高三数学二轮复习方法技巧
- 格式:docx
- 大小:40.89 KB
- 文档页数:4
高三数学二轮复习的应对策略高三数学二轮复习必须遵循二轮复习的特点,充分挖掘高考的增长点,寻求急功近利,事半功倍,即时见效的方法和措施,是对知识进行“巩固、完善、综合、提高”的过程,绝不是旧知的简单再现。
巩固,即巩固一轮复习的成果,仍要把夯实三基放在重要位置。
完善,即针对一轮复习时学生中暴露出来的问题进行补救。
综合,即在专题复习和训练中恰当减少单一知识点试题,注重知识间的内在联系,恰当增强问题的综合性和开放性。
提高,即促进学生更深层地认知,领悟数学思想,运用数学方法,提高学生应试的综合素质,如应试心理、审题能力、答题习惯等。
一、夯实三基,巩固一轮复习成果高三一轮复习中暴露出了很多问题,主要原因是基础不扎实。
没有扎实的基础就不可能把知识内化为能力,就不可能在高考中取得好的成绩。
因此,巩固一轮复习成果,进一步夯实三基仍是二轮复习重点解决的问题。
1.提高对知识理解的深刻性和运用数学思想方法的灵活性。
知识的梳理不再是“全、细”的问题,重要的是提升对知识理解的层次性,沟通知识间的内在联系,提炼数学知识中蕴含的数学思想方法,熟悉由课本知识演变出来的常用结论等等。
2.强化运算能力的训练。
不仅要提高数与式运算的速度和准确率,更要有意识地进行运算策略等方面的训练。
3.重视基础题,主攻中档题,突破较难题,强化附加题。
如何落实“20字”方略因校制宜、因生制宜,理科附加题是重要增长点,系列4的复习基于课本题型,防止拓展过度。
4.提高专题复习课的效益(1)用好主资料。
专题复习教学案或以某套高质量的二轮复习资料为主线索,或传承前几届高三的资料,结合本届高三实际情况,对照《高考说明》和《教学要求》改编。
深入研究最近三年江苏省高考数学试题,深入研究教材,善于改编教材例题、习题。
(2)专题以知识性为主。
在深入研究《考试说明》与《教学要求》、考题与样题的基础上,精心选择二轮复习专题,专题应以知识性为主,思想方法篇前移,知识专题篇要一以贯之地渗透数学思想方法,要关注高考的重点与盲点、热点与冷点问题。
高考高三二轮复习计划策略模板(7篇)高考高三二轮复习计划策略模板篇1一二轮复习指导思想:高三第一轮复习一般以知识技能方法的逐点扫描和梳理为主,通过第一轮复习,学生大都能掌握基本概念的性质定理及其一般应用,但知识较为零散,综合应用存在较大的问题。
而第二轮复习承上启下,是知识系统化条理化,促进灵活运用的关键时期,是促进学生素质能力发展的关键时期,因而对讲练检测等要求较高。
二二轮复习形式内容:以专题的形式,分类进行。
具体而言有以下几大专题。
(1)集合函数与导数。
此专题函数和导数应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。
每年高考中导数所占的比重都非常大,一般情况在客观题中考查的导数的几何意义和导数的计算属于容易题;二在解答题中的考查却有很高的综合性,并且与思想方法紧密结合,主要考查用导数研究函数的性质,用函数的单调性证明不等式等。
(预计5课时)(2)三角函数平面向量和解三角形。
此专题中平面向量和三角函数的图像与性质,恒等变换是重点。
近几年高考中三角函数内容的难度和比重有所降低,但仍保留一个选择题一个填空题和一个解答题的题量,难度都不大,但是解三角形的内容应用性较强,将解三角形的知识与实际问题结合起来将是今后命题的一个热点,我们可以关注。
平面向量具有几何与代数形式的“双重性”,是一个重要的只是交汇点,它与三角函数解析几何都可以整合。
(预计2课时)(3)数列。
此专题中数列是重点,同时也要注意数列与其他知识交汇问题的训练。
例如,主要是数列与方程函数不等式的结合,概率向量解析几何为点缀。
数列与不等式的综合问题是近年来的热门问题,而数列与不等式相关的大多是数列的前n项和问题。
(预计2课时)(4)立体几何。
此专题注重几何体的三视图空间点线面的关系,用空间向量解决点线面的问题是重点(理科)。
(预计3课时)(5)解析几何。
此专题中解析几何是重点,以基本性质基本运算为目标。
直线与圆锥曲线的位置关系轨迹方程的探求以及最值范围定点定值对称问题是命题的主旋律。
如何抓好高考数学第二轮复习寒假一过,形势陡然紧张了很多。
考生进入到关键的第二轮复习,对于高三数学第二轮复习来说,要达到三个目的:一是从全面基础复习转入重点复习,对各重点、难点进行提炼和把握;二是将第一轮复习过的基础知识运用到实战考题中去,将已经把握的知识转化为实际解题能力;三是要把握各题型的特点和规律,把握解题方法,初步形成应试技巧。
那么如何进行科学而有效的教学呢?一、大处着眼,细心领会两个成功公式1.科学巨匠爱因斯坦的闻名公式是v=x+y+z(v-成功;x-刻苦的精神;y-科学的方法;z-少说废话)。
2.四轮学习方略中,成功=目标+计划+方法+行动。
学习好数学要有刻苦拼搏的精神加科学的方法;要有明确的奋斗目标加上切实可行的计划和措施方法,要天天见行动,苦干实干抓落实。
要站在整体的高度,重新熟悉自己所学,总体把握所学的数学知识和方法及应用。
学校的老师和课外班的冲刺有周密的复习计划,你要与老师紧密配合。
须知:围着老师转转得好,抛开老师转有自己的一套方案的学生,才能成为佼佼者。
二、做到对知识和能力要求心中有数,自身优势和不足心中有数1.主干知识八大块①函数;②数列;③平面向量;④不等式(解与证);⑤解析几何;⑥立体几何;⑦概率﹑统计;⑧导数及应用。
