k为何值时,它的图像平行于直线y=-x(5)k为何值时,y随x的增大而减小21.某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x千克,付款金额为y元.(1)求y关于x的函数解析式;(2)某农户一次购买玉米种子30千克,需付款多少元?22.甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲加工时间x(h)之间的函数图象为折线OA﹣AB﹣BC,如图所示.(1)这批零件一共有个,甲机器每小时加工个零件,乙机器排除故障后每小时加工个零件;(2)当3≤x≤6时,求y与x之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?23.为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具x个,求有多少种购买方案?(3)设学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?24.某工厂有甲种原料360kg,乙种原料290kg,计划用这两种原料生产A、B两种产品共50件,已知生产一件A种产品,需用甲种原料9kg,乙种原料3kg,可获利润700元;生产一件B种产品,需用甲种原料4kg,乙种原料10kg,可获利润1200元.(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;(2)设生产A、B两种产品总利润是W(元),采用哪种生产方案获总利润最大?最大利润为多少?参考答案1.A2.B3.C4.D.5.C6.C7.A8.C9.C10.D11.B12.C13.答案为:-2,2;14.答案为:-1(答案不唯一,满足b<0即可);15.答案为:三;16.答案为:4.17.答案为:-2或-318.答案为:(-1,-1)或(-2,2)19.解:当y=0时,kx+4=0,解得x=﹣,则A(﹣,0),当x=0时,y=kx+4=4,则B(0,4),因为△OAB的面积为10,所以•(﹣)•4=10,解得k=﹣,所以直线解析式为y=﹣x+4.20.21.解:(1)根据题意,得①当0≤x≤5时,y=20x;②当x>5,y=20×0.8(x﹣5)+20×5=16x+20;(2)把x=30代入y=16x+20,∴y=16×30+20=500;∴一次购买玉米种子30千克,需付款500元;22.解:(1)这批零件一共有270个,甲机器每小时加工零件:(90﹣550)÷(3﹣1)=20(个),乙机器排除故障后每小时加工零件:(270﹣90﹣20×3)÷3=40(个);故答案为:270;20;40;(2)设当3≤x≤6时,y与x之间的函数关系是为y=kx+b,把B(3,90),C(6,270)代入解析式,得,解得,∴y=60x﹣90(3≤x≤6);(3)设甲价格x小时时,甲乙加工的零件个数相等,①20x=30,解得x=15;②50﹣20=30,20x=30+40(x﹣3),解得x=4.5,答:甲加工1.5h或4.5h时,甲与乙加工的零件个数相等.23.解:(1)设购买一个甲种文具a元,一个乙种文具b元,由题意得:,解得,答:购买一个甲种文具15元,一个乙种文具5元;(2)根据题意得:955≤15x+5(120﹣x)≤1000,解得35.5≤x≤40,∵x是整数,∴x=36,37,38,39,40.∴有5种购买方案;(3)W=15x+5(120﹣x)=10x+600,∵10>0,∴W随x的增大而增大,当x=36时,W最小=10×36+600=960(元),∴120﹣36=84.答:购买甲种文具36个,乙种文具84个时需要的资金最少,最少资金是960元.24.解:(1)设安排生产A种产品x件,则生产B种产品(50﹣x)件,根据题意有:,解得:30≤x≤32,∵x为整数,∴x30,31,32,所以有三种方案:①安排A种产品30件,B种产品20件;②安排A种产品31件,B种产品19件;③安排A种产品32件,B种产品18件.(2)设安排生产A种产品x件,那么利润为:w=700x+1200(50﹣x)=﹣500x+60000,∵k=﹣500<0,∴y随x的增大而减小,∴当x=30时,对应方案的利润最大,y=﹣500×30+60000=45000,最大利润为45000元.∴采用方案①所获利润最大,为45000元.。
八年级数学《一次函数》知识点归纳与例题一、知识点总结1、一次函数与正比例函数的定义:例如:y =kx +b (k ,b 是常数,k ≠0)那么y 叫做x 的一次函数,特别地当b =0时,一次函数y =kx +b 就成为y =kx (k 是常数,k ≠0)这时,y 叫做x 的正比例函数。
2、一次函数的图象与性质(形状、位置、特殊点、增减性)①、形状:一次函数的图象是一条 ;画法:确定两个点就可以画一次函数图象。
②、位置:直线的位置是由k 、b 当k 0时,图象经过一、三象限; 当k 0时,图象经过二、四象限。
当b 0时,图象与y 轴相交于正半轴; 当b 0时,图象与y 轴相交于负半轴; 当b 0时,图象经过坐标原点。
x 轴和y 轴交点分别是④、性质:一次函数)0(≠+=k b kx y ,当k 0y 的值随x 值的增大而增大;当k 0y 的值随x 值的增大而减小。
3、待定系数法求函数解析式在一次函数y =kx +b (k ≠0)中有两个未知数k 和b ,所以,要确定其关系式,一般需要两个条件,常见的是已知两点坐标P 1(a 1,b 1),P 2(a 2,b 2)代入得⎩⎨⎧b 1=a 1k +b ,b 2=a 2k +b ,求出k ,b 的值即可,这种方法叫做__________.4、一次函数与方程、方程组及不等式的关系 ①、y =kx +b 与kx +b =0直线y =kx +b 与x 轴交点的横坐标是方程kx +b =0的解,方程kx +b =0的解是直线y =kx +b 与x 轴交点的横坐标. ②、y =kx +b 与不等式kx +b >0从函数值的角度看,不等式kx +b >0的解集为使函数值大于零(即kx +b >0)的x 的取值范围;从图象的角度看,由于一次函数的图象在x 轴上方时,y >0,因此kx +b >0的解集为一次函数在x 轴上方的图象所对应的x 的取值范围. ③、一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解;以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点. 【知识拓展】1、两条直线的位置关系设直线 1和 2的解析式为y =k 1x +b 1和y 2=k 2x +b 2则它们的位置关系由系数关系确定:① k 1≠k 2⇔ 1与 2相交;② k 1=k 2,b 1≠b 2⇔ 1与 2平行;+b一次函数)0(≠+=k b kx y 的图象 如图,判断k 、b 符号。
2013—2014学年八年级数学(上)周末辅导资料(12)理想文化教育培训中心 学生姓名: 得分:一、知识点梳理:1、一次函数:一般地,形如y=kx+b (k,b 为常数,k ≠0)的函数,叫做一次函数(x 为自变量,y 为因变量);当b=0,即y=kx 时,称y 是x 的正比例函数,因此正比例函数是特殊的一次函数。
