二项式定理知识点总结
- 格式:docx
- 大小:77.99 KB
- 文档页数:3
二项式定理知识点、题型与方法归纳一.知识梳理1.二项式定理:)()(*110N n b C b a C b a C a C b a n n n r r n r n n n n n n ∈+++++=+--ΛΛ.其中),,2,1,0(n r C rn Λ=叫二项式系数.式中得r rn r n b aC -叫二项展开式得通项,用1+r T 表示,即通项rr n r n r b a C T -+=1、2.二项展开式形式上得特点: (1)项数为n +1;(2)各项得次数都等于二项式得幂指数n ,即a 与b 得指数得与为n 、(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n 、(4)二项式得系数从C 0n ,C 1n ,一直到C n -1n ,C n n 、3.二项式系数得性质:(1)对称性:与首末两端“等距离”得两个二项式系数相等.即r n r n n C C -=(2)增减性与最大值:二项式系数C k n ,当k <n +12时,二项式系数逐渐增大.由对称性知它得后半部分就是逐渐减小得;当n 就是偶数时,中间一项2nn C 取得最大值;当n 就是奇数时,中间两项1122n n nnCC-+=取得最大值.(3)各二项式系数与:C 0n +C 1n +C 2n +…+C r n +…+C n n =2n ;C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1、 一个防范运用二项式定理一定要牢记通项T r +1=C r n an -r b r,注意(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式得某一项时就是不同得,一定要注意顺序问题,另外二项展开式得二项式系数与该项得(字母)系数就是两个不同得概念,前者只指C r n ,而后者就是字母外得部分.前者只与n 与r 有关,恒为正,后者还与a ,b 有关,可正可负. 两种应用(1)通项得应用:利用二项展开式得通项可求指定得项或指定项得系数等.(2)展开式得应用:利用展开式①可证明与二项式系数有关得等式;②可证明不等式;③可证明整除问题;④可做近似计算等. 三条性质(1)对称性;(2)增减性;(3)各项二项式系数得与; 二.题型示例【题型一】求()nx y +展开特定项例1:(1+3x )n (其中n ∈N *且n ≥6)得展开式中x 5与x 6得系数相等,则n =( ) BA 、6B 、7C 、8D 、9例2:⎝⎛⎭⎫x y -y x 8得展开式中x 2y 2得系数为________、(用数字作答) 70 【题型二】求()()m na b x y +++展开特定项例1:在(1-x )5+(1-x )6+(1-x )7+(1-x )8得展开式中,含x 3得项得系数就是( ) D A.74B.121C.-74D.-121【题型三】求()()mna b x y +⋅+展开特定项例1:已知(1+ax )(1+x )5得展开式中x 2得系数为5,则a =( ) DA 、-4B 、-3C 、-2D 、-1例2:在(1+x )6(1+y )4得展开式中,记x m y n 项得系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( ) C A.45 B.60 C.120D.210例3:若数列{}n a 就是等差数列,且6710a a +=,则在1212()()()x a x a x a ---L 得展开式中,11x 得系数为___、60-【题型四】求()nx y z ++展开特定项例1:求⎝⎛⎭⎫x 2+1x +25(x >0)得展开式经整理后得常数项、解:⎝⎛⎭⎫x 2+1x +25在x >0时可化为⎝ ⎛⎭⎪⎫x 2+1x 10,因而T r +1=C r 10⎝⎛⎭⎫1210-r ()x 10-2r ,则r =5时为常数项,即C 510·⎝⎛⎭⎫125=6322、例2:若将10)(z y x ++展开为多项式,经过合并同类项后它得项数为( ).DA.11B.33C.55D.66解:展开后,每一项都形如a b cx y z ,其中10a b c ++=,该方程非负整数解得对数为210266C +=。
数学二项式定理知识点
二项式定理是李斯特等人发现的最实用的定理之一,主要用于描述一些具有概率性质的问题,它根据事件A、B分别发生n次和m次,它们同时发生r次的概率之间的一种关系。
事件A、B可以表示投掷一次骰子、投掷两次骰子,扔掷一次硬币、扔掷两次硬币等不确定的事件。
二项式定理可以说明:事件A、B发生r次的概率可以表示为:
其中nCr表示从n个无序的不同元素中任取r个元素,并且按顺序排列起来所组成组合的个数。
特别的,当n=1时,二项式定理可以用下式表示:pA+pB=1,其中pA、pB分别代表对应事件发生的概率。
例如,投掷一次硬币的事件A和B分别是“正面”和“反面”发生的概率,则pA+pB=1,其中pA=pB=0.5。
二项式定理是概率统计中的重要定理,它的特点是可以解决一次(或多次)不确定事件发生次数的问题,即多次试验的随机变量(如抛硬币)。