要做到块块清楚,不足之处如何弥补有招法,并能自觉建立起知识之间的有机联系,函数是其中最核心的主干知识。
2.把握四大数学思想方法明确驾驭数学知识的理性思维方法,其集中体现在四大数学思想方法上。
四大数学思想方法是:①函数与方程的思想②数型结合思想③分类讨论思想④化归或转化的思想3.学习好数学要抓住四个三①内容上要充分领悟三个方面:理论、方法、思维;②解题上要抓好三个字:数,式,形;③阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言);④学习中要驾驭好三条线:知识(结构)是明线(要清楚);方法(能力)是暗线(要领悟、要提炼);思维(练习)是主线(思维能力是数学诸能力的核心,创造性的思维能力是最强大的创新动力,是检验自己大脑潜能开发好坏的试金石。
高考数学最佳复习方法(高三数学该怎么复习)高考数学最佳复习方法第一轮复习:熟悉考纲:详细了解数学高考的考试内容和要求,包括考试形式、考试范围、难度及基本要求。
泛读教材:学习教材,并逐步理解其中的基本概念和定义,尤其要注意重点难点概念的理解和记忆完成练习:完成基本的习题,巩固基础知识的理解,通过举一反三来加深掌握和记忆。
第二轮复习:查漏补缺:查漏补缺并巩固难点,强化重点知识,并进行有针对性的辅导和练习。
做和复习真题:做历年高考真题,结合自己的考试情况进行复习和总结,掌握考试趋势和重点难点。
定期做模拟题:进行模拟考试来检测自己复习情况,对弱项进行适量练习与强化,适当调整复习方法。
第三轮复习:总结知识点:逐个知识点进行统计和总结,并按照优先级进行安排,从基础开始巩固,逐步深入,强化重点。
模拟考试:逐步进行模拟考试,找到考试策略,加强考试心态调适。
针对性复习:重点关注易混点、考试重点和应变技巧,针对性进行复习,并强化解题技巧和策略。
局部突破:针对前两轮复习中整理出的薄弱环节和技能要求,进行精细化攻关,进行相应练习以突破局部难题。
如何高效复习高三数学要明确复习计划一般来说,数学学科要进行三轮复习,这是被实践证明了的十分有效的复习策略。
即一轮进行基础知识复习,目的是系统地回顾高中阶段的数学知识点和数学思想方法,扎扎实实地打好基础,全面系统地对知识进行梳理,加强对基础知识的理解和应用,加强对基本技能的训练,掌握知识之间的内在联系,理清知识结构,形成知识网络,在应用中理解其本质,形成能力,实现由知识到能力的跨越。
一轮复习的时间要长一些,要做到细致入微、面面俱到。
一轮复习的时间一般为9月初到次年的3月中旬。
二轮进行专题(即模块)复习,目的是加强对数学知识与方法的整合,也就是在一轮复习的基础上打破章节界限,以专题、板块的形式对重点内容和热点题型进行复习,提升分析问题和解决问题的综合能力。
二轮复习要针对高考的热点进行专题选择、专项训练。
绿色通道高三2024二轮数学高三是学生最后一年的关键时期,也是高考的决胜阶段。
而数学作为高考的一门重要科目,对考生来说显得尤为重要。
在高三的二轮备考阶段,数学的复习尤为关键。
本篇文章将就如何在高三二轮备考中进行数学复习展开阐述,旨在为广大高三学生提供一些有益的学习方法和建议。
首先,高三数学复习的基础是牢固掌握基础知识。
在这个阶段,广大学生应该对高中数学的各个章节内容进行全面复习,特别需要重点关注一些基础知识和核心概念。
同时,还要对一些典型的解题方法和技巧进行梳理和总结。
只有对知识点有了深刻的理解,对解题方法和技巧有了熟练的掌握,才能在高考中游刃有余地应对各种题型。
其次,要注重强化练习。
高考数学试题往往对学生的逻辑思维和解题能力提出了高要求,因此,在复习阶段,解题练习是必不可少的环节。
学生可以针对不同章节和难度的试题进行分类练习,逐步提高自己解题的速度和准确率。
并且,在练习中,要注重对错题的总结和分析,找出解题的漏洞和不足,不断完善自己的解题技巧和方法,提高解题的稳定性和准确性。
此外,做好考试心理和应试技巧的准备也是十分重要的。
高考是一场集中考察学生知识水平和解题能力的考试,因此,考生在备考阶段要学会控制好自己的考试情绪,保持良好的心态。
同时,还要了解一些常见的考试技巧和策略,比如如何合理安排考试时间、如何在考试中防止粗心和失误等。
这些技巧和策略在高考中往往能够给学生带来额外的分数和优势。
最后,要注意合理安排复习时间和制定科学的复习计划。
高三的时间非常紧张,每一分每一秒都显得尤为宝贵。
因此,广大高三学生在备考阶段要充分利用好每一段时间,合理安排复习计划。
在时间分配上,要根据自己的实际情况和学科复习的难易程度,进行科学的规划和安排,尽可能地在有限的时间内学到更多的知识,提高自己的学习效率。
总之,高三数学复习是一个全面系统的工程,需要学生在复习过程中注重基础知识的牢固掌握,强化练习的进行,做好考试心理和应试技巧的准备,合理安排复习时间和制定科学的复习计划。
方法四分离(常数)参数法
分离(常数)参数法是高中数学中比较常见的数学思想方法,求参数的范围常常与分类讨论、方程的根与零点等基本思想方法相联系,其中与二次函数相关的充分体现数形结合及分类思想方法的题目最为常见.与二次函数有关的求解参数的题目, 相当一部分题目都可以避开二次函数,使用分离变量,使得做题的正确率大大提高,随着分离变量的广泛使用,越来越多的压轴题都需要使用该思想方法.
