二项式定理知识点总结(2020年10月整理).pptx
- 格式:pptx
- 大小:58.85 KB
- 文档页数:8
二项式定理一、基本知识点1、二项式定理:)()(1110*--∈+++++=+N n b C b a C b a C a C b a n n n r r n r n n n n nn 2、几个基本概念(1)二项展开式:右边的多项式叫做n b a )(+的二项展开式 (2)项数:二项展开式中共有1+n 项(3)二项式系数:),,2,1,0(n r C rn=叫做二项展开式中第1+r 项的二项式系数 (4)通项:展开式的第1+r 项,即),,1,0(1n r b a C T rr n r nr ==-+ 3、展开式的特点(1)系数 都是组合数,依次为C 1n ,C 2n ,C nn ,…,C nn(2)指数的特点①a 的指数 由n 0( 降幂)。
②b 的指数由0 n (升幂)。
③a 和b 的指数和为n 。
(3)展开式是一个恒等式,a ,b 可取任意的复数,n 为任意的自然数。
4、二项式系数的性质: (1)对称性:在二项展开式中,与首末两端等距离的任意两项的二项式系数相等.即 (2)增减性与最值二项式系数先增后减且在中间取得最大值当n 是偶数时,中间一项取得最大值2n nC当n 是奇数时,中间两项相等且同时取得最大值21-n nC=21+n nC(3)二项式系数的和:奇数项的二项式系数的和等于偶数项的二项式系数和.即mn n m n C C -=nnn k n n n n C C C C C 2210=+⋅⋅⋅++⋅⋅⋅+++∴0213n-1n n n n C +C +=C +C +=2二项式定理的常见题型一、求二项展开式1.“n b a )(+”型的展开式 例1.求4)13(xx +的展开式;a2. “n b a )(-”型的展开式 例2.求4)13(xx -的展开式;3.二项式展开式的“逆用”例3.计算c C C C nn n n n n n 3)1( (279313)21-++-+-;二、通项公式的应用 1.确定二项式中的有关元素例4.已知9)2(x x a -的展开式中3x 的系数为49,常数a 的值为2.确定二项展开式的常数项 例5.103)1(xx -展开式中的常数项是3.求单一二项式指定幂的系数 例6. 92)21(xx -展开式中9x 的系数是三、求几个二项式的和(积)的展开式中的条件项的系数例7.5432)1()1()1()1()1(-+---+---x x x x x 的展开式中,2x 的系数等于例8.72)2)(1-+x x (的展开式中,3x 项的系数是四、利用二项式定理的性质解题 1. 求中间项 例9.求(103)1xx -的展开式的中间项;。
二项式定理简介二项式定理是高中数学中的一个重要定理,是关于二项式展开的公式。
二项式展开是将一个二项式的幂次展开成一系列项的乘积的形式。
它在数学和物理等领域中都有重要的应用。
本文将详细介绍二项式定理的定义、推导过程以及应用。
定义在数学中,二项式指两项的和,具体表示为:(a + b)^n二项式定理给出了这个二项式的展开式,形式如下:(a + b)^n = C(n,0)a^n b^0 + C(n,1)a^(n-1)b^1 +C(n,2)a^(n-2)b^2 + ... + C(n,n-1)a^1 b^(n-1) +C(n,n)a^0 b^n其中,C(n,k)表示组合数,即从n个元素中选取k个元素的方式数。
推导过程为了推导出二项式定理,我们可以通过数学归纳法进行演绎。
下面是推导的过程:Step 1:当n = 1时,二项式定理成立。
因为此时(a +b)^1 = a + b。
Step 2:假设当n = k时,二项式定理成立。
即(a + b)^k = C(k,0)a^k b^0 + C(k,1)a^(k-1)b^1 + ... + C(k,k-1)a^1 b^(k-1) + C(k,k)a^0 b^k。
Step 3:考虑当n = k+1时,我们可以将(a + b)^(k+1)展开为(a + b) * (a + b)^k。
通过展开乘法运算,我们可以得到:(a + b) * (a + b)^k = a * (a + b)^k + b * (a + b)^k = a * (C(k,0)a^k b^0 + C(k,1)a^(k-1)b^1 + ... + C(k,k-1)a^1 b^(k-1) + C(k,k)a^0 b^k) + b * (C(k,0)a^k b^0 + C(k,1)a^(k-1)b^1 + ... +C(k,k-1)a^1 b^(k-1) + C(k,k)a^0 b^k)。