在实际应用中,它也可以用来处理一次事件内容有n种可能情况,其中r种发生情况出现的概率,以及多个事件发生概率的关系等问题。
二项式定理可以也可以用来解决医学、金融等实际问题,例如药物副作用、金融期权等。
在医学上,它可用来表示某种药物给患者发作的概率reg=pA*pB*...,这就是某种长期服用的药物发作的情况;在金融上,它可以用来研究一定期限内可以购买某种期权的概率,即根据资本金额,在期限内获利的概率,即reg=pA*pB*...,可以表示投资者在某段期间获取获利的概率。
高中数学二项式定理知识点总结二项式定理是高中数学中的重要知识点,它是代数中的一个基本定理,也是数学中的一个重要定理。
二项式定理在数学中有着广泛的应用,不仅在数学理论中有着重要的地位,而且在实际问题中也有着重要的应用价值。
本文将对高中数学二项式定理的知识点进行总结,希望能够帮助大家更好地理解和掌握这一重要的数学知识点。
一、二项式定理的基本概念。
二项式定理是指对于任意实数a、b和非负整数n,都有以下公式成立:\((a+b)^n = C_n^0a^n b^0 + C_n^1a^{n-1} b^1 + C_n^2a^{n-2} b^2 + ... +C_n^na^0 b^n\)。
其中,\(C_n^k\)表示组合数,即从n个不同元素中取出k个元素的组合数,它的计算公式是:\(C_n^k = \frac{n!}{k!(n-k)!}\)。
二项式定理的基本概念就是利用组合数的性质,将二项式展开成多项式的形式,从而方便进行计算和运用。
二、二项式定理的应用。
1. 多项式展开。
二项式定理可以方便地将一个二项式展开成多项式的形式,从而简化计算。
例如,对于(a+b)²和(a+b)³,可以利用二项式定理将其展开成多项式的形式,从而方便进行计算。
2. 组合数的计算。
二项式定理中的组合数\(C_n^k\)在实际问题中有着重要的应用,例如在概率论、统计学等领域中,经常需要计算从n个不同元素中取出k个元素的组合数,而二项式定理提供了一种方便快捷的计算方法。
3. 概率计算。
二项式定理在概率计算中有着重要的应用,例如在二项分布中,就涉及到了二项式定理的应用。
通过二项式定理,可以方便地计算出在n次独立重复试验中成功次数为k的概率。
三、二项式定理的推广。
除了普通的二项式定理外,还有二项式定理的推广形式,如多项式定理、负指数幂的二项式定理等。
这些推广形式在数学理论和实际问题中都有着重要的应用价值,可以进一步丰富和拓展二项式定理的应用领域。
二项式定理1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:项数:共(1)r +项通项:1r n r r r nT C a b -+=展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()n a b +与()n b a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n nn n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
4.常用的结论:(令值法)令1,,a b x == 0122(1)()n r rn nnn n n n x C C x C x C x C x n N *+=++++++∈令1,,a b x ==- 0122(1)(1)()n r rn n nn n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =,···1k k n n C C -=②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=,变形式1221rnn n n n n C C C C +++++=-。
③奇数项的二项式系数和=偶数项的二项式系数和:0242132111222r r n n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⨯=④各项的系数的和:()()nbx a x g +=.令(1)奇数项系数和:()()[]1121-+g g 偶数项系数和:()()[]1g -1g 21⑤二项式系数的最大项:如果n 是偶数时,则中间项(第12n+)的二项式系数项2nn C 取得最大值。
关于二项式定理的知识点
嘿,朋友们!今天咱来聊聊超厉害的二项式定理呀!你可别小瞧它,这玩意儿用处大着呢!比如说,(展开 (a+b)^2 等于 a^2+2ab+b^2,这不就像搭积木一样,把不同的部分巧妙地组合起来了嘛!)二项式定理就像是一把神奇的钥匙,能打开好多数学问题的大门。
想象一下呀,我们面对一堆看似杂乱无章的式子,二项式定理就像个超级英雄闪亮登场,一下子就把它们变得井井有条啦!(好比 (a+b)^3 展开
后是a^3+3a^2b+3ab^2+b^3,多清楚呀!)它能帮我们快速找到规律,解决难题,这感觉是不是超棒的?
咱再想想那些复杂的概率问题,二项式定理也能派上大用场呢!(就像计算掷骰子多次后某个点数出现的概率,二项式定理就能助我们一臂之力呀!)它能让我们看清问题的本质,不再迷茫。
哎呀,反正二项式定理就是这么牛,它在数学世界里闪闪发光,为我们指引方向呀!怎么样,现在是不是对它特别感兴趣啦?是不是迫不及待想去深入了解它啦?