1分离常数法
分离常数法在含有两个量(一个常量和一个变量)的关系式(不等式或方程)中,要求变量的取值范围,可以将变量和常量分离(即变量和常量各在式子的一端),从而求出变量的取值范围.
1.1 用分离常数法求分式函数的最值(值域)
分离常数法是研究分式函数的一种代数变形的常用方法,主要的分式函数有,
,,等,解题的关键是通过恒等变形从分式函数中分离出常数.
例1. 已知函数(且)是定义在上的奇函数.
(Ⅰ)求的值;
(Ⅱ)求函数的值域;
(Ⅲ)当时,恒成立,求实数的取值范围.
【答案】(Ⅰ);(Ⅱ);(Ⅲ).
【解析】试题分析:
(Ⅰ)由函数为奇函数可得,即,可得.(Ⅱ)分离常数可得,故函数为增函数,再由,可得,即可得函数的值域.(Ⅲ)通过分离参数可得在时恒成立,令,则有
,根据函数的单调性可得函数的最大值,从而可得实数的取值
范围
(Ⅱ)由(Ⅰ)可得,∴函数在上单调递增,
又,
∴,
∴.
∴函数的值域为.
(Ⅲ)当时,.
由题意得在时恒成立,
∴在时恒成立.
令,
则有,
∵当时函数为增函数,。
例谈解析几何中齐次化技巧一.基本原理在解析几何计算与二次曲线“半径”(曲线上一点到坐标原点的连线)斜率有关的问题时,我们可以进行“1”代换的齐次化计算,即一般计算步骤为:22222)(1b kx y ny mx ny mx b kx y -=+⇒⎩⎨⎧=++=,整理可得:0(2=+⋅+C xy B x y A 0(2=+⋅+C x y B x y A 中的几何意义为:直线与曲线的交点与原点的连线的斜率,即,OA OB 的斜率,设为12,k k ,由韦达定理知12B k k A +=-,12C k k A=,从而能通过最初的二次曲线和直线相交,得出,OA OB 的性质,倒过来,我们也可以通过,OA OB 的性质与二次曲线得出AB 的性质.下面通过例题予以分析.二.典例分析例1.已知双曲线22:154x y Γ-=的左右焦点分别为1F ,2F ,P 是直线8:9l y x =-上不同于原点O 的一个动点,斜率为1k 的直线1PF 与双曲线Γ交于A ,B 两点,斜率为2k 的直线2PF 与双曲线Γ交于C ,D 两点.(1)求1211k k +的值;(2)若直线OA ,OB ,OC ,OD 的斜率分别为OA k ,OB k ,,OC k ,OD k ,问是否存在点P ,满足0OA OB OC OD k k k k +++=,若存在,求出P 点坐标;若不存在,说明理由.解析:(1)由已知1(3,0)F -,2(3,0)F ,设(9,8)P λλ-,(0)λ≠,∴1839k λλ=--,2893k λλ-=-,121139939884k k λλλλ---+=+=--.(2)由题意知直线113k x k y AB =-:,与双曲线方程联立得2121229)(45k x k y y x -=-,同除以2x ,令x y k =得0454929141(1221=--+k k k k ,因此498914192211211+=+=+k k k k k k OB OA .同理将直线223:k x k y CD -=-与双曲线方程联立可得498222+=+k k k k OD OC ,所以0498498222211=+++=+++k k k k k k k k OD OC OB OA ,即0)49)((2121=++k k k k .由(1)知21k k -≠,令点)98,(00x x P -,所以94398398000021-=--⋅+-=x x x x k k ,所以解得590±=x ,∴存在98(,55P -或98(,)55P -满足题意.例2.如图,已知椭圆12222=+b y a x (a b 0)>>过点(1,22),离心率为22,左右焦点分别为12F F .点P 为直线l :2x y +=上且不在x 轴上的任意一点,直线1PF 和2PF 与椭圆的交点分别为A B 、和,C D O 、为坐标原点.(1)求椭圆的标准方程;(2)设直线1PF 、2PF 斜率分别为1k 2k 、.()i 证明:12132k k -=(ⅱ)问直线l 上是否存在一点P ,使直线OA OB OC OD 、、、的斜率OA OB OC OD k k k k 、、、满足0OA OB OC OD k k k k +++=?若存在,求出所有满足条件的点P 的坐标;若不存在,说明理由.解析:(1)椭圆方程为2212x y +=.(2)设B A ,的坐标为),(),,(2211y x y x ,AB 方程为)1(1+=x k y ,022)11(12)1(21221221=-+-⇒⎪⎩⎪⎨⎧=++=x xy k y k y x x k y 即021(2)(11(1221=-+-x y k x y k 故12211--=+k k k k OB OA .同理,设D C ,坐标为),)(,(4433y x y x ,CD 方程:)1(2-=x k y ,则12222--=+k k k k OD OC ,故:0))(1(012122121222211=+-⇒=--+--k k k k k k k k .则⎪⎩⎪⎨⎧=-=23112121k k k k ,解得:P 的坐标为)43,45(或⎪⎩⎪⎨⎧=-=+23102121k k k k ,解得:P 的坐标为)2,0(三.习题演练已知椭圆C :()222210x y a b a b+=>>24y x =的焦点F .(1)求椭圆C 的标准方程;(2)O 为坐标原点,过O 作两条射线,分别交椭圆于M ,N 两点,若OM ,ON 斜率之积为45-,求证:MON △的面积为定值.答案:(1)椭圆方程为22154x y +=;(2)MON S =△为定值.。
清河中学2023届高三数学第二轮复习策略与计划(一)夯重基础,加深理解与应用基础永远是高考的重点。
对基础的复习,不是对课本内容的简单重复,而是对知识点的解析梳理,对概念、公式等的准确理解、牢固掌握,是学生理解能力的升华。
加强对常考知识点、重难点的融会、贯通,把握每个知识点背后的潜在的出题规律,要通过对基础题的系统训练和规范讲解,从不同的角度把握每一个知识点的内涵与外延以及与其它知识点的联系。
“一体四层四翼”是高考的评价体系,从国家层面设计上回答了“为什么考”“考什么”“怎么考”等关键性问题。
一体:高考评价体系,通过确立“立德树人,服务选拔,导向教学”这一核心立场,回答了“为什么考”的问题。