Step 4:对上式进行整理和合并同类项,可以得到(a +b)^(k+1)的展开式:(a + b)^(k+1) = C(k,0)a^(k+1)b^0 + (C(k,1) + C(k,0))a^k b^1 + ... + (C(k,k-1) + C(k,k))a^1 b^k + C(k,k) a^0 b^(k+1)。
完整版)二项式定理知识点及典型题型总结二项式定理一、基本知识点1、二项式定理:(a+b)^n = C(n,0)a^n + C(n,1)a^(n-1)b +。
+ C(n,n)b^n (n∈N*)2、几个基本概念1)二项展开式:右边的多项式叫做(a+b)^n的二项展开式2)项数:二项展开式中共有n+1项3)二项式系数:C(n,r) = n!/r!(n-r)!4)通项:展开式的第r+1项,即T(r+1) = C(n,r) * a^(n-r) * b^r3、展开式的特点1)系数都是组合数,依次为C(n,1)。
C(n,2)。
…。
C(n,n)2)指数的特点①a的指数由n到0(降幂)。
②b的指数由0到n(升幂)。
XXX和b的指数和为n。
3)展开式是一个恒等式,a,b可取任意的复数,n为任意的自然数。
4、二项式系数的性质:1)对称性: 在二项展开式中,与首末两端等距离的任意两项的二项式系数相等.2)增减性与最值: 二项式系数先增后减且在中间取得最大值当n是偶数时,中间一项取得最大值C(n,n/2)当n是奇数时,中间两项相等且同时取得最大值C(n,(n-1)/2)C(n-1.m) = C(n。
m) + C(n。
m-1)C(n,0) + C(n,1) +。
+ C(n,n) = 2^n3)二项式系数的和:奇数项的二项式系数的和等于偶数项的二项式系数和.即 C(n,0) - C(n,2) + C(n,4) -。
= 2^(n-1)二项式定理的常见题型一、求二项展开式1.“(a+b)^n”型的展开式例1.求(3x+2y)^42.“(a-b)^n”型的展开式例2.求(3x-2y)^43.二项式展开式的“逆用”例3.计算1-3C(n,1) + 9C(n,2) - 27C(n,3) +。
+(-1)^n*3nC(n,n)二、通项公式的应用1.确定二项式中的有关元素例4.已知((-ax)/(9x^2+1))^9的展开式中x^3的系数为9,常数a的值为1/32.确定二项展开式的常数项例5.(x-3/x)^10展开式中的常数项是2433.求单一二项式指定幂的系数例6.(x^2-3y)^6中x^3y^3的系数为-540三、求几个二项式的和(积)的展开式中的条件项的系数例7.(x-1)^-1(x-1)^2(x-1)^3(x-1)^4(x-1)^5的展开式中,x^2的系数等于-101.展开式中,求(x-2)(x^2+1)^7展开式中x^3的系数。
二项式定理知识点总结二项式定理专题一、二项式定理:二项式定理是一个重要的恒等式,它表示了任意实数a,b 和正整数n之间的关系。
具体地,对于任意正整数n和实数a,b,有以下恒等式成立:a+b)^n = C(n,0)*a^n + C(n,1)*a^(n-1)*b +。
+ C(n,n-1)*a*b^(n-1) + C(n,n)*b^n其中,C(n,k)表示从n个元素中选取k个元素的组合数,也就是n个元素中取k个元素的方案数。
右边的多项式叫做(a+b)的二项式展开式,其中各项的系数C(n,k)叫做二项式系数。
二项式定理的理解:1)二项展开式有n+1项。
2)字母a按降幂排列,从第一项开始,次数由n逐项减1到0;字母b按升幂排列,从第一项开始,次数由0逐项加1到n。
3)二项式定理表示一个恒等式,对于任意的实数a,b,等式都成立。
通过对a,b取不同的特殊值,可为某些问题的解决带来方便。
例如,当a=1,b=x时,有以下恒等式成立:1+x)^n = C(n,0) + C(n,1)*x +。
+ C(n,n-1)*x^(n-1) +C(n,n)*x^n4)要注意二项式定理的双向功能:一方面可将二项式(a+b)展开,得到一个多项式;另一方面,也可将展开式合并成二项式(a+b)^n。
二、二项展开式的通项公式:二项展开式的通项公式是指,二项式展开式中第k+1项的系数C(n,k)的公式。
具体地,对于任意正整数n和实数a,b,有以下通项公式成立:T(k+1) = C(n,k)*a^(n-k)*b^k其中,T(k+1)表示二项式展开式中第k+1项的系数。