我的观点就是:二项式定理是数学中的一颗璀璨明珠,一定得好好掌握它!。
高中二项式定理知识点高中二项式定理知识点一、二项式定理的基本概念二项式定理是代数学中的一个重要定理,它描述了如何展开一个二项式的幂。
一个二项式指的是两个数之和或之差的表达式,如(a+b)^n就是一个二项式。
而二项式定理则给出了展开这样一个二项式的公式。
二、二项式定理的表达形式二项式定理有两种常见的表达形式:一是通用形式,即(a+b)^n;另一种是简化形式,即展开后的结果。
1. 通用形式通用形式表示了一个任意次数幂的二项式。
它可以写成:(a+b)^n = C(n,0)a^n b^0 + C(n,1)a^(n-1) b^1 + ... +C(n,k)a^(n-k) b^k + ... + C(n,n)a^0 b^n其中C(n,k)表示从n个元素中选取k个元素组成组合数。
2. 简化形式简化形式表示了展开后的结果,它可以写成:(a+b)^n = a^n + n a^(n-1) b^1 + C(n,2)a^(n-2) b^2 + ... + n a b^(n-1) + b^n三、应用举例1. 平方展开当幂指数为2时,即(a+b)^2,根据二项式定理,可以展开为:(a+b)^2 = a^2 + 2ab + b^2这个结果可以通过直接相乘验证。
2. 立方展开当幂指数为3时,即(a+b)^3,根据二项式定理,可以展开为:(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3同样地,这个结果也可以通过直接相乘验证。
四、二项式系数的性质1. 对称性质在二项式定理中,对称性质是指系数C(n,k)满足C(n,k) = C(n,n-k),即从n个元素中选取k个元素的组合数等于从n个元素中选取n-k个元素的组合数。
这是因为在展开二项式时,每一项的幂指数和次数之和都是相等的。
2. 杨辉三角形杨辉三角形是一个由二项式系数构成的三角形。
它的第n行第k列的元素就是C(n,k)。
杨辉三角形具有很多有趣的性质和应用,在组合学、概率论等领域有广泛应用。
高中数学二项式定理知识点总结一、二项式定理的概念和公式二项式定理是指两个数的整数次幂之和在展开时,任意一个数都可以拆开成两个数相乘的形式。
根据二项式定理,可以得到以下的公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²(a+b)³ = a³ + 3a²b + 3ab² + b³(a-b)³ = a³ - 3a²b + 3ab² - b³对于一般情况下的二项式展开,可以根据组合数的知识得出下列公式:(a+b)ⁿ = C(n,0) * aⁿ+ C(n,1) * aⁿ⁻¹b + C(n,2) * aⁿ⁻²b² + ... + C(n,n) * bⁿ其中,C(n,m)表示从n个元素中取m个元素的组合数。
二、二项式定理的应用1. 计算二项式的展开式利用二项式定理,可以将任意形式的二项式展开成为多项式,从而方便进行计算。
例如,对于 (x+2)³的展开式,根据二项式定理可以得到:(x+2)³ = x³ + 3x²*2 + 3x*2² + 2³= x³ + 6x² + 12x + 82. 求解组合数在概率论、统计学等领域中,经常需要计算组合数。
而组合数实际上就是二项式展开中的系数。
因此,通过二项式定理可以方便地求解组合数。
3. 计算二项式的特定项有时候并不需要将整个二项式展开,只需求解其中的某一项。
例如,对于(x+2)⁵ 的展开式,如果只需要求解其中x⁴ 的系数,可以直接利用二项式定理计算得出,而无需展开整个式子。
4. 解决数学问题在数学建模、求解等问题中,二项式定理也可以被广泛应用。
通过利用二项式定理,可以简化问题的表达和计算,从而更加方便地求解问题。
知识点一:二项式定理二项式定理:,其中:①公式右边的多项式叫做的二项展开式;②展开式中各项的系数叫做二项式系数;③式中的第r+1项叫做二项展开式的通项,用表示;二项展开式的通项公式为. 知识点二:二项展开式的特性①项数:有n+1项;②次数:每一项的次数都是n次,即二项展开式为齐次式;③各项组成:从左到右,字母a降幂排列,从n到0;字母b升幂排列,从0到n;④系数:依次为.知识点三:二项式系数的性质①对称性:二项展开式中,与首末两端“等距离”的两项的二项式系数相等②单调性:二项式系数在前半部分逐渐增大,在后半部分逐渐减小,在中间取得最大值.其中,当n为偶数时,二项展开式中间一项的二项式系数最大;当n为奇数时,二项展开式中间两项的二项式系数,相等,且最大.③二项式系数之和为,即其中,二项展开式中各奇数项的二项式系数之和等于各偶数项的二项式系数之和,即例1.求的展开式中分别符号下列条件的各项:(1)常数项(2)有理项(3)二项式系数最大项(4)系数绝对值最大的项例2.求的常数项.例3.求(x+2)10(x2-1)2的展开式中含x4的项.例4.已知.求(1)a0;(2)a20+a19+……+a1+a0;(3)a20+a18+a16+……+a2+a0.例5.试证:32n+2-8n-9(n∈N)能被64整除.例6.求0.9886的近似值,使误差小于0.001.课外练习:1.求(1-x)9展开式中系数最小的项.2.求(x+y+z)6的展开式中,含x3y2z项的系数值.3.化简.4.求(1+x)6(1-x)4的展开式中,x3的系数.5.若(63x+10y)73展开式中各项系数之和为A,(63x-10y)53展开式中各项项数之和为B,求A+B除以10所得余数.。
二项式定理与排列组合的应用知识点总结在数学中,二项式定理与排列组合是两个重要的概念。
二项式定理是代数中的一项基本定理,而排列组合是组合数学中的重要概念。
本文将对二项式定理和排列组合的应用进行知识点总结。
一、二项式定理二项式定理是数学中的一个重要定理,它是关于二项式与幂的展开公式。
二项式定理的公式表达如下:(a + b)^n = C(n, 0) * a^n * b^0 + C(n, 1) * a^(n-1) * b^1 + ... + C(n, n) * a^0 * b^n其中,C(n, k)表示组合数,即从n个元素中选择k个元素的组合数。
组合数的计算公式为:C(n, k) = n! / (k! * (n-k)!)二项式定理给出了二项式的展开公式,使我们可以快速求解幂指数较大的二项式。
其应用广泛,包括代数、概率统计等领域。
二、排列组合排列组合是组合数学中的一个分支,研究的是从给定的元素集合中选取出若干元素,按照一定规则进行排列或组合的方法。
排列和组合的计算公式如下:排列:P(n, k) = n! / (n-k)!组合:C(n, k) = n! / (k! * (n-k)!)其中,n表示元素的总个数,k表示选取的元素个数。