四层:通过明确“必考知识、关键能力、学科素养、核心价值”四层考查目标,回答了“考什么”的问题。
四翼:通过明确“基础性、综合性、应用性、创新性”四个考查要求,回答了“怎么考”的问题。
复习策略上以基础、中档题为主,抓住问题的本质,知识间的相互联系,总结出通性通法,注意最优(技巧性)解法的优越性。
(二)注重数学思想方法,培养数学核心素养高考数学试题十分重视对数学思想的考查,着重考查如下七种数学思想:函数与方程思想,数形结合思想,转化与化归思想,分类与整合思想,特殊与一般思想,有限与无限思想,或然与必然思想,数学思想蕴含在数学基础知识之中,是架设在数学知识与能力之间的一座桥梁。
数学的思想与方法,是宏观与微观的关系,在数学思想的指导下,灵活运用数学方法解决具体问题,没有思想的方法是肤浅的,没有方法的思想是空洞的,只有二者完美的结合才是数学教学的最高境界。
高中数学核心素养包括:数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析。
对学生核心素养的培养,对于发展学生的理性思维、培养学生的学科能力,具有决定性的作用。
(三)重视数学文化传承,注重创新意识发展中科院院士、王梓坤教授曾指出:“数学文化具有比数学知识体系更为丰富和深邃的文化内涵,数学文化是对数学知识、技能、能力和素质等概念的高度概括.”,武汉大学齐民友教授站在影响人类文化的兴衰、民族生存发展的高度,在《数学与文化》一书中写到:“一种没有相当发达的数学文化是注定要衰落的,一个不掌握数学作为一种文化的民族也是注定要衰落的.” 阐明了数学文化的价值.由于数学文化是对数学知识、技能、能力和素质等概念的高度概括,其价值对于人类文明乃至民族的存亡有着重大的意义.近年来,每年都对中华优秀传统文化知识进行考查,对传统文化知识的考查是对高层次数学思维的考查;每年的数学试题中总有4~5道新颖题型,体现创新意识,以便选拔优秀的学生.每年创新题型肯定会出现,这样的题型包括新定义型、归纳猜想型、类比推理型、探索发现型、研究设计型、开放发散型问题等,但整体试卷难度不会大起大落,以平稳为主。
解决数列放缩问题的六大技巧本篇主要目标是聚焦于数列放缩,常见的方法有六种,具体我将在文中以实例详细说明.类型1.利用单调性放缩例1.已知数列{}n a 满足11a =,131n n a a +=+(1)设12n n b a =+,证明:{}n b 是等比数列,并求{}n b 的通项公式;(2)证明:12211113nb b b ≤+++< .解析:(1)∵131n n a a +=+,则111322n n a a +⎛⎫+=+ ⎪⎝⎭,即13n n b b +=,又∵111322b a =+=,所以{}n b 是首项为32,公比为3的等比数列,∴32n n b =,故{}n b 的通项公式为32nn b =.(2)由(1)知123n n b =,即1n b ⎧⎫⎨⎩⎭是首项为23,公比为13的等比数列,∴121221133111222111333313nnnn b b b ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦+++=+++==- ⎪⎝⎭- ,又∵数列113n⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭单调递增,∴11111133n⎛⎫⎛⎫-≤-< ⎪ ⎪⎝⎭⎝⎭,故12211113nb b b ≤+++< .类型2.先求和再放缩先求和再放松实质上是一类很常见的题目,这类放缩实质在考察数列求和,放缩的结果也很松,下面通过两个例子简单说明即可,分别是利用裂项相消求和与错位相减求和后放缩.例2.记n S 为数列{}n a 的前n 项和,已知11=a ,{}n n S a 是公差为13的等差数列.(1)求{}n a 得通项公式;(2)证明:121112+++< na a a .解析:(1)111==S a ,所以111=S a ,所以{}n n S a 是首项为1,公差为13的等差数列,所以121(1)33+=+-⋅=n n S n n a ,所以23+=n n n S a .当2n 时,112133--++=-=-n n n n n n n a S S a a ,所以1(1)(1)--=+n n n a n a ,即111-+=-n n a n a n (2n );累积法可得:(1)2+=n n n a (2n ),又11=a 满足该式,所以{}n a 得通项公式为(1)2+=n n n a .(2)121111112[]1223(1)+++=+++⨯⨯+ n a a a n n 111112(1)2231=-+-++-+ n n 12(1)21=-<+n .注:111111().n n n n a a d a a ++=-,则:1223111111111......()n n n a a a a a a d a a ++⇒+++=-.可以看到,裂项后一定可以得到一个估计.例3.已知等比数列{}()n a n N*∈为递增数列,且236324,522==+aa a a a .(1)求数列{}n a 的通项公式;(2)设()42n nn b n N a *-=∈,数列{}n b 的前n 项和为n S ,证明:6n S <.解析:(1)由题意,()2251123111522a q a q a q a q a q⎧=⎪⎨=+⎪⎩,解得11212a q ⎧=⎪⎪⎨⎪=⎪⎩或122a q =⎧⎨=⎩,因为等比数列{}()n a n *∈N 为递增数列,所以122a q =⎧⎨=⎩,所以1222n nn a -=⨯=.(2)由(1)知数列{}n b 的前n 项和为:0111322212n n n S -=++-+ ①,112123212122223n n n n n S --=++-++ ②,两式相减可得:1112111112121232212312222211122212n n n n n n n n n S --⎛⎫=+⎛⎫- ⎪--+⎝⎭=+=+++-⎝-⎪⎭-- ,所以12362n n n S -+=-,又因为*n N ∈,所以12302n n -+>,所以123662n n n S -+=-<.类型3.先放缩通项再求和这一类是数列放缩问题的常考类型,相较于类型2而言,这一部分对放缩对象的处理需要一定的技巧,因而对很多学生来说具有挑战性,是数列放缩中的难点.