通项公式体现了二项展开式的项数、系数、次数的变化规律,是二项式定理的核心。
它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用。
三、二项展开式系数的性质:在二项式展开式中,二项式系数具有以下性质:①对称性:与首末两端“等距离”的两项的二项式系数相等,即C(n,0) = C(n,n)。
二项式定理知识点归纳总结一、二项式定理公式。
1. 二项式定理。
- 对于(a + b)^n=∑_k = 0^nC_n^ka^n - kb^k,其中n∈ N^*。
- 这里C_n^k=(n!)/(k!(n - k)!),叫做二项式系数。
例如(a + b)^2=a^2 +2ab+b^2,这里n = 2,当k = 0时,C_2^0a^2-0b^0=a^2;当k = 1时,C_2^1a^2 -1b^1=2ab;当k = 2时,C_2^2a^2-2b^2=b^2。
2. 二项展开式的通项公式。
- 二项式(a + b)^n展开式的第k + 1项T_k+1=C_n^ka^n - kb^k(k = 0,1,·s,n)。
例如在(x+2)^5中,其通项公式为T_k + 1=C_5^kx^5 - k2^k。
当k = 2时,T_3=C_5^2x^5-22^2=10× x^3×4 = 40x^3。
二、二项式系数的性质。
1. 对称性。
- 与首末两端“等距离”的两个二项式系数相等,即C_n^k=C_n^n - k。
例如在(a + b)^6中,C_6^2=(6!)/(2!(6 - 2)!)=(6×5)/(2×1)=15,C_6^4=(6!)/(4!(6 -4)!)=(6×5)/(2×1)=15,所以C_6^2 = C_6^4。
2. 增减性与最大值。
- 当n是偶数时,中间一项(第(n)/(2)+1项)的二项式系数C_n^(n)/(2)取得最大值;当n是奇数时,中间两项(第(n + 1)/(2)项和第(n+3)/(2)项)的二项式系数C_n^(n - 1)/(2)=C_n^(n+1)/(2)相等且取得最大值。
- 二项式系数先增大后减小,其增减性由frac{C_n^k}{C_n^k - 1}=(n - k+1)/(k)来判断。
当(n - k + 1)/(k)>1,即k<(n + 1)/(2)时,二项式系数逐渐增大;当(n -k+1)/(k)<1,即k>(n + 1)/(2)时,二项式系数逐渐减小。
二项式定理知识点总结一、二项式的定义:二项式是指两个数的和或差,可以用如下形式表示:(a+b)^n或(a-b)^n其中,a和b是常数,n是正整数,n称为指数。
二、二项式的展开:1.二项式定理(加法形式):(a+b)^n=C(n,0)a^nb^0+C(n,1)a^(n-1)b^1+C(n,2)a^(n-2)b^2+...+C(n,n-2)a^2b^(n-2)+C(n,n-1)a^1b^(n-1)+C(n,n)a^0b^n其中,C(n,k)表示从n个不同元素中取出k个元素的组合数,也称为二项系数。
2.二项式定理(减法形式):(a-b)^n=C(n,0)a^nb^0-C(n,1)a^(n-1)b^1+C(n,2)a^(n-2)b^2-...+(-1)^(n-2)C(n,n-2)a^2b^(n-2)-(-1)^(n-1)C(n,n-1)a^1b^(n-1)+(-1)^nC(n,n)a^0b^n注意,在减法形式的展开中,减号和负号交替出现。
三、二项式的性质:1.二项式展开的项数为n+1个;2.二项式展开的项之和为2^n;3.二项式展开式中各项的指数和为n;4.二项式展开式中各项的系数为C(n,k)。
四、二项式系数的计算:使用组合数的性质可以计算二项系数:C(n,k)=n!/(k!*(n-k)!)其中,!表示阶乘。
五、二项式定理的应用:另外,二项式展开还可以用于解决数学中的各种问题,如排列组合、概率论、代数等等。
在组合数学中,二项式系数有很多应用,例如计算排列数、二项式系数的性质等。
六、帕斯卡三角形与二项式系数:帕斯卡三角形是由二项式系数构成的一种数列,其性质如下:1.三角形的第n行有n+1个数;2.三角形的边界数都是1;3.三角形的每个数等于它上方两个数之和;4.三角形的第n行第k个数等于C(n,k)。
通过帕斯卡三角形可以方便地计算二项系数,也可以获得二项式展开的各项系数。
综上所述,二项式定理是数学中的重要概念,它描述了二项式的展开形式,可以方便地计算逐项系数和整个展开式。