例1:(1)下列函数关系式:①x y -=;②;112+=x y ③12++=x x y ;④xy 1=.其中一次函数的个数是( ) A. 1个 B.2个 C.3个 D.4个(2)某汽车行驶时,油箱内装满汽油70升,如果每时耗油7升,油箱内剩余油量y (升)与时间x (时)之间的函数关系式为 。
(3)若点(3,a )在一次函数13+=x y 的图像上,则=a ;一次函数1-=kx y 的图像经过点(-3,0),则k= 。
【课堂练习1】(1)已知一次函数y kx k 3=+-的图像经过点(2,3),则k 的值为 (2)已知一次函数kx k y )1(-=+3,则k = . 2、一次函数的图象与性质:(1)一次函数y=kx+b (k,b 为常数,k ≠0)的图象是一条经过与y 轴交点(0 , b )和与x 轴交点()0,kb-的直线。
(2)当k>0,b>0时,图象经过第一、二、三象限,如图(1);当k>0,b<0时,图象经过第一、三、四象限,如图(2); 当k<0,b>0时,图象经过第一、二、四象限,如图(3); 当k<0,b<0时,图象经过第二、三、四象限,如图(4);(3)当k>0时,y 随x 的增大而增大(直线上升);当k<0时, y 随x 的增大而减小(直线下降)。
例2:(1)已知一次函数1)2(++=x m y ,函数y 的值随x 值的增大而增大,则m 的取值范围是 . (2)一次函数y=x -2的图象不经过 ( )A .第一象限B .第二象限C .第三象限D .第一象限(3)下面函数图象不经过第二象限的是 ( )(A) y=3x+2 (B) y=3x -2 (C) y=-3x+2 (D) y=-3x -2(4)若把一次函数y=2x -3,向上平移3个单位长度,得到图象解析式是( ) (A)y=2x (B) y=2x -6 (C ) y=5x -3 (D )y=-x -3 【课堂练习2】(1)函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m 的取值范是( ) A 、34m <B 、314m -<< C 、1m <- D 、1m >- (2)对于一次函数y=﹣2x+4,下列结论错误的是( )A . 函数值随自变量的增大而减小B . 函数的图象不经过第三象限C . 函数的图象向下平移4个单位长度得y=﹣2x 的图象D . 函数的图象与x 轴的交点坐标是(0,4)(3)直线y=kx+b 在坐标系中的位置如图,则( ) A 、1,12k b =-=- B 、1,12k b =-= C 、1,12k b ==- D 、1,12k b == (4)将直线y=3x-2平移后,得到直线y=3x+6,则原直线 ( ) A.沿y 轴向上平移了8个单位 B.沿y 轴向下平移了8个单位 C.沿x 轴向左平移了8个单位 D.沿x 轴向右平移了8个单位 3、求一次函数解析式:待定系数法例3:如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,﹣2).(1)求直线AB 的解析式;(2)若直线AB 上的点C 在第一象限,且S △BOC =2,求点C 的坐标.(三)、强化训练: 1、函数112++--=x x x y 的自变量x 的取值范围为 ( ) A .x ≠1 B .x >-1 C .x ≥-1 D .x ≥-1且 x ≠1 2、已知一次函数y=kx+5的图象经过点(-1,2),则k= .3、一次函数y= -2x+4的图象与x 轴交点坐标是 ,与y 轴交点坐标是 ,图象与坐标轴所围成的三角形面积是 .4、若一次函数y=kx+b 的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过 象限。
4.3 一次函数的图象第2课时一次比例函数的图象和性质要点感知1作一次函数y=kx+b(k,b为常数,k≠0)的图象的方法有:(1)采用列表法作图;(2)利用一次函数y=kx+b(k,b为常数,k≠0)的图象是一条直线的性质,运用两点作图法,找出函数上的__________,(最好取(0,__________)和(1,__________)两点)连接成一条直线即可;(3)通过对直线y=kx平移__________个单位得到(b>0,__________平移;b<0,__________平移).预习练习1-1采用两点法作一次函数y=2x-4的图象时,我们取点A(0,__________)和B(1,__________)两点,然后过这两点作直线,即可得到y=2x-4的图象.1-2作一次函数y=2x-4的图象时,我们还可以采用__________法作图,即先作出直线y=2x 的图象,然后将直线y=2x__________平移__________个单位得到y=2x-4的图象.要点感知2 一次函数y=kx+b(k,b为常数,k≠0)图形的性质:(1)当k>0时,y随x的增大而__________;当k<0时,y随x的增大而__________;(2)当k>0,b>0时,图象过__________象限;当k>0,b<0时,图象过__________象限;当k<0,b<0时,图象过__________象限;当k<0,b>0时,图象过__________象限;(3)y=kx+b(k,b为常数,k ≠0)的图象与y=kx(k为常数,k≠0)的图象__________.预习练习2-1如果一次函数y=kx+2经过点(1,1),那么这个一次函数( )知识点1 一次函数的图象与性质1.一次函数y=kx-k(k<0)的大致图象是( )2.一次函数y=-2x+1的图象不经过以下哪个象限( )3.点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,那么a与b的大小关系是( )知识点2 一次函数图象的平移4.将函数y=-3x的图像沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为( )A.y=-3x+2B.y=-3x-2C.y=-3(x+2)D.y=-3(x-2)5.将函数y=12x的图象经过怎样的平移可以得到y=12x-32的图象( )3 232个单位6.将一次函数y=3x-1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为____________.知识点3 一次函数图象的实际应用7.如图描述了小明昨天放学回家的行程情况,请根据图象答复:〔1〕小明在途中逗留了__________分钟;〔2〕小明回家的平均速度是__________米/分钟;〔3〕如果他按照刚出学校时的速度一直走到家,__________分钟就可以到家;〔4〕今天小明放学后是径直回家的,从学校走到家一共用了15分钟,请你在图中画出小明回家的路程与时间关系示意图.8.当kb<0时,一次函数y=kx+b的图象一定经过( )A.第一、三象限B.第一、四象限C.第二、三象限D.第二、四象限9.如图,正比例函数图象经过点A,将此函数图象向上平移3个单位,以下结论正确的选项是( )B.