排列组合在实际问题中有着广泛的应用。
例如,在概率统计中,排列组合可用于计算事件发生的可能数;在密码学中,排列组合可用于计算密码的破解难度;在传统的魔方游戏中,排列组合可用于计算还原魔方的步骤等。
三、应用举例1. 掷硬币问题:将一枚硬币连续投掷3次,求出正反面出现的不同可能性。
解:根据排列组合的知识,将硬币的正反面看作两个元素,共有2个元素,从中选择3个元素排列,即为排列问题。
根据排列问题的计算公式,可得 P(2, 3) = 2! / (2-3)! = 2。
故,正反面出现的不同可能性为2种。
2. 发牌问题:从一副扑克牌中,随机抽出5张牌,在这5张牌中有几种同花色的可能性?解:根据排列组合的知识,将扑克牌的花色看作4个元素,从4个元素中选取1个元素,即为组合问题。
二项式定理一、基本知识点1、二项式定理:0111()()n n n r n r r n nn n n n a b C a C a b C a b C b n N --*+=+++++∈2、几个基本概念(1)二项展开式:右边的多项式叫做n b a )(+的二项展开式 (2)项数:二项展开式中共有1n +项(3)二项式系数:(0,1,2,,)rnr C n =叫做二项展开式中第1+r 项的二项式系数(4)系数:未知数前的常数叫做系数(注意系数不同于二项式系数)(4)通项:展开式的第1+r 项,即1(0,1,,)r n r rr nT C a b r n -+==3、展开式的特点(1)二项式系数都是组合数,依次为012,,,,,k nn n n n n C C C C C ⋅⋅⋅(2)指数的特点:① a 的指数 由0n → ( 降幂)。
② b 的指数由0n →(升幂)。
③ a 和b 的指数和为n 。
(3)展开式是一个恒等式,a ,b 可取任意的复数,n 为任意的自然数,一般2n ≥。
4、二项式系数的性质: (1)对称性:在二项展开式中,与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -=(2)增减性与最值二项式系数先增后减且在中间取得最大值当n 是偶数时,中间一项取得最大值2n nC当n 是奇数时,中间两项相等且同时取得最大值1122n n nnCC-+=(3)二项式系数的和:0122k n n nn n n n C C C C C +++⋅⋅⋅++⋅⋅⋅+= 变形式:1221k nn n n n n C C C C +++++=-奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令1,1a b ==-,则0123(1)(11)0n nn nn n n n C C C C C -+-++-=-=,从而得到:0242132111222r r n n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⨯=(4)奇数项的系数和与偶数项的系数和(注意不是二项式系数和):0011222012012001122202121001230123()()1, (1)1,(1)n n n n n nnn n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----令则①令则024135(1)(1),()2(1)(1),()2n nn n nn a a a a a a a a a a a a ----++-++++=+---+++=②①②得奇数项的系数和①②得偶数项的系数和(5)二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n nC 取得最大值。
高中数学二项式定理知识点总结一、二项式定理的定义二项式定理是代数学中的一个重要定理,它描述了一个二项式的整数次幂可以被展开为一系列项的和。
这个定理可以表示为:\( (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \)其中,\( a \) 和 \( b \) 是任意实数或复数,\( n \) 是非负整数,\( \binom{n}{k} \) 是组合数,表示从 \( n \) 个不同元素中取出\( k \) 个元素的组合数。
二、组合数的计算组合数 \( \binom{n}{k} \) 可以通过以下公式计算:\( \binom{n}{k} = \frac{n!}{k!(n-k)!} \)其中,\( n! \) 表示 \( n \) 的阶乘,即 \( n \) 乘以所有小于\( n \) 的正整数的乘积。
三、二项式展开式的通项公式二项式定理中的第 \( k+1 \) 项(从 0 开始计数)可以表示为:\( T_{k+1} = \binom{n}{k} a^{n-k} b^k \)这个公式用于直接计算二项式展开式中的特定项。
四、二项式定理的性质1. 二项式定理适用于所有实数和复数的二项式。
2. 当 \( a = b = 1 \) 时,二项式定理可以用来计算 \( 2^n \)。
3. 二项式定理中的项数总是等于指数 \( n+1 \)。
4. 当 \( n \) 为奇数时,展开式中的中间项的系数是最大的。
五、二项式定理的应用1. 计算概率论中的概率组合问题。
2. 解决物理学中的组合问题,如碰撞问题。
3. 在代数中,用于简化多项式的乘法和开方运算。
4. 在几何学中,用于计算多边形的对称性质。
六、特殊情形1. 当 \( n = 0 \) 时,二项式定理简化为 \( (a + b)^0 = 1 \)。
2. 当 \( a = 1 \) 时,二项式定理可以用来计算 \( (1 + b)^n \)的值。
二项式定理知识点及典型题型总结(经典)强烈推荐二项式定理是高中数学中的重要概念之一。
它表示了一个二元多项式的n次幂可以用二项式系数展开成一系列项的和。
其中,二项式系数是组合数,表示从n个元素中选取r个元素的方案数。
展开式共有n+1项,每一项的系数即为二项式系数。
展开式的指数有一些特点:a的指数从n开始递减,b的指数从0开始递增,a和b的指数之和为n。
需要注意的是,展开式是一个恒等式,a,b可以取任意的复数,n为任意的自然数,一般n≥2.二项式系数具有一些性质。
首先是对称性,即在二项展开式中,与首末两端“对距离”的两个二项式系数相等。
其次是增减性与最值,二项式系数先增后减,在中间取得最大值。
当n 是偶数时,中间一项取得最大值;当n是奇数时,中间两项相等且同时取得最大值。
此外,二项式系数的和也有一些特殊的形式。