此节中,我将分为如下几个点展开:第一,将通项放缩为可裂项的结构,然后裂项求和;第二,将通项放缩为等比结构(等差比结构)然后错位相减求和,总之,处理的基本原则就是将不可求和放缩成可求和再求和放缩.当然,下面的这些常见的裂项公式与放缩公式需要注意.1.常见的裂项公式:例如:n n n n n )1(11)1(12-<<+或者12112-+<<++n n nn n 等2.一个重要的指数恒等式:n 次方差公式123221()().n n n n n n n a b a b a a b a b ab b ------=-+++++ 这样的话,可得:1)(-->-n nnab a b a ,就放缩出一个等比数列.3.糖水不等式:设0,0>>>c m n ,则cn cm n m ++<.下面来看上面这些基本的放缩结构的应用.例4.(2013年广东)设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N .(1)求2a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有1211174n a a a +++< .解析:(2)当2n ≥时,32112233n n S na n n n +=---,()()()()321122111133n n S n a n n n -=-------两式相减得()()()2112213312133n n n a na n a n n n +=----+---整理得()()111n n n a na n n ++=-+,即111n n a a n n +-=+,又21121a a-=故数列n a n ⎧⎫⎨⎬⎩⎭是首项为111a =,公差为1的等差数列,所以()111n a n n n =+-⨯=,所以2n a n =.(3)当1n =时,11714a =<;当2n =时,12111571444a a +=+=<;当3n ≥时,()21111111n a n n n n n=<=---,此时222121111111111111111434423341n a a a n n n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭11171714244n n =++-=-<,综上,对一切正整数n ,有1211174n a a a +++<下面我们再看将通项放缩成等比(等差比数列)再求和完成放缩证明.例5.(2014全国2卷)已知数列{}n a 满足1a =1,131n n a a +=+.(1)证明{}12n a +是等比数列,并求{}n a 的通项公式;(2)证明:1231112na a a ++<…+.解析:(1)证明:由131n n a a +=+得1113()22n n a a ++=+,又11322a +=,所以1{}2n a +是首项为32,公比为3的等比数列,1322n n a +=,因此{}n a 的通项公式为312n n a -=(2)由(1)知1231nn a =-,因为当1n ≥时,13123n n --≥⨯,所以1113123n n -≤-⨯于是12-112311-1111111313311-13332321-3n n n n a a a a ++++<++++==< (.所以123111132n a a a a ++++< .注:此处13123nn --≥⨯便是利用了重要的恒等式:n 次方差公式:123221()().n n n n n n n a b a b a a b a b ab b ------=-+++++ 当然,利用糖水不等式亦可放缩:13133132-=<-n n n ,请读者自行尝试.类型4.基于递推结构的放缩1.nnn a a a +=+11型:取倒数加配方法.例6.(2021浙江卷)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则()A.100332S <<B.10034S <<C.100942S <<D.100952S <<解析:由211111124n n n a a a ++⎛⎫==+-⎪⎪⎭2111122n a +⎛⎫∴<++⎪⎪⎭12<根据累加法可得,11122n n -+≤+=,当且仅当1n =时取等号,12412(1)311n n n n a n a a a n n n ++∴≥∴=≤=++++.一方面:252111)1(41002>⇒+-+>+>S n n n a n .另一方面113n n a n a n ++∴≤+,由累乘法可得6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭,即100332S <<.故选:A.2.二次递推型:r qa pa a n n n ++=+21.12121211+++++=-⇒+=-⇒++=n n n n n nn n n nn a a r pa a qa r pa qa a r qa pa a ,然后裂项即可完成放缩,我们以2015浙江卷为例予以说明.例7.(2015浙江卷)已知数列{}n a 满足1a =12且1n a +=n a -2n a (n ∈*N )(1)证明:112nn a a +≤≤(n ∈*N );(2)设数列{}2n a 的n 项和为n S ,证明112(2)2(1)n S n n n ≤≤++(n ∈*N ).分析:=-⇒=-++n n n n n a a a a a 11121211[1,2]1n n n n n na a a a a a +==∈--,累加,则可证得.解析:(1)由题意得210n n n a a a +-=-≤,即1n n a a +≤,故12n a ≤.由11(1)n n n a a a --=-得1211(1)(1)...(1)0n n n a a a a a --=--->,由102n a <≤得211[1,2]1n n n n n n a a a a a a +==∈--,即112n n a a +≤≤.(2)由题意得21n n n a a a +=-,所以11n n S a a +=-①,由1111n n n n a a a a ++-=和112n n a a +≤≤得11112n n a a +≤-≤所以11112n n n a a +≤-≤,因此*111()2(1)2n a n N n n +≤≤∈++②由①②得:*11()2(2)2(1)n S n N n n n ≤≤∈++.