平移后的函数图象必过点(3,0)C.平移后的函数表达式是y=3x+1D.平移后的函数图象与x轴交点坐标是(-1,0)10.在平面直角坐标系中,一次函数y=2x+1的图像经过P1(x1,y1),P2(x2,y2)两点,假设x1<x2,那么y1__________y2(填“>〞“<〞或“=〞).11.如图,图象描述了一汽车在某一直路上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的变量关系,根据图中提供的信息,填空:①汽车离出发地最远是__________千米;②汽车在行驶途中停留了__________小时;③汽车从出发地到回到原地共用了__________小时.12.函数y=(1-m)x+m-2,当m取何值时,函数的图象经过二、三、四象限?13.函数y=-2x+6与函数y=3x-4.在同一平面直角坐标系内,画出这两个函数的图象.14.点A(6,0)及在第一象限的动点P(x,y),且2x+y=8,设△OAP的面积为S.(1)试用x表示y,并写出x的取值范围;(2)求S关于x的函数表达式,画出函数S的图象;(3)当点P的横坐标为3时,△OAP的面积为多少?(4)△OAP的面积是否能够到达30?为什么?参考答案要点感知1〔2〕任意两点 b k+b〔3〕|b| 向上向下预习练习1-1-4 -21-2 平移向下 4要点感知2 〔1〕增大减小〔2〕一、二、三一、三、四二、三、四一、二、四〔3〕平行预习练习2-1 B1.A2.C3.A4.A5.D6.y=3x+27.〔1〕10〔2〕15〔4〕图略.8.B 9.D 10.<11.①100 ②0.5 ③12.由题意,得10,20.mm-<-<⎧⎨⎩解得1,2.mm><⎧⎨⎩所以1<m<2.13.函数y=-2x+6与坐标轴的交点为(0,6),(3,0);函数y=3x-4与坐标轴的交点为(0,-4),(43,0),作图图略.14.(1)∵2x+y=8,∴y=8-2x.∵点P(x,y)在第一象限内,∴x>0,y=8-2x>0.解得0<x<4;(2)△OAP的面积S=6×y÷2=6×(8-2x)÷2=-6x+24(0<x<4),图象如下图;(3)当x=3,△OAP的面积S=6;(4)∵S=-6x+24,∴当S=30,-6x+24=30.解得x=-1.∵0<x<4,∴x=-1不合题意.故△OAP的面积不能够到达30.14.1.2 幂的乘方一、选择题1.计算〔-a2〕5+〔-a5〕2的结果是〔〕A.0 B.2a10 C.-2a10 D.2a72.以下计算的结果正确的选项是〔〕A.a3·a3=a9 B.〔a3〕2=a5 C.a2+a3=a5 D.〔a2〕3=a63.以下各式成立的是〔〕A.〔a3〕x=〔a x〕3 B.〔a n〕3=a n+3 C.〔a+b〕3=a2+b2 D.〔-a〕m=-a m 4.如果〔9n〕2=312,那么n的值是〔〕A.4 B.3 C.2 D.1二、填空题5.幂的乘方,底数________,指数________,用字母表示这个性质是_________.• 6.假设32×83=2n,那么n=________.7.n为正整数,且a=-1,那么-〔-a2n〕2n+3的值为_________.8.a3n=2,那么a9n=_________.三、解答题9.计算:①5〔a3〕4-13〔a6〕2②7x4·x5·〔-x〕7+5〔x4〕4-〔x8〕2③[〔x+y〕3]6+[〔x+y〕9]2④[〔b-3a〕2]n+1·[〔3a-b〕2n+1]3〔n为正整数〕10.假设2×8n×16n=222,求n的值.四、探究题11.阅读以下解题过程:试比拟2100与375的大小.解:∵2100=〔24〕25=1625375=〔33〕25=2725而16<27∴2100<375.请根据上述解答过程解答:比拟255、344、433的大小参考答案:1.A 2.D 3.A 4.B5.不变;相乘;〔a m〕n=a mn〔m、n都是正整数〕6.14 7.1 8.8 9.①-8a12;②-3x16;•③2〔x+y〕18;④〔3a-b〕8n+5 10.n=3 11.255<433<344。
上海市八年级第二学期数学专题02 一次函数的性质与应用【真题测试】一、选择题1.(青浦2018期末1)如果一次函数y =kx +1不经过第三象限,那么k 的取值范围是( ) A .k <0B.k >0C.k ≤0D.k ≥0【答案】A ;【解析】解:∵一次函数y =kx +1的图象不经过第三象限,∴一次函数y =kx +b 的图象经过第一、二、四象限,∴k <0.故选:A .2.(浦东四署2018期中2)已知一次函数y kx b =+中,0,0k b <>,那么下列判断中,正确的是 ( )(A )图像不经过第一象限; (B )图像不经过第二象限;(C )图像不经过第三象限 ; (D )图像不经过第四象限.【答案】C ;【解析】因为一次函数y kx b =+中,0,0k b <>,所以函数图像经过第一、二、四象限,故图像不经过第三象限;故选C3.(浦东四署2019期末2)已知点1(1,)A y -、点2(2,)B y 都在直线32y x =-+上,则12,y y 的大小关系是( )A.12y y >;B. 12y y <;C. 12y y =;D.无法确定.【答案】A ;【解析】因为30k =-<,故y 随x 的增大而减小,即1212,y y -<∴>Q ,故答案选A.4. (浦东2018期中6)小亮早晨从家骑自行车去学校上学,先上坡后下坡,行程情况如图所示,如果返回时上坡、下坡的速度仍与上学时的上、下坡速度相同,那么小亮从学校骑车回家的时间是( )A. 30分钟B. 33分钟C. 分钟D. 48分钟【答案】C【解析】解:由图可得,去校时,上坡路的距离为36百米,所用时间为18分, ∴上坡速度=36÷18=2(百米/分), 下坡路的距离是96-36=60百米,所用时间为30-18=12(分), ∴下坡速度=60÷12=5(百米/分); ∵去学校时的上坡回家时变为下坡、去学校时的下坡回家时变为上坡, ∴小亮从学校骑车回家用的时间是:60÷2+36÷5=30+7.2=37.2(分钟). 故选:C .二、填空题5.(金山2018期中8)一次函数(2)3y m x =-+,函数值y 随着x 的增大而减小,那么m 的取值范围是 .【答案】2m <;【解析】因为一次函数(2)3y m x =-+的函数值y 随x 的增大而减小,故20m -<即2m <.6. (普陀2018期中8)在一次函数y =(k -1)x +3k -2中,如果y 的值随自变量x 的值增大而增大,那么k 的取值范围是______.【答案】k >1;【解析】解:∵一次函数y=(k-1)x+3k-2的函数值y 随自变量x 的增大而增大,∴k-1>0,∴k >1,且k-1≠0,k≠1∴k 的取值范围是k >1.故答案为:k >17. (长宁2018期末8)已知一次函数y =1-x ,则函数值y 随自变量x 的增大而______.【答案】减小;【解析】解:∵k=-1<0, ∴函数值y 随自变量x 的增大而减小, 故答案为:减小8.(长宁2019期末1)若关于x 的一次函数y =(2﹣k )x +1(k 为常数)中,y 随x 的增大而减小,则k 的取值范围是 .