奇数项的二项式系数和等于偶数项的二项式系数和,这可以通过二项式定理的特殊情况得到。
另外,奇数项的系数和与偶数项的系数和也可以用展开式表示出来。
总之,二项式定理是高中数学中的基础概念之一,具有很多特殊的性质。
熟练掌握这些概念和性质,对于高中数学的研究和应用都有很大的帮助。
题型一:利用通项公式求xn的系数例1、在二项式(4x+3)2n的展开式中倒数第3项的系数为45,求含有x3的项的系数?解析:由条件知系数等于二项式系数,Cn=45,解出n=10,代入展开式中可得:T7=C10,7(4x)7(3)3=210(4)7(3)3=所以含有x3的项的系数为.例2、求展开式(1+x)5中x4的系数。
解析:根据二项式定理可得:1+x)5=C5,0(1)5x0+C5,1(1)4x1+C5,2(1)3x2+C5,3(1)2x3+C5, 4(1)x4+C5,5x5所以x4的系数为C5,4=5.题型二:利用通项公式求常数项例3、求展开式(2x+3)6中的常数项。
解析:根据二项式定理可得:2x+3)6=C6,0(2x)6(3)0+C6,1(2x)5(3)1+C6,2(2x)4(3)2+C6,3( 2x)3(3)3+C6,4(2x)2(3)4+C6,5(2x)(3)5+C6,6(3)6所以常数项为C6,0(2x)6(3)0=2^6=64.题型五:奇数项的二项式系数和等于偶数项的二项式系数和。
课题:1.3二项式定理学科:数学年级:高二班级:学习目标:1.能用计数原理证明二项式定理.2.会用二项式定理解决与二项展开式有关的简单问题.重点:1.用两个计数原理分析(a+b)²的展开式,归纳地得出二项式定理,并能用计数原理证明;掌握二项展开式的通项公式;能应用它解决简单问题。
2.学会讨论二项式系数性质的一些方法难点:用两个计数原理分析(a+b)²的展开式;用两个计数原理证明二项式定理。
[知识梳理]1.二项式定理(1)定理公式(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*)叫作二项式定理.(2)通项T k+1=C k n a n-k b k为展开式的第k+1项.2.二项式系数与项的系数(1)二项式系数0,1,…,n)叫作二项式系数.二项展开式中各项的系数C k n(k∈{}(2)项的系数项的系数是该项中非字母因数部分,包括符号等,与二项式系数是两个不同的概念.3.二项式系数的性质当n 是偶数时,中间一项⎝ ⎛⎭⎪⎫第n 2+1项的二项式系数最大,最大值为C n 2n ;当n 是奇数时,中间两项⎝ ⎛⎭⎪⎫第n -12+1项和第n +12+1项的二项式系数相等,且同时取得最大值,最大值为(a +b )n 的展开式的各个二项式系数的和等于2n ,即C 0n +C 1n +C 2n +…+C k n +…+C n n =2n . 二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n +…=2n -1. 一 、二项展开式中特定项或系数问题求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.二、 二项式系数及项的系数问题赋值法研究二项式的系数和问题“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n 、(ax 2+bx +c )m (a ,b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.三、 多项式展开式中的特定项或系数问题在高考中,常常涉及一些多项式问题,主要考查学生的化归能力.常见的命题角度有:(1)几个多项式和的展开式中的特定项(系数)问题.(2)几个多项式积的展开式中的特定项(系数)问题.(3)三项展开式中的特定项(系数)问题.1.对于几个多项式和的展开式中的特定项(系数)问题,只需依据二项展开式的通项,从每一项中分别得到特定的项,再求和即可.2.对于几个多项式积的展开式中的特定项问题,一般都可以根据因式连乘的规律,结合组合思想求解,但要注意适当地运用分类方法,以免重复或遗漏.3.对于三项式问题一般先变形化为二项式再解决.。
二项式定理与排列组合的知识点总结二项式定理是高中数学中的一个重要定理,它与排列组合有着密切的联系。
本文将对二项式定理和排列组合的知识点进行总结,希望能够为读者提供清晰明了的概念和理解。
一、排列组合的基本概念排列组合是数学中研究对象的一种组织方式。
排列是指将一组元素按照一定顺序进行布置,而组合是指从一组元素中取出若干元素组成一个集合。
1. 排列排列是指从一组元素中有序地选取若干个元素进行布置。
主要分为两种类型:有放回排列和无放回排列。
有放回排列是指在选择完元素后将其放回原处,元素可以被多次选取。
而无放回排列是指在选择完元素后不放回,下次选择时不能再选取。
2. 组合组合是指从一组元素中无序地选择若干个元素进行组合。
同样地,组合也可以分为有放回组合和无放回组合两种类型。
二、二项式定理的概念和公式二项式定理是代数学中的一个重要定理,用于展开二项式的幂。
它表述了如下公式:(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)ab^(n-1) + C(n,n)b^n其中,a,b是实数或者变量,n为非负整数。
C(n, k)表示从n个元素中取出k个元素的组合数,也称为二项系数。
具体计算公式如下:C(n, k) = n! / (k!(n-k)!)三、二项式定理与排列组合的关系二项式定理中的二项系数C(n, k)正是组合数的计算公式,说明了二项式展开式中各项系数的求解方法。
1. 二项式系数的性质二项系数具有一些重要的性质,包括对称性、加法原理和乘法原理等。
这些性质在解决排列组合问题时具有重要的指导作用。
2. 应用举例利用二项式定理和排列组合的知识,可以解决一些实际问题。
比如,求解一组数的幂展开式中某一项的系数、计算某些特殊排列组合的总数等等。
四、应用示例在实际应用中,二项式定理与排列组合经常被用于解决一些概率、统计和计算问题。
二项式定理知识点总结资料
二项式定理是代数学中的一个重要定理,它用于计算任意正整数指数的二项式的展开式。
二项式定理的数学表达式为:
(a+b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + ... +
C(n,n-1) * a^1 * b^(n-1) + C(n,n) * a^0 * b^n
其中,n为任意正整数,a和b为实数或变量,C(n,k)表示组合数,计算公式为:
C(n,k) = n! / (k! * (n-k)!)