类型5.数列中的恒成立例8.已知数列{}n a 中,11a =,满足()*1221N n n a a n n +=+-∈.(1)求数列{}n a 的通项公式;(2)设n S 为数列{}n a 的前n 项和,若不等式240nn S λ⋅++>对任意正整数n 恒成立,求实数λ的取值范围.解析:(1)()()1211221n n a n a n ++++=++,所以{}21n a n ++是以12114a +⨯+=为首项,公比为2的等比数列,所以1121422n n n a n -+++=⨯=,所以1221n n a n +=--.(2)()()()231122325221n n n S a a a n +⎡⎤=+++=-+-++-+⎣⎦()()23122235721n n +=+++-+++++ ()()222212321122242n n n n n n +-++=--=---,若240nn S λ⋅++>对于*N n ∀∈恒成立,即22222440n n n n λ+⋅+---+>,可得22222nn n n λ+⋅>+-即2242nn n λ+>-对于任意正整数n 恒成立,所以2max242n n n λ⎡⎤+>-⎢⎥⎣⎦,令()242n nn n b +=-,则21132n n n n b b ++--=,所以1234b b b b <>>>⋯,可得()222max222422n b b +⨯==-=-,所以2λ>-,所以λ的取值范围为()2,-+∞.类型6.利用导数产生数列放缩1.由不等式1ln -≤x x 可得:+∈<+<+N n nn n ,1)11ln(11.例9.(2017全国3卷)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1(1)222n m ++⋅⋅⋅+<,求m 的最小值.解析:(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->,令112n x =+得11ln(1)22n n +<,从而221111111ln(1ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<.故2111(1)(1)(1)222n e ++⋅⋅⋅+<,而23111(1)(1)(1)2222+++>,所以m 的最小值为3.2,.两个正数a 和b 的对数平均定义:(),(,)ln ln ().a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩对数平均与算术平均、几何平均的大小关系:(,)2a bL a b +≤≤(此式记为对数平均不等式,取等条件:当且仅当a b =时,等号成立.进一步,在不等式左端结合均值不等式可得:当0b a >>时211ln ln b a b a a b->-+,即111ln ln ()2b a b a a b-<+-.令,1a n b n ==+,则111ln(1)ln ()21n n n n +-<++,所以111ln(1)ln (21n n n n +-<++①.(,)L a b<1ln ln ln 2ln (1)a ab x x x b x ⇔-⇔⇔<->其中,接下来令t =2>11(1)n ln n >+,1(n ln n+>②.例10.已知函数(1)()ln(1)1x x f x x xλ+=+-+.(1)若0x ≥时,()0f x ≤,求λ的最小值;(2)设数列{}n a 的通项111123n a n =++++ ,证明:21ln 24n n a a n-+>.解析:(1)综上可知,λ的最小值时12.(2)由上述不等式①,所以111ln(1)ln (21n n n n +-<++,111ln(2)ln(1)()212n n n n +-+<+++,111ln(3)ln(2)(223n n n n +-+<+++…,111ln 2ln(21)(2212n n n n--<+-.将以上各不等式左右两边相加得:1122221ln 2ln (2123212n n n n n n n n-<+++++++++- ,即111211ln 22123214n n n n n n<+++++++++- ,故11211ln 212324n n n n n +++++>+++ ,即21ln 24n n a a n-+>.例12.已知函数()ax x f x xe e =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设*n N ∈(1)ln n ++⋯+>+.1()n ln n+>,进一步求和可得:11231((...(1)12nnk k k n ln ln ln n k n==++>=⨯⨯⨯=+∑,...(1)ln n ++.。
高三数学二轮复习方法技巧高三数学二轮复习方法技巧一一是课堂容量问题.提倡增大课堂复习容量.不是追求过多的讲,过多的练,面面俱到,“一网打着满河鱼”,而是重点问题舍得时间,非重点问题敢于取舍,集中精力解决学生困惑的问题,增大思维容量,减少废话,减少不必要的环节,少做无用功。
二是讲练比例问题.第二轮复习容易形成“满堂灌”或“大撒手”,这样都不利于学生学懂会用.每堂课都要精讲精练,分配好讲练时间,一般以30分钟为宜.三是发挥学生主体地位问题.课堂中,有的讲得多,讲得快,学生被动听、机械记,久而久之,学生思维僵化,应变能力差;有的简单提问,过多的板演、笔算,貌似气氛活跃,讲练结合,其实是教师的惰性行为.双边活动的真谛是让学生参与解题活动,参与教学过程,启迪思维,点拔要害.四是讲评的方式方法问题.学情抓不准,讲评随意,对答案式的讲评是影响讲评课效益的大敌.必须做到评前认真阅卷,评中归类、纠错、变式、辩论等方式的结合,要抓错误点,失分点,模糊点,剖析根源,彻底矫正.还可采取“自教自”的办法,让学生讲好解法,讲错误处,展开争论.这种方式,由于是从学生中来到学生中去,极易让学生接受.五是信息反馈问题.系统论的反馈原理指出,任何系统只有通过反馈信息,才能实现控制.提高课堂复习效益,加强信息反馈是必不可少的.两条反馈渠道非抓不可.一条是通过练习或检测搜集信息.近几年,我市采用的“穿插复习法”对信息搜集很有帮助.即在大专题复习过程中,每周穿插一次以选择题为主的定时定量训练,内容以检测刚学过知识为重点,兼顾后继复习内容.这样,既做到了掌握所学知识的巩固程度,又抓住了后继复习的要害,复习便有了针对性.另一条是每两周开好一次学生座谈会,有针对性地选取上、中、下三类学生进行交谈和问卷调查,每位教师先行“诊断”,再集体研讨分析学生的要求和看法,拿出行之有效的措施.高三数学二轮复习方法技巧二高三第一轮复习一般以知识、技能、方法的逐点扫描和梳理为主。