二项式定理知识点总结1.二项式定理公式:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式;②二项式系数:展开式中各项的系数rnC (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项rn rr n C ab -叫做二项式展开式的通项;用1r n r rr nT C a b -+=表示; 3.注意关键点:①项数:展开式中总共有(1)n +项;②顺序:注意正确选择a ,b ,其顺序不能更改;()na b +与()nb a +是不同的;③指数:a 的指数从n 逐项减到0,是降幂排列;b 的指数从0逐项减到n ,是升幂排列;各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.rnn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数包括二项式系数;4.常用的结论:令1,,a b x == 0122(1)()n r r n nn n n n n x C C x C x C x C x n N *+=++++++∈令1,,a b x ==- 0122(1)(1)()n r rn n nnn n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0,n n n C C =·1k k n n C C -=②二项式系数和:令1a b ==,则二项式系数的和为0122rnn nn n n n C C C C C ++++++=,变形式1221r nn n n n n C C C C +++++=-;③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令1,1a b ==-,则0123(1)(11)0n nn n n n n n C C C C C -+-++-=-=,从而得到:0242132111222r r n n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⨯=④奇数项的系数和与偶数项的系数和:0011222012012001122202121001230123()()1, (1)1,(1)n n n n n nnn n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----024135(1)(1),()2(1)(1),()2n nn n nn a a a a a a a a a a a a ----++-++++=+---+++=⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数212n nn C T +=取得最大值;如果二项式的幂指数n 是奇数时,则中间两项的二项式系数1212n nnT C--=,1212n nn CT ++=同时取得最大值,且2121+-=n nn n C C; ⑥系数的最大项:求()na bx +展开式中最大的项,一般采用待定系数法;设展开式中各项系数分别为121,,,n A A A +⋅⋅⋅,设第1r +项系数最大,应有112r rr r A A A A +++≥⎧⎨≥⎩,从而解出r 来;。
第十三讲二项式定理(全面版)资料二项式定理一、知识点1. ⑴二项式定理:nn n r r n r n n n n n n b a C b a C b a C b a C b a 01100)(+++++=+-- .展开式具有以下特点: ① 项数:共有1+n 项;② 系数:依次为组合数;,,,,,,210n n rn n n n C C C C C③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开. ⑵二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b aC T rr n r n r ∈≤≤=-+.⑶二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等; ②二项展开式的中间项二项式系数.....最大. I. 当n 是偶数时,中间项是第12+n项,它的二项式系数2nn C 最大;II. 当n 是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n nn n C C最大. ③系数和:1314201022-=++=+++=+++n n n n n n nn n n n C C C C C C C C二、典型例题例1.