该公式表示从n个不同元素中选择k个元素的组合数。
二项式定理的主要思想是将二项式展开为一系列的项,并且每一项的指数和为n,系数为组合数。
通过这种方式,可以计算出任意正整数指数的二项式的展开式。
二项式定理的应用包括:
1. 计算二项式系数。
通过使用二项式定理可以计算出任意两个数之和的平方的展开式,从而得到二项式系数的计算公式。
2. 计算多项式。
通过使用二项式定理可以计算出任意正整数指数的多项式的展开式,从而可以计算多项式的值。
3. 计算概率。
二项式定理可以用于概率计算中的二项分布,通过计算二项分布的概率可以进行概率统计。
4. 解决组合问题。
通过使用二项式定理可以解决组合问题,包括计算排列组合、计算不重复抽样、计算置换组合等。
二项式定理是代数学中的一项重要定理,它可以用于计算任意正整数指数的二项式的展开式,以及解决一系列与组合相关的问题。
二项式定理要点一:二项式定理1.定义一般地,对于任意正整数n ,都有:nn n r r n r n n n n n n b C b a C b a C a C b a +++++=+-- 110)((*N n ∈),这个公式所表示的定理叫做二项式定理, 等号右边的多项式叫做n b a )(+的二项展开式.式中的rn rr n C ab -做二项展开式的通项,用T r+1表示,即通项为展开式的第r+1项:1r n r r r n T C a b -+=,其中的系数rn C (r=0,1,2,…,n )叫做二项式系数, 2.二项式(a+b)n 的展开式的特点:(1)项数:共有n+1项,比二项式的次数大1;(2)二项式系数:第r+1项的二项式系数为rn C ,最大二项式系数项居中;(3)次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b 升幂排列,次数从0到n ,每一项中,a ,b 次数和均为n ;3.两个常用的二项展开式:①011()(1)(1)n n n r r n r rn n nn n n n a b C a C a b C a b C b ---=-++-⋅++-⋅(*N n ∈)②122(1)1n r r n n n n x C x C x C x x +=++++++要点二、二项展开式的通项公式二项展开式的通项:公式特点:①它表示二项展开式的第r+1项,该项的二项式系数是r n C ;②字母b 的次数和组合数的上标相同; ③a 与b 的次数之和为n. 要点诠释:(1)二项式(a+b)n 的二项展开式的第r+1项rn rr n C a b -和(b+a)n 的二项展开式的第r+1项r n rr n C ba -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的.(2)通项是针对在(a+b)n 这个标准形式下而言的,如(a -b)n 的二项展开式的通项是1(1)r r n r r r n T C a b -+=-(只需把-b 看成b 代入二项式定理).要点三:二项式系数及其性质1.杨辉三角和二项展开式的推导.在我国南宋,数学家杨辉于1261年所著的《详解九章算法》如下表,可直观地看出二项式系数.n b a )(+展开式中的二项式系数,当n 依次取1,2,3,…时,如下表所示:1)(b a +………………………………………1 1 2)(b a +……………………………………1 2 13)(b a +…………………………………1 3 3 1 4)(b a +………………………………1 4 6 4 15)(b a +……………………………1 5 10 10 5 1 6)(b a +…………………………1 6 15 20 15 6 1 …… …… ……上表叫做二项式系数的表, 也称杨辉三角(在欧洲,这个表叫做帕斯卡三角),反映了二项式系数的性质.表中每行两端都是1,而且除1以外的每一个数都等于它肩上的两个数的和.用组合的思想方法理解(a+b)n 的展开式中n r r a b -的系数rn C 的意义:为了得到(a+b)n展开式中n r r a b -的系数,可以考虑在()()()na b a b a b +++这n 个括号中取r 个b ,则这种取法种数为rn C ,即为n r r a b -的系数.2.()na b +的展开式中各项的二项式系数0n C 、1n C 、2n C …nn C 具有如下性质:①对称性:二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即rn n r n C C -=;②增减性与最大值:二项式系数在前半部分逐渐增大,在后半部分逐渐减小,在中间取得最大值.其中,当n为偶数时,二项展开式中间一项的二项式系数2nn C 最大;当n 为奇数时,二项展开式中间两项的二项式系数21-n n C ,21+n n C 相等,且最大.③各二项式系数之和为2n,即012342n n n n n n n n C C C C C C ++++++=;④二项展开式中各奇数项的二项式系数之和等于各偶数项的二项式系数之和,即15314202-=+++=+++n n n n n n nC C C C C C . 要点诠释:二项式系数与展开式的系数的区别二项展开式中,第r+1项rr n r n b a C -的二项式系数是组合数rn C ,展开式的系数是单项式rr n r n b a C -的系数,二者不一定相等.如(a -b)n 的二项展开式的通项是1(1)r r n r rr n T C a b -+=-,在这里对应项的二项式系数都是r n C ,但项的系数是(1)r rn C -,可以看出,二项式系数与项的系数是不同的概念.3.