【答案】k <2;【解析】解:∵一次函数y =(2﹣k )x +1(k 是常数)中y 随x 的增大而增大,∴2﹣k >0,解得k <2,故答案为:k <2.9. (松江2019期中10)已知一次函数y kx b =+的图像不经过第三象限,那么函数值y 随自变量x 的值增大而________(填“增大”或“减小”).【答案】减小【解析】解:∵一次函数y kx b =+的图像不经过第三象限,∴k <0,∴函数值y 随自变量x 的值增大而减小.故答案为:减小.10.(普陀2018期末11)如果关于x 的一次函数y =mx +(4m ﹣2)的图象经过第一、三、四象限,那么m 的取值范围是 . 【答案】102m << 【解析】解:∵关于x 的一次函数y =mx+(4m ﹣2)的图象经过第一、三、四象限,∴0420m m >⎧⎨-<⎩,∴102m <<.故答案为:102m <<; 11. (杨浦2019期中5)已知点1122(,),(,)x y x y 是直线4y kx =-上的两点,且当12x x <时,12y y <,则该直线经过______________象限.【答案】一、三、四;【解析】因为当12x x <时,12y y <,即y 随x 的值的增大而增大,故0k >,所以4y kx =-的图像经过第一、三、四象限.12. (黄浦2018期中17)等腰三角形的周长是16(cm ),腰长为x (cm ),底边长为y (cm ),那么y 与x 之间的函数关系式是______(要求写出自变量x 的取值范围).【答案】y=16-2x , 4<x <8;【解析】解:∵2x+y=16, ∴y=16-2x ,即x <8, ∵两边之和大于第三边, ∴x >4, ∴4<x <8,故答案为:y=16-2x ,4<x <8.13. (松江2019期中17)一水池的容积是100m³,现有蓄水10m³,用水管以每小时6m³的速度向水池中注水,请写出水池蓄水量V (m³)与进水时间t (小时)之间的函数关系式(并写出自变量取值范围)__________.【答案】v=10+6t(0≤t≤15)【解析】解:根据题意可得v=10+6t ,当v=100时,得100=10+6t ,解得t=15,则水池蓄水量V (m³)与进水时间t (小时)之间的函数关系式为v=10+6t(0≤t≤15).故答案为:v=10+6t(0≤t≤15).14. (长宁2018期末15)如图,折线ABC 表示从甲地向乙地打电话所需的电话费y (元)关于通话时间t (分钟)的函数图象,则通话7分钟需要支付电话费______元.【答案】6.4【解析】解:当通话时间在3分钟以内费用为2.4元,超出之后每分钟4.4 2.4153-=-元, 则通话7分钟费用为:2.4+(7-3)=6.4元故答案为:6.4三、解答题15. (浦东四署2018期中22) 某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.(1)求出日销售量y (件)与销售价x (元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.【答案】(1)40y x =-+;(2)200元;【解析】解:(1)设此一次函数解析式为y kx b =+,则15252020k b k b +=⎧⎨+=⎩, 解得1,40k b =-=,即一次函数解析式为40y x =-+. (2)每日的销售量为y =-30+40=10件, 所获销售利润为(30-10)×10=200元.16. (黄浦2018期中24)一个水槽有进水管和出水管各一个,进水管每分钟进水a 升,出水管每分钟出水b 升.水槽在开始5分钟内只进水不出水,随后15分钟内既进水又出水,得到时间x (分)与水槽内的水量y (升)之间的函数关系(如图所示).(1)求a 、b 的值;(2)如果在20分钟之后只出水不进水,求这段时间内y 关于x 的函数解析式及定义域.【答案】(1)a =3,b =2;(2)y =-2x +75(20≤x ≤37.5);【解析】解:(1)由图象得知:水槽原有水5升,前5分钟只进水不出水,第5分钟时水槽实际存水20升.水槽每分钟进水a 升,于是可得方程:5a +5=20.解得a =3.按照每分钟进水3升的速度,15分钟应该进水45升,加上第20分钟时水槽内原有的20升水,水槽内应该存水65升.实际上,由图象给出的信息可以得知:第20分钟时,水槽内的实际存水只有35升,因此15分钟的时间内实际出水量为:65-35=30(升).依据题意,得方程:15b =30.解得 b =2.(2)按照每分钟出水2升的速度,将水槽内存有的35升水完全排出,需要17.5分钟.因此,在第37.5分钟时,水槽内的水可以完全排除.设第20分钟后(只出水不进水),y 关于x 的函数解析式为y =kx +b .将(20,35)、(37.5,0)代入y =kx +b , 得:,解得:,则y 关于x 的函数解析式为:y =-2x +75(20≤x ≤37.5).17. (普陀2018期中21)如图,甲、乙两人到距离A 地35千米的B 地办事,甲步行先走,乙骑车后走,两人行进的路程和时间的关系如图所示,根据图示提供的信息解答:(1)乙比甲晚______小时出发;乙出发______小时后追上甲;(2)求乙比甲早几小时到达B 地?【答案】2;2【解析】解:(1)∵当S=0时,t 乙=2,∴乙比甲晚2小时出发;∵当t=4时,S 甲=S 乙,4-2=2,∴乙出发2小时后追上甲.故答案为:2;2.(2)设甲的路程与时间的函数解析式为S=kt (k ≠0),∴20=4k ,解得:k=5,∴甲的路程与时间的函数解析式为 S=5t ,当S=35时,有5t=35,解得:t=7.设乙的路程与时间的函数解析式为 S=mt+n ,根据题意,得:20402m n m n=+⎧⎨=+⎩, 解得:1020m n =⎧⎨=-⎩,∴乙的路程与时间的函数解析式为S=10t-20.当S=35时,有10t-20=35, 解得:t=5.5,∴7-5.5=1.5(小时).答:乙比甲早1.5小时到达B 地.18.(浦东四署2018期中23)上周六,小明一家共7人从家里出发去公园游玩。
一次函数性质练习题及答案一、选择题1. 若一次函数y = mx + b的图象经过点(2, 5)和(-1, -4),则m和b的值分别为:A) m = 3, b = -2B) m = -3, b = -2C) m = 3, b = 2D) m = -3, b = 2答案:A) m = 3, b = -22. 若一次函数的图象经过坐标轴上的两个点,且不经过第三个点(4,3),则该函数的解析式为:A) y = x + 6B) y = -x - 3C) y = -x + 3D) y = -x + 6答案:D) y = -x + 63. 若一次函数y = kx + 5的图象过点(3, 14),则k的值为:A) 3B) 4C) 9D) 11答案:B) 4二、计算题1. 求一次函数y = 2x - 3在x = 4时的函数值。
解答:将x = 4代入函数y = 2x - 3中,y = 2(4) - 3y = 8 - 3y = 5所以,当x = 4时,函数y = 2x - 3的值为5。