已知(1-3x )9=a 0+a 1x +a 2x 2+…+a 9x 9,则|a 0|+|a 1|+|a 2|+…+|a 9|等于A.29B.49C.39D.1例2.(2x +x )4的展开式中x 3的系数是 A.6B.12C.24D.48例3.(2x 3-x1)7的展开式中常数项是 A.14B.-14C.42D.-42例4.已知(x 23+x 31-)n 的展开式中各项系数的和是128,则展开式中x 5的系数是_____________.(以数字作答)例5.若(x +1)n =x n +…+ax 3+bx 2+cx +1(n ∈N *),且a ∶b =3∶1,那么n =_____________. 例6 如果在(x +421x)n 的展开式中,前三项系数成等差数列,求展开式中的有理项.例7求式子(|x |+||1x -2)3的展开式中的常数项.例8设a n =1+q +q 2+…+q 1-n (n ∈N *,q ≠±1),A n =C 1n a 1+C 2n a 2+…+C nn a n .(1)用q 和n 表示A n ; (2)(理)当-3<q <1时,求lim ∞→n nn A 2.例9 求(a -2b -3c )10的展开式中含a 3b 4c 3项的系数.三、练习题1.一串装饰彩灯由灯泡串联而成,每串有20个灯泡,只要有一只灯泡坏了,整串灯泡就不亮,则因灯泡损坏致使一串彩灯不亮的可能性的种数为A.20B.219C.220D.220-12.已知(x -xa )8展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是 A.28B.38C.1或38D.1或283.(x -x1)8展开式中x 5的系数为_____________.4.若(x 3+xx 1)n 的展开式中的常数项为84,则n =_____________5.已知(x x lg +1)n 展开式中,末三项的二项式系数和等于22,二项式系数最大项为20000,求x 的值.二项式定理(第一课时)理脉络1.二项式定理:这个公式所表示的定理叫做二项式定理,右边的多项式叫做的二项展开式,它一共有项,其中各项的系数叫做二项式系数. 注:(1)(a+b)n的二项展开式具有以下特点:①它有n+1项;②各项的次数都等于二项式的幂指数n;③式中a的指数由n开始按降幂排列到0,b的指数由0开始按升幂排列到n;各项的系数依次是。
二项式定理知识点总结咱们今天来好好聊聊二项式定理,这可是数学里一个相当重要的家伙!先来说说二项式定理是啥。
简单说,就是对于一个形如\((a + b)^n\)的式子,它展开后的各项系数是有规律的。
这个规律就是二项式定理要告诉咱们的。
比如说,\((a + b)^2 = a^2 + 2ab + b^2\),这里系数分别是 1、2、1。
再看\((a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3\),系数变成了 1、3、3、1。
那要是\((a + b)^4\)呢?自己算算就知道,系数是 1、4、6、4、1。
那这些系数到底咋来的呢?这就得提到杨辉三角了。
这杨辉三角就像一个神奇的密码表,能帮咱们轻松找到二项式展开的系数。
还记得我上学那会,老师让我们自己动手画杨辉三角,我当时可认真了,一笔一划地写,还跟同桌比谁画得又快又准。
那时候,满脑子都是这些数字,感觉它们就像一群调皮的小精灵,在我的本子上蹦跶。
二项式定理还有通项公式呢,\(T_{r+1} = C_{n}^r a^{nr}b^r\)。
这里的\(C_{n}^r\)就是组合数,表示从\(n\)个里面选\(r\)个的方案数。
给大家举个例子啊,比如说要展开\((2x y)^5\),咱们先确定通项公式,然后依次代入\(r\)的值,就能得到展开式的每一项啦。
在做题的时候,经常会碰到让咱们求特定项的系数,或者是二项式系数之和之类的问题。
这时候,可别慌,只要咱们把定理和公式牢记于心,多做几道题练练手,就没啥大问题。
我记得有一次考试,就有一道关于二项式定理的大题,我一开始还紧张得不行,后来静下心来,按照平时练习的步骤一步一步来,嘿,还真就做出来了!还有啊,二项式定理在实际生活中也有用呢。
比如说在概率统计里,计算某些事件发生的概率就可能会用到。
总之,二项式定理虽然有点复杂,但只要咱们用心去学,多练习,多总结,一定能把它拿下!相信大家都没问题的,加油哦!。