高三数学第二轮复习策略(一)1.继续强化对基础知识的理解,掌握抓住重点知识抓住薄弱的环节和知识的缺陷,全面搞好基础知识全面搞好基础知识的复习。
(备考指南与知识点总结)中学数学的重点知识包括:(1)集合、函数与导数。
此专题函数和导数、应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。
(2)三角函数、平面向量和解三角形。
此专题中平面向量和三角函数的图像与性质,恒等变换是重点。
(3)数列。
此专题中数列是重点,同时也要注意数列与其他知识交汇问题的训练。
(4)立体几何。
此专题注重点线面的关系,用空间向量解决点线面的问题是重点。
(5)解析几何。
此专题中解析几何是重点,以基本性质、基本运算为目标。
突出直线和圆、圆锥曲线的交点、弦长、轨迹等。
(6)概率与统计、算法初步、复数。
此专题中概率统计是重点,以摸球、射击问题为背景理解概率问题。
(7)不等式、推理与证明。
此专题中不等式是重点,注重不等式与其他知识的整合。
2、对基础知识的复习应突出抓好两点:(1)深入理解数学概念,正确揭示数学概念的本质,属性和相互间的内在联系,发挥数学概念在分析问题和解决问题中的作用。
(2)对数学公式、法则、定理、定律务必弄清其来龙去脉,掌握它们的推导过程,使用范围,使用方法(正用逆用、变用)熟练运用它们进行推理,证明和运算。
3、系统地对数学知识进行整理、归纳、沟通知识间的内在联系,形成纵向、横向知识链,构造知识网络,从知识的联系和整体上把握基础知识。
例如以函数为主线的知识链。
又如直线与平面的位置关系中“平行”与“垂直”的知识链。
4、认真领悟数学思想,熟练掌握数学方法,正确应用它们分析问题和解决问题。
数学思想和方法的考查必然要与数学知识的考查结合进行,在平时的做题中必须提炼出其中的数学思想方法,并以之指导自己的解题。
数学思想数学在高考中涉及的数学思想有以下四种:(1)分类讨论思想:分类讨论思想是以概念的划分,集合的分类为基础的解题思想,是一种逻辑划分的思想方法。
高三数学二轮复习方法技巧
有人说高三数学是一只拦路虎,拦着我们通向大学的校门,上课听不懂,课下不会做,很
多同学在数学上面花费了很多时间,但是效果却甚微,其实只要方法得当,我们就能轻而易
举地打掉这只拦路虎
一、学习《考纲》,研究高考
第二轮复习,教师必须认真学习《考纲》与《考试说明》,并通过备课组活动交流学
习心得与认识,对高考“考什么”、“怎样考”每位教师都要心中有数,只有这样,才能
讲深讲透,讲得到位。
注重备课组活动与师徒挂钩,要求每周集体备课一次,由老教师主讲,把本周的教学内容、课时安排、教学重点、教学方法进行解读,同时开展学习活动。
近几年,高考数学试题稳中有变,变中求新。
其特点是:稳以基础为主体,变以选拔为导向,增大思维量,减少运算量,倡导理性思维,能力寓“灵活”之中。
鉴于此,复习安排
要做到“三个加强三个突出”:
1 .加强客观题的解题速度和正确率的强化训练
高考采取了客观题选择与填空减少运算量,降低难度,让学生有更多的时间完成解答题,充分发挥选拔功能的做法,这就需要第二轮复习要在“速度”与“准确率”上下功夫。
一方面在平时讲评中要不断强化选择题的解法,如特值法、数形结合等,另一方面要定时
定量进行训练,可以在第二轮复习中每周安排一节课训练或每节课先安排十分钟训练,也
可在第三轮回归基础时进行训练。
通过训练,要达到这样一个目的:让较好的同学都能在40分钟以内完成十道选择题和四道填空题,并且失误控制在两题之内。
2 .加强思维训练,规范答题过程
第二轮复习中要重视对学生的每一次测试,通过严格训练让学生过好四关,形成良好
的思维品质和学习习惯,做到卷面规范、清楚,树立自己良好的形象。
哪四关呢?一是审
题关,审题要慢,答题要快,要逐句逐字看题,找出关键句,发掘隐含条件,寻找突破口;二是运算关,准字当先,争取既快又准,为此,平时让同学们熟记一些常用的中间结论是
非常必要的;三是书写关,要一步一步答题,重视解题过程的语言表达,培养学生条理清楚,步步有据,规范简洁,优美整齐的答题习惯。
在第三轮复习中我们要组织学生学习高
考评分标准,让学生学会踩得分点,俗话说:不怕难题不得分,就怕每题都扣分。
四是题
后反思关,做题不在多而在精,想要以少胜多,贵在反思,形成题后三思:一思知识提取
是否熟练?二思方法运用是否熟练?三思自己的弱点何在?熟练的前提是练熟,能力的提高
在于反思。
要求每位学生准备错题集,注明错误原因与反思心得,时常翻阅。
3 .加强代数与几何的有机联系
近年来的考题,在“解法代数化”的基础上,一个鲜明的特点是代数与几何联系考查明显加强了。
因此,在复习过程中代数、几何“各自为战”的现象必须根治,教师在备课过程中应有意识考虑它们的有机结合。
4 .突出基础知识与基本方法的运用
07年高考容易题、中等难度题和难题的分值之比启示我们在平时复习中应稳打稳扎,把数学的主干知识、重点知识吃透,掌握各类题型的通性通法,不追求怪、偏、巧。
努力提高基础知识的灵活运用,让“题海战术”、“死记硬背”、“硬套模式”的“下岗”;让“重视分析”、“注重方法”、“思维灵活”、“培养学习潜力”的“上台”。
在第三轮复习中,更应重视基础知识、基本方法的运用。
按去年高考理科重点线587分计算,每科得分率只需要0.76,也就是说数学能考114分就能保本,因此,如果能把容易题与中档题做对90%以上,就可上重点线。
5 .突出变式练习与一题多解
现在一些高考题就是把平时练习中的题目通过给出新的情景、改变设问方式、互换条件与结论等手段改编而成。
因而在平时复习中,教师应有意识地对一些可以改编的问题进行变式训练、题组训练,让学生进一步掌握这类问题的本质及其通性通法,同时要有意识进行一题多解,培养学生发散思维能力,丰富教学内容。
例如:从“1,2,3,……20”中任取三个数构成等差数列,不同的等差数列有几个?改编成:取法有几种?等比数列有几个?