2. 已知一次函数的解析式为y = 3x + 2,求该函数的斜率和截距。
解答:该一次函数的斜率为3,截距为2。
三、应用题1. 一家超市的饮料销售额与销售数量之间存在一次函数的关系,已知当销售数量为20时,销售额为600元;当销售数量为50时,销售额为1500元。
求该一次函数的解析式,并根据该函数计算销售数量为80时的销售额。
解答:设该一次函数的解析式为y = mx + b。
根据题意可以列出以下两个方程:20m + b = 600 (1)50m + b = 1500 (2)将方程(1)乘以5,并与方程(2)进行消元,得到:100m + 5b = 3000 (3)50m + b = 1500 (2)将方程(3)减去方程(2),消去b,得到:50m = 1500m = 30将m = 30代入方程(2),求得b的值:50(30) + b = 1500b = 1500 - 1500b = 0所以,该一次函数的解析式为y = 30x。
一次函数的图像和性质练习题一次函数的图像和性质练习题一次函数是数学中的基础概念之一,也是高中数学中的重要内容。
它的图像和性质是我们学习一次函数的关键,通过练习题的形式,我们可以更好地理解和掌握一次函数的图像和性质。
1. 练习题一:给定一次函数y = 2x + 3,求出它的图像和性质。
首先,我们可以根据一次函数的一般式y = kx + b,确定该函数的斜率和截距。
斜率k表示函数图像的倾斜程度,截距b表示函数图像与y轴的交点。
对于给定的一次函数y = 2x + 3,斜率k = 2,截距b = 3。
根据斜率和截距的定义,我们可以知道该函数图像是一条斜率为2,截距为3的直线。
其次,我们可以绘制该函数的图像。
选择一些x的值,代入函数中求得对应的y值,然后将这些点连接起来,就可以得到该函数的图像。
例如,当x = 0时,y = 2*0 + 3 = 3;当x = 1时,y = 2*1 + 3 = 5;当x = -1时,y = 2*(-1) + 3 = 1。
我们可以选择更多的x值,计算出对应的y值,然后将这些点连接起来,就得到了一次函数y = 2x + 3的图像。
最后,我们可以分析该函数的性质。
根据斜率的正负,我们可以知道当x增大时,y也随之增大,表示该函数是递增的。
根据截距的正负,我们可以知道该函数与y轴的交点在正半轴,表示该函数在y轴右侧。
2. 练习题二:给定一次函数y = -0.5x + 2,求出它的图像和性质。
根据一次函数的一般式y = kx + b,我们可以得到该函数的斜率k = -0.5,截距b = 2。
根据斜率和截距的定义,我们可以知道该函数图像是一条斜率为-0.5,截距为2的直线。
绘制该函数的图像,选择一些x的值,代入函数中求得对应的y值,然后将这些点连接起来,就可以得到该函数的图像。
例如,当x = 0时,y = -0.5*0 + 2 = 2;当x = 1时,y = -0.5*1 + 2 = 1.5;当x = -1时,y = -0.5*(-1) + 2 = 2.5。
一次函数的性质及解析式练习一、 选择题:1已知等腰三角形的周长为20cm,将底边y(cm)表示成腰长x(cm)的函数关系式是y=20-2x ,则其自变量的取值范围是( )A 、0<x <10B 、5<x <10C 、x >0D 、一切实数2、下列函数中,y 是x 的一次函数的是( )A y=-3x+5B y=-3 x 2C y=1/xD y =2 (根23、下列一次函数中,y 随x 值的增大而减小的是( )A y=2x+1B 、y=-2+4xC 、y=8x+2D 、Y=32 X-3 4已知一次函数y=mx-(m-2)过原点。
则m 的值是( )A 、m >2B 、m <2C 、m=2D 、不能确定5已知一次函数y=mx+1m+1l 的图像与y 轴交与(0,3),且y 随x 值的增大而增大,则m 的值为( )A 、2B 、-1C 、-2或-4D 、2或-46无论m 为何值,直线y=x+4m 与y=-x+4的交点不可能在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限7、已知正比例函数y=kx(k ≠0)的函数值随x 的增大而增大,则一次函数y=x+k 的图象大致是( )AB xC xD x二、填空:8、已知一次函数y=kx+b 经过一、二、四象限,则k=_____,b=______9、已知自变量为x 的一次函数y=a(x-b)的图像经过第二、三、四象限,则a_____,b________10、已知A (2,m )是正比例函数y=-3/2x 图像上一点,则m=________11、已知一次函数y=(1-2k)x+2k-1,当k_______时,y 随x 的增大而增大,此时图像经过_______象限。
12、已知直线y=2x+1,若x1<x2,则y1____y213、函数y=kx+b 的图像平行于直线y=-2x,且与y 轴交于点(0,3),则k=______,b=________14、正比例函数y=(5m+1)x 的图像过(1,-2),则m=___15、把直线y=-3x 向————平移————单位得到y=-3x+516、函数y=x m+3,当m= 时,它是正比例函数。
八年级数学一次函数图象和性质练习题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学一次函数图象和性质练习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学一次函数图象和性质练习题(word版可编辑修改)的全部内容。
一次函数的定义1、判断正误: (1)一次函数是正比例函数; ( ) (2)正比例函数是一次函数; ( )(3)x +2y =5是一次函数; ( )(4)2y -x=0是正比例函数. ( )2、选择题(1)下列说法不正确的是( )A .一次函数不一定是正比例函数。
B .不是一次函数就不一定是正比例函数.C .正比例函数是特殊的一次函数。
D .不是正比例函数就一定不是一次函数.(2)下列函数中一次函数的个数为( )①y=2x ;②y=3+4x ;③y=21;④y=ax (a ≠0的常数);⑤xy=3;⑥2x+3y —1=0;A .3个B 4个C 5个D 6个3、填空题(1)若函数y=(m —2)x+5是一次函数,则m 满足的条件是____________。
(2)当m=__________时,函数y=3x2m+1 +3 是一次函数。
(3 )关于x 的一次函数y=x+5m-5,若使其成为正比例函数,则m 应取_________。
4、已知函数y=()()112-++m x m 当m 取什么值时,y 是x 的一次函数?当m 取什么值是,y 是x 的正比例函数。
5、函数:①y=-2x+3;②x+y=1;③xy=1;④y=1+x ;⑤y=221x +1;⑥y=0。
5x 中,属一次函数的有 ,属正比例函数的有 (只填序号)(3)请写出一个正比例函数,且x=2时,y= -6请写出一个一次函数,且x=-6时,y=2(4)我国是一个水资源缺乏的国家,大家要节约用水.据统计,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0。