()na b c ++展开式中p q r a b c 的系数求法(,,0p q r ≥的整数且p q r n ++=)rq q r n q r n r n r r n r n n n c b aC C c b a C c b a c b a ----=+=++=++)(])[()( 如:10)(c b a ++展开式中含523c b a 的系数为!5!2!3!105527310⨯⨯=C C C要点诠释:三项或三项以上的展开式问题,把某两项结合为一项,利用二项式定理解决. 要点四:二项式定理的应用1.求展开式中的指定的项或特定项(或其系数).2.利用赋值法进行求有关系数和.二项式定理表示一个恒等式,对于任意的a ,b ,该等式都成立.利用赋值法(即通过对a 、b 取不同的特殊值)可解决与二项式系数有关的问题,注意取值要有利于问题的解决,可以取一个值或几个值,也可以取几组值,解决问题时要避免漏项等情况.设2012()()n n n f x ax b a a x a x a x =+=++++(1) 令x=0,则0(0)na fb ==(2)令x=1,则012(1)()n n a a a a f a b ++++==+(3)令x=-1,则0123(1)(1)()n n n a a a a a f a b -+-+-=-=-+(4)024(1)(-1)2f f a a a ++++=(5)135(1)-(-1)2f f a a a +++=3.利用二项式定理证明整除问题及余数的求法:如:求证:98322--+n n 能被64整除(*N n ∈) 4.证明有关的不等式问题:有些不等式,可应用二项式定理,结合放缩法证明,即把二项展开式中的某些正项适当删去(缩小),或把某些负项删去(放大),使等式转化为不等式,然后再根据不等式的传递性进行证明.①nx x n+>+1)1(;②22)1(1)1(x n n nx x n -++>+;(0>x ) 如:求证:n n)11(2+< 5.进行近似计算:求数的n 次幂的近似值时,把底数化为最靠近它的那个整数加一个小数(或减一个小数)的形式.当||x 充分小时,我们常用下列公式估计近似值: ①nx x n+≈+1)1(;②22)1(1)1(x n n nx x n -++≈+; 如:求605.1的近似值,使结果精确到0.01;。
二项式定理知识点总结一、二项式系数在介绍二项式定理之前,我们首先要了解二项式系数。
二项式系数是组合数学中的一个重要概念,它表示了从n个不同元素中取出k个元素的所有可能组合的数量。
二项式系数通常用符号表示,其计算公式如下:\[\binom{n}{k} = \frac{n!}{k!(n-k)!}\]其中,n表示元素的总数,k表示需要取出的元素的数量,n!表示n的阶乘,即n!=n*(n-1)*(n-2)*...*1。
二项式系数的计算公式是非常基础和重要的,它在组合数学、概率论等领域都有着广泛的应用。
二项式系数也可以用Pascal三角形来进行计算,Pascal三角形是一个由数字排列成的三角形,每个数字等于它上方两个数字的和。
Pascal三角形的第n行第k列的数字就是二项式系数\(\binom{n}{k}\)。
二、二项式定理的公式二项式定理是代数中的一个重要定理,它描述了一个二项式的幂展开式中各项的系数。
二项式定理的公式如下:\[(a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k\]其中,\(a\)、\(b\)表示实数或复数,\(n\)表示非负整数。
公式中的\(\sum\)表示求和,\(\binom{n}{k}\)表示二项式系数。
公式右边的表达式表示了一个二项式的\(n\)次幂展开式,其中\(a^{n-k}\)和\(b^k\)表示了\(a\)和\(b\)的幂次,\(\binom{n}{k}\)表示了展开式中每一项的系数。
二项式定理的公式是非常重要的,它在代数、组合数学和概率论等领域都有着广泛的应用。
在实际问题中,我们常常需要对一个二项式的幂展开式进行求和或分析,二项式定理提供了一个非常方便的方法来进行这些计算。
三、二项式定理的应用二项式定理在代数、组合数学和概率论等领域都有着广泛的应用,下面我们将分别介绍一些常见的应用。
1. 代数在代数中,二项式定理可以用来求解多项式的幂展开式。
二项式定理知识点总结
二项式定理是一个关于排列组合计算的定理。
它是已知整数n和k,该定理对应于n个不同对象从中挑选k个对象,排列组合共有
$ C_{n}^{k}\\$种情况。
主要包括:
一、定义:
二项式定理定义为:令$ C_{n}^{k}\\$表示从n个不同的元素中取出k
个元素的所有可能组合,则有
$$C_{n}^{k}=\frac{n!}{k!(n-k)!}$$
二、特点:
(1)二项式有逆元素:$C_{n}^{k}=C_{n}^{n-k}$
(2)$C_{n}^{k}$是一个单调函数,即$k\gt n-k$时,$C_{n}^{k}$是一个单增函数,反之$C_{n}^{k}$是一个单减函数。
(3)$C_{n}^{0}=C_{n}^{n}=1$
三、应用:
二项式定理应用主要是赋予概率分布、抽样、计算机科学以及计算复
杂性等,它们在统计学上大量应用,其特点是一次可以抽取多个,也可以不抽取,以及抽取的元素之间的顺序无所谓,这都可以用二项式定理来解决;并且它也可以应用在记忆过程,以及各类技术中。
二项式定理知识点总结材料一、二项式定理的定义二项式定理是指如何展开一个二项式的幂的公式。