6 .突出学生阅读分析能力的训练
一些学生遇到叙述较长的试题就产生畏惧心理,尤其是应用题,究其原因主要是阅读分析能力较低。
解决的途径是引导学生自己读题、审题,把关键语句转化为数学式子,再把所得的式子进行组合,就得到函数表达式,从而把实际问题转化为数学问题。
平时应有意识、有目的地选择一些阅读材料加以训练,如与生产生活密切相关的应用题,利用所给信息解题等。
二、做到“四个转变四个突出”
1 .变介绍方法为选择方法,突出解法的发现和运用
学生头脑中已储存了许多解题方法和规律,如何熟练提取运用是第二轮解决的关键。
“给出方法解题目”不可取,应该“给出题目选方法”,学好数学关键在于“悟”,多给学生一点思考时间,让学生自己去领会、体验,只有这样才能将所学知识转化为解决问题的能力,不至于“听听会的,做做错的”。
2 .变全面覆盖为重点讲练,突出高考“热点”问题
第二轮复习仅有两个月时间,面面俱到,从头再来一遍是根本办不到的。
要紧紧围绕
重点方法通性通法,重要知识点,重要数学思想和方法及近几年“热点”题型,狠抓过关。
3 .变以量为主为以质取胜,突出讲练落实
一切讲练,都要围绕学生展开,贪多嚼不烂,学生消化不了,落实不到学生身上,讲
练再多也无用。
只有重质减量,才能抓好落实。
当然减少练习量,不是指不做或少做,而
是在精选上下功夫。
4 .变治拐辅导为心理辅导,突出因人施教
一些同学数学成绩总是难以提高,究其原因,一方面是数学底子薄,基础较差,学不
得法,不能把所学的知识综合起来运用;另一方面是对数学有畏惧感。
多次的失败已经让
他对数学失去信心,一到考数学就发慌,脑子一片空白,即便是平时会做的题目,在考场
上也解不出来,于是心理更慌,思路更乱,形成恶性循环。
对这样的学生,要采用导师制,每位老师带3-5名同学,对其作业进行面批,借面批这个平台进行心理指导,提高数学成绩。
三、处理好五个问题
努力提高课堂复习效率,以下五个问题是必须处理好的。
一是课堂容量问题。
提倡增大课堂复习容量,不是追求过多的讲,过多的练,面面
俱到,“一网打着满河鱼”,而是重点问题舍得时间,非重点问题敢于取舍,集中精力解
决学生困惑的问题、热点问题,增大思维容量,少做无用功。
二是讲练比例问题。
第二轮复习容易形成“满堂灌”或“大撒手”,这样都不利于
学生学懂会用。
每堂课都要精讲精练,分配好讲练时间,一般讲以30分钟为宜,15分钟
用来交流或练习。
三是发挥学生主体地位问题。
课堂中,有的老师讲得多,讲得快,学生被动听、机
械记,久而久之,学生思维僵化,应变能力差;有的老师提问简单,或者板演过多,貌似
气氛活跃,讲练结合,其实效果较差。
双边活动的真谛是让学生参与解题活动,参与教学
过程,启迪思维,点拨要害。
曾经做过这样一道题目:六本相同的书分给四个人,共有几
种分法?
四是讲评的方式方法问题。
学情抓不准,讲评随意,对答案式的讲评是影响讲评课
效益的“大敌”。
必须做到评前认真阅卷,评中归类、纠错、变式、辩论等方式的结合,
要抓错误点,失分点,模糊点,剖析根源,彻底矫正。
可采取让学生自己讲解题体会,从
中可以暴露出学生存在的普遍问题,这样纠错学生容易接受,如:把四个不同的球放进三
个不同的盒子,每盒至少一个,共有几种方法?常规思路是先分组,再放进盒子,正确答
案为36。
但很多学生是这样思考的:先选三个球放进三个盒子,剩下一个球又有三种方法,得到的答案为72。
五是信息反馈问题。
系统论的反馈原理指出,任何系统只有通过反馈信息,才能实
现控制。
提高课堂复习效益,加强信息反馈是必不可少的。
两条反馈渠道非抓不可:一条
是通过练习或检测搜集信息。
另一条渠道是每周找部分学生座谈,了解学生的需求,针对
学生中存在的问题采取相应的教学措施加以解决。
高考是学生人生的一次磨砺,也是教师教学成果的体现。
“凡事预则立,不预则废”,只要我们从学校实际出发,制定适当的计划与目标,在日常教学中认真落实,那么通过第
二轮复习,学生的数学素质必定有较大的提高,解题的表述得到进一步规范,实现“内强
素质,外塑形象”。
感谢您的阅读,祝您生活愉快。