3.一次函数的性质1.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( A )(A)第一象限(B)第二象限(C)第三象限(D)第四象限2.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是( D )(A)a+b<0 (B)a-b>0(C)ab>0 (D)<03.(2018汝州期末)在同一坐标系中,正比例函数y=kx与一次函数y=x-k的图象大致应为( B )4.关于直线l:y=kx+k(k≠0),下列说法不正确的是( D )(A)点(0,k)在l上(B)l经过定点(-1,0)(C)当k>0时,y随x的增大而增大(D)l经过第一、二、三象限5.(2018安阳模拟)若y是关于x的一次函数为y=(k+1)+k,且y随x的增大而减小,则k的值是-2 ,此函数的表达式是y=-x-2 .6.已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k >1 ,b <0 .7.若y是关于x的正比例函数为y=(a-2)x+9-a2,且y随x的增大而增大,则点(-3,-6) 不在直线y=(a-2)x+9-a2上.(填“在”或“不在”)8.在一次函数y=2x+3中,y随x的增大而增大(填“增大”或“减小”),当0≤x≤5时,y 的最小值为 3 .9.已知一次函数y=(3a-2)x+1-b,求a,b的取值范围,使得(1)y随x的增大而增大;(2)函数图象与y轴的交点在x轴的下方;(3)函数的图象过第一、二、四象限.解:(1)由一次函数y=kx+b(k≠0)的性质可知,当k>0时,函数值y随x的增大而增大,即3a-2>0,所以a>,且b取任意实数.(2)函数图象与y轴的交点为(0,1-b),因为与y轴交点在x轴的下方,所以即a≠,b>1.(3)函数图象过第一、二、四象限,则必须满足得10.矩形的周长是8 cm,设一边长为x cm,另一边长为y cm.(1)求y关于x的函数关系式,并写出自变量x的取值范围;(2)作出函数图象,说明函数值随自变量的变化情况?解:(1)矩形的周长是8 cm,2x+2y=8,y=4-x,自变量x的取值范围是0<x<4.(2)函数图象如图所示,函数值随自变量的增大而减小.11.已知y关于x的函数表达式为y=(2a-9)x+6-a.(1)若这个函数的图象经过原点,则这个函数的性质是什么?(2)若这个函数的图象经过点(1,5),则这个函数的性质是什么? 解:(1)因为函数y=(2a-9)x+6-a的图象经过原点(0,0),所以6-a=0,所以a=6.所以函数为y=(2×6-9)x+6-6=3x,所以y=3x.因为k=3>0,所以y随x的增大而增大.(2)因为函数y=(2a-9)x+6-a的图象经过点(1,5),所以5=(2a-9)×1+6-a,所以a=8.所以y=(2×8-9)x+6-8=7x-2,所以y=7x-2,因为k=7>0,所以y随x的增大而增大.12.(分类讨论题)已知一次函数y=(m-2)x+1-m.(1)m为何值时,它的图象经过点(-1,3)?(2)m为何值时,它的图象平行于直线y=x?解:(1)把(-1,3)代入表达式得3=-(m-2)+1-m,解得m=0.(2)由函数的图象平行于直线y=x,可得m-2=,解得m=.13.已知一次函数y=(3m-8)x+1-m的图象与y轴的交点在x轴下方,且y随x的增大而减小,其中m为整数.(1)求m的值;(2)当x取何值时,0<y<4?解:(1)由题意得解得1<m<.又因为m为整数,所以m=2.(2)当m=2时,y=-2x-1.又由于0<y<4.所以0<-2x-1<4.解得-<x<-.。
一次函数的性质(一)1、做一做,画出函数y=-2x+2的图象,结合图象回答下列问题。
函数y=-2x+2的图象中:(1)随着x的增大,y将(填“增大”或“减小”)(2)它的图象从左到右(填“上升”或“下降”)(3)图象与x轴的交点坐标是,与y轴的交点坐标是(4)这个函数中,随着x的增大,y将增大还是减小?它的图象从左到右怎样变化?(5)当x取何值时,y=0? (6)当x取何值时,y>0?2、函数y=3x-6的图象中:(1)随着x的增大,y将(填“增大”或“减小”)(2)它的图象从左到右(填“上升”或“下降”)(1)图象与x轴的交点坐标是,与y轴的交点坐标是2.(1)当m取何值时,y随x的增大而增大?3.已知函数y=(m-3)x-3(2)当m取何值时,y随x的增大而减小?4.写出一个y随x的增大而减少的一次函数5.写出一个图象与x轴交点坐标为(3,0)的一次函数6.写出一个图象与y 轴交点坐标为(0,-3)的一次函数7.一次函数y=5x+4的图象经过___________象限,y 随x 的增大而________,它的图象与x 轴. Y 轴的坐标分别为________________ (2).函数y=(k-1)x+2,当k >1时,y 随x 的增大而______,当k <1时,y 随x 的增大而_____。
8.函数y=-7x -6的图象中:(1)随着x 的增大,y 将 (填“增大”或“减小”)(2)它的图象从左到右 (填“上升”或“下降”)(3)图象与x 轴的交点坐标是 ,与y 轴的交点坐标是 (4)x 取何值时,y=2? 当x=1时,y= 9.某个一次函数的图象位置大致如下图所示,试分别确定k 、b 的符号,并说出函数的性质. (k 0, b 0) (k 0, b 0)10、已知一次函数y =(2m-1)x +m +5,当m 取何值时,y 随x 的增大而增大?当m 取何值时,y 随x 的增大而减小? 11.已知点(x1, y1)和(x2, y2)都在直线 y=43x-1上, 若x1 < x2, 则 y 1__________y 212.已知一次函数y =(1-2m)x +m-1,若函数y 随x 的增大而减小,并且函数的图象经过二、三、四象限,求m 的取值范围.13.已知函数m x m y m m+-=--12)1(,当m 为何值时,这个函数是一次函数.并且图象经过第二、三、四象限?14.已知一次函数y =(1-2k ) x +(2k +1).①当k 取何值时,y 随x 的增大而增大?②当k 取何值时,函数图象经过坐标系原点?③当k 取何值时,函数图象不经过第四象限?15..已知函数y =2x-4.(1)作出它的图象;(2)标出图象与x 轴、y 轴的交点坐标;(3)由图象观察,当-2≤x ≤4时,函数值y 的变化范围.16. 已知一次函数y =(3m-8)x +1-m 图象与y 轴交点在x 轴下方,且y 随x 的增大而减小,其中m 为整数.(1)求m 的值;(2)当x 取何值时,0<y <4?一次函数图象和性质(二)第1题. 将直线13y x =-向上平移3个单位得到的函数解析式是 .第2题. 直线y mx n =+如图所示,化简:2m n m --=.第3题. 已知函数y kx b y =+的图象与轴交点的纵坐标为5-,且当12x y ==时,,则此函数的解析式为.Oyxy mx n =+(第2题)第4题. 在函数2y x b =-中,函数y 随着x 的增大而 ,此函数的图象经过点(21)-,,则b = .