设a、b为实数,n为非负整数,则二项式定理的公式为:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+C(n,2)a^(n-2)b^2+...+C(n,r)a^(n-r)b^r+...+C(n,n)b^n其中,C(n,r)为组合数,表示从n个元素中选出r个元素的组合方式的数量。
二、二项式定理的推导二项式定理的推导可以使用数学归纳法来进行。
当n=1时,(a+b)^1=a+b,符合公式。
假设当n=k时,公式成立,即(a+b)^k=C(k,0)a^k+C(k,1)a^(k-1)b+...+C(k,r)a^(k-r)b^r+...+C(k,k)b^k。
要证明当n=k+1时,公式也成立。
可以利用二项式定理展开(a+b)^(k+1):(a+b)^(k+1)=(a+b)*(a+b)^k=(a+b)*(C(k,0)a^k+C(k,1)a^(k-1)b+...+C(k,r)a^(k-r)b^r+...+C(k,k)b^k)= C(k,0)a^(k+1) + C(k,1)a^kb + ... + C(k,r)a^(k-r+1)b^r + ... + C(k,k-1)ab^k + C(k,k)b^(k+1)= C(k,0)a^(k+1) + (C(k,1)a^k + C(k,1)a^(k-1))b + ... +(C(k,r)a^(k-r) + C(k,r-1)a^(k-r+1))b^r + ... + C(k,k-1)ab^k +C(k,k)b^(k+1)= C(k,0)a^(k+1) + C(k+1,1)a^kb + ... + C(k+1,r)a^(k-r+1)b^r+ ... + C(k+1,k)a^1b^k + C(k+1,k+1)b^(k+1)从推导过程可以看出,当n=k+1时,展开的结果可以重新写成符合二项式定理的形式,因此当n=k+1时,公式也成立。
二项式定理知识点总结
1.二项式定理公式:
011
()()n n n r n r r
n n
n n n n a b C a C a b C a b C b n N --*+=+++++∈,
2.基本概念:
①二项式展开式:右边的多项式叫做()n
a b +的二项展开式。
②二项式系数:展开式中各项的系数r
n
C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r
n r
r n C a
b -叫做二项式展开式的通项。
用1r n r r r n T C a b -+=表示。
3.注意关键点:
①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()n
a b +与()n
b a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n .
④系数:注意正确区分二项式系数与项的系数,二项式系数依次是0
1
2
,,,,,,.
r
n
n n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
4.常用的结论:
令1,,a b x == 0122
(1)()n r r n n
n n n n n x C C x C x C x C x n N *+=+++
+++∈
令1,,a b x ==- 0122(1)(1)()n r r
n n n
n
n n n n x C C x C x C x C x n N *-=-+-+++-∈
5.性质:
①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即
0,n n n C C =·1
k k n n C C -=
②二项式系数和:令1a b ==,则二项式系数的和为012
2r
n
n n
n n n n C C C C C ++++++=,
变形式12
21r n
n n n n n C C C C +++++=-。
③奇数项的二项式系数和=偶数项的二项式系数和:
在二项式定理中,令1,1a b ==-,则0123
(1)(11)0n n
n n n n n n C C C C C -+-+
+-=-=,
从而得到:024213
21
11222
r r n n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++
++⋅⋅⋅=⨯=
④奇数项的系数和与偶数项的系数和:
0011222
0120120011222021210
01230123()()1, (1)1,(1)n n n n n n
n
n n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=+++
+=+
+++=++++=+---------=--+-++=-----024135
(1)(1),(
)2
(1)(1),(
)
2
n n
n n n
n a a a a a a a a a a a a ----
++-++++=+---
+++=
⑤二项式系数的最大项:
如果二项式的幂指数n 是偶数时,则中间一项的二项式系数21
2n n
n C T +=取得最大值。
如果二项式的幂指数n 是奇数时,则中间两项的二项式系数1
21
2
n n
n
T C
--=,121
2n n
n C
T ++=同时取
得最大值,且。
⑥系数的最大项:
求()n
a bx +展开式中最大的项,一般采用待定系数法。
设展开式中各项系数分别
为121,,,n A A A +⋅⋅⋅,设第1r +项系数最大,应有112
r r
r r A A A A +++≥⎧⎨≥⎩,从而解出r 来。
2121+-=n n
n n C C。