第5题. 如图,表示一次函数y mx n =+与正比例函数y mnx =(m n ,为常数,且mn 0≠)图象的是( )第6题. 在下列四个函数中,y 的值随x 值的增大而减小的是( ) A.2y x =B.36y x =-C.25y x =-+D.37y x =+第7题. 已知一次函数y kx k =+,其在直角坐标系中的图象大体是( )第8题. 在下列函数中,( )的函数值先达到100. A.26y x =+B.5y x =C.51y x =-D.42y x =+第9题. 已知一次函数35y x =+与一次函数6y ax =-,若它们的图象是两条互相平等的直线,则a = .第10题. 一次函数3y x =+与2y x b =-+的图象交于y 轴上一点,则b =.第11题. 作出函数41y x =-的图象,并回答下列问题:OxyxyOx yOxyOA. B. C . D .O y x O yx O yx O yxD.C. B . A .(1)y 的值随x 值的增大怎样变化?(2)图象与x 轴、y 轴的交点坐标是什么?第12题. 已知一次函数2(3)16y m x m =++-,且y 的值随x 值的增大而增大.(1)m 的范围;(2)若此一次函数又是正比例函数,试求m 的值.第13题. 已知一次函数y kx b =+的图象不经过第三象限,也不经过原点,那么k b 、的取值范围是( )A.0k >且0b < B.0k >且0b < C.0k <且0b >D.0k <且0b <第14题. 如图所示,已知正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =--的图象大致是( )第15题. 若函数2(1)2y m x m =++-与y 轴的交点在x 轴的上方,且10m m <,为整数,则符合条件的m 有()A.8个B.7个C.9个 D.10个第16题. 函数34y x =-,y 随x 的增大而 .第17题. 已知一次函数(3)21y m x m =-+-的图象经过一、二、四象限,求m 的取值范围.OxyOxyOxyOxyD .C.B .A .。
周周练(19.1~19.2)(时间:45分钟 满分:100分)一、选择题(每小题3分,共24分)1.已知正比例函数的图象如图所示,则这个函数的关系式为( )A .y =xB .y =-xC .y =-3xD .y =-x32.已知y 是x 的一次函数,下表中列出了部分对应值,则m 等于( )A.-1B .0C .-2D .-123.若某地打长途电话3分钟之内收费1.8元,3分钟以后每增加1分钟(不到1分钟按1分钟计算)加收0.5元,当通话时间t ≥3分钟时,电话费y(元)与通话时间t(分)之间的关系式为( )A .y =t +2.4B .y =0.5t +0.3C .y =0.5t +1D .y =0.5t -0.34.一次函数y =ax +b 交x 轴于点(-5,0),则关于x 的方程ax +b =0的解是( )A .x =5B .x =-5C .x =0D .无法求解5.下面四条直线,其中直线上每个点的坐标都是二元一次方程x +y =1的解的是( )6.(泸州中考)“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.当他们离目的地还有20千米时,汽车一共行驶的时间是( )A .2小时B .2.2小时C .2.25小时D .2.4小时7.(日照中考)当k>12时,直线kx -y =k 与直线ky +x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限8.(连云港中考)如图是本地区一种产品30天的销售图象,图1是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图2是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是( )A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元二、填空题(每小题4分,共24分)9.已知正比例函数y=kx,当x=-2时,y=3,则函数值y随着x的增大而________.10.如图,矩形ABCO在平面直角坐标系中,且顶点O为坐标原点,已知点B(3,2),则对角线AC所在的直线l对应的解析式为________.11.已知直线y=kx+b与x轴的交点坐标是(-2,0),则关于x的方程kx+b=0的解是x =________.12.生物学家研究表明,某种蛇的长度y cm是其尾长x cm的一次函数,当蛇的尾长为6 cm 时,蛇长45.5 cm;当尾长为14 cm时,蛇长为105.5 cm.当一条蛇的尾长为10 cm时,这条蛇的长度是________cm.13.(永州中考)已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x________时,y≤0.14.(阜新中考)小明到超市买练习本,超市正在打折促销:购买10本以上,从第11本开始按标价打折优惠,买练习本所花费的钱数y(元)与练习本的个数x(本)之间的关系如图所示,那么在这个超市买10本以上的练习本优惠折扣是______折.三、解答题(共52分)15.(8分)利用一次函数图象解方程:2x+1=0.16.(10分)已知一次函数的图象过A(-3,-5),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-2,1)是否在这个一次函数的图象上.17.(10分)已知一次函数y=(m-2)x+3-m的图象不经过第三象限,且m为正整数.(1)求m的值;(2)画出该一次函数的图象;(3)当-4<y <0时,根据函数图象,求x 的取值范围.18.(12分)已知函数y =(1-3k)x +2k -1,试回答:(1)k 为何值时,图象交x 轴于点(34,0)?(2)k 为何值时,y 随x 增大而增大?(3)k 为何值时,图象过点(-2,-13).19.(12分)如图,已知一次函数y =kx +b 的图象经过A(-2,-1),B(1,3)两点,并且交x 轴于点C ,交y 轴于点D.(1)求该一次函数的解析式;(2)求△AOB 的面积.参考答案1.B 2.C 3.B 4.B 5.C 6.C 7.A 8.C 9.减小 10.y =-23x +2 11.-2 12.75.513.≥2 14.七15.函数y =2x +1的图象如下图所示:由图象可知,直线y =2x +1与x 轴交点坐标为(-12,0),∴方程2x +1=0的解为x =-12.16.(1)设一次函数的解析式是y =kx +b(k≠0).将A(-3,-5),B(1,3)两点代入,得⎩⎪⎨⎪⎧-3k +b =-5,k +b =3.解得⎩⎪⎨⎪⎧k =2,b =1.∴这个一次函数的解析式为y =2x +1.(2)把x =-2代入y =2x +1中,得y =2×(-2)+1=-3≠1. ∴点P(-2,1)不在这个一次函数的图象上. 17.(1)由题意知m -2<0, ∴m<2.又∵m 为正整数, ∴m =1.(2)图略. (3)2<x <6.18.(1)将点(34,0)代入得:34-94k +2k -1=0.解得k =-1.(2)∵当1-3k>0时,y 随x 增大而增大, ∴k<13.(3)将点(-2,-13)代入可得:-2+6k +2k -1=-13.解得k =-54.19.(1)把A(-2,-1),B(1,3)代入y =kx +b ,得⎩⎪⎨⎪⎧-2k +b =-1,k +b =3.解得⎩⎪⎨⎪⎧k =43,b =53.∴一次函数的解析式为y =43x +53.(2)把x =0代入y =43x +53,得y =53,∴D 点坐标为(0,53).∴S △AOB =S △AOD +S △BOD =12×53×2+12×53×1=52.。
八年级第二学期周周练二
一、选择题
1. 下列一次函数中,函数图像经过第二、三、四象限的是( )
A. 34y x =+
B. 34y x =-
C. 34y x =--
D. 34y x =- 2. 已知正比例函数y kx =的函数值y 随x 的增大而增大,那么一次函数1
2
y x k =-的大致图像是( )
3. 已知一次函数()33y a x a =++-不经过第二象限,那么a 的取值范围( ) A .3a -> B. 3a < C. 33a -<< D. 33a -<≤
4. 一次函数11y k x b =+和22y k x b =+,如果满足12b b >且120k k ⋅<,那么这两个函数的大致图像是( )
5. 甲乙两弹簧的长y (cm )与所挂物体质量x (kg )之间的函数图像如图所示. 设甲弹簧每挂1kg 物体伸长的长度为1k (cm ),乙弹簧每挂1kg 物体伸长的长度为
2k (cm ),那么1k 与2k 的大小关系是( )
A .12k k > B. 12=k k C. 12k k < D. 不能确定 6. 某产品的生产流水线每小时可生产150件产品,生产前已有100件产品积压,生产2小时后安排工人装箱. 如果每小时可装产品180件,未装箱的产品数y 是时间x 的函数,这个函数的大致图像是( )
x
y x
y x
y x
y
(D )
(B )(C )(A )O
O O
O
(A )(C )(B )(D )
1
1
)
7. 林师傅驾车从甲地前往乙地,两地相距520千米,汽车出发前油箱内有油40升,途中加油前后汽车都以每小时80千米的速度匀速行驶. 已知油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示. 以下说法错误的是( )
A .途中加油40升
B .加油前油箱中剩余油量y (升)与行驶时间t (小时)之间的函数解析式是1040y x =-+
C .汽车加油后还可以行驶5小时
D .汽车到达乙地时油箱中还剩余10升油. 二、填空题
8. 一次函数232y mx x =-+的函数值随y 随x 的增大而增大,那么m 的取值范围是______________ 9. 直线y kx b =+和直线2
53
y x =-+平行,那么一次函数y kx b =+的函数值随y 随x 的增大而_______________
10. 一次函数()2
3
22m
y m x
-=+-的图像经过第__________象限
11. 如果点()11,P x y 和()22,Q x y
在一次函数y kx =+当12x x >时,有12y y <,
那么这个一次函数的图像不经过第_______象限.
12. 已知直线31
12
m y x m -=
-+的图像经过第一、二、三象限,那么m 的取值范围是_____ 13. 已知一次函数y kx b =+,当0x =时,那么245y =;当x >0时,那么245
y <;那么
这个函数的解析式可能是___________(填写一个答案即可) 14. 一次函数112m y x m -=-+的图像经过点11,4⎛
⎫- ⎪⎝
⎭,那么这个函数图像经过第______
象限.
15. 已知一次函数()273y a x a =-+-的图像与x 轴的负半轴相交,那么a 的取值范围__________.
16. 已知一次函数y kx b =+的图像与x 轴交于点()2,0-,不等式0kx b +>的解集是
2x -<;那么这个函数图像不经过第________象限.
(B )
(C )
(A )
第7题图
17. 一次函数y kx b =+,当15x ≤≤时,函数值y 的取值范围是49y ≤≤,那么这个一次函数的解析式是_______________.
18. 某市出租车计费标准如下:3千米以内(包括3千米)收费14元;超过3千米,每千米加收2.5元. 当路程3x >千米时,车费y (元)与路程x (千米)之间的函数解析式是_________. 19. 在一次蜡烛燃烧试验中,蜡烛燃烧时剩余部分的高度y (cm )与燃烧时间x (h )之间为一次函数关系,根据图中提供的信息,蜡烛燃烧时y 与x 之间的函数解析式是____________,其定义域为____________.
20. 某品牌电热水器水箱内水量y (升)与供水时间x (分钟)之间为一次函数关系,根据图像提供的信息,水箱内水量y (升)与供水时间x (分钟)的函数解析式是______________________,20分钟时水箱内的水量是__________升.
21. 如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,AB =6,点P 是AB 边上的一个动点(不与A 、B 重合). 设AP =x ,△BPC 的面积为y ,那么y 关于x 的函数解析式是_____________,函数定义域为______________. 三、解答题:
22. 已知点()14,A y 和()23,B y -在一次函数()2
3
16m y m x
m -=-+-图像上,且12y y <. (1)求这个函数的解析式;(2)指出这个函数所经过的象限;(3)求这个函数图像与坐标
轴围成三角形的面积.
23. 一弹簧能挂重量不超过15kg ,在这个范围内,弹簧的长y (cm )是所挂重量x (kg )的一次函数;当挂重3kg 时,弹簧长12cm ;当挂重5kg 时,弹簧长15cm . (1)求弹簧长y 关于挂重x 的函数解析式;(2)当弹簧长18cm 时,求挂重
)
(分钟)
第21题图
第20题图
第19题图
24. 某单位每月都有复印任务,现有两家复印社供选择:
甲复印社:按每100页37元计算;
乙复印社:每月200元的承包费,可按每100页12元计费.
设该单位每月复印页数是x.
(1)写出选择甲复印社,每月复印费用y甲(元)与x之间的函数解析式;
(2)写出选择甲复印社,每月复印费用y乙(元)与x之间的函数解析式;
(3)如果你是该单位的负责人,你认为应该选择哪家复印社.
25. 在长跑比赛中,小明和小丽的路程y(千米)与时间x(分钟)的函数关系如图所示. 根据图像提供的信息,回答下列问题:
(1)本次比赛的总路程是________千米;
_______分钟,已跑的路程为______千米.
(3)小丽跑完全程,共用时_________分钟
(4)小明和小丽第一次相遇后,再经过______分钟,两人第
二次相遇.。