实验6-1 卡方检验
- 格式:pptx
- 大小:443.81 KB
- 文档页数:30
卡方检验的基本原理卡方检验是一种常用的统计方法,用于判断两个或多个分类变量之间是否存在显著性关联。
它基于卡方统计量的计算,通过比较实际观察值与理论预期值之间的差异来判断变量之间的关系。
本文将介绍卡方检验的基本原理及其应用。
一、卡方检验的基本原理卡方检验的基本原理是基于观察频数与期望频数之间的差异来判断变量之间的关联性。
在进行卡方检验之前,我们需要先了解以下几个概念:1. 观察频数(O):指实际观察到的频数,即实际发生的次数。
2. 期望频数(E):指在假设条件下,根据总体比例计算得到的预期频数。
3. 自由度(df):指用于计算卡方统计量的自由变量的个数。
卡方统计量的计算公式如下:χ² = Σ((O-E)²/E)其中,Σ表示对所有分类进行求和。
卡方统计量的计算结果服从自由度为(df = (行数-1) * (列数-1))的卡方分布。
通过查表或计算卡方分布的p值,我们可以判断卡方统计量是否达到显著水平。
二、卡方检验的应用卡方检验可以应用于多种场景,以下是几个常见的应用示例:1. 拟合优度检验:用于判断观察频数与期望频数之间的差异是否显著。
例如,我们可以使用卡方检验来判断一组数据是否符合某个理论分布。
2. 独立性检验:用于判断两个分类变量之间是否存在关联。
例如,我们可以使用卡方检验来判断性别与喜好之间是否存在关联。
3. 分类变量的比较:用于比较两个或多个分类变量之间的差异。
例如,我们可以使用卡方检验来比较不同地区的人口分布是否存在差异。
4. 配对数据的比较:用于比较配对数据之间的差异。
例如,我们可以使用卡方检验来比较同一组人在不同时间点的健康状况是否存在差异。
三、卡方检验的限制虽然卡方检验是一种常用的统计方法,但也存在一些限制:1. 样本量要求:卡方检验对样本量的要求较高,特别是在分类变量较多或期望频数较低的情况下,需要保证样本量足够大。
2. 数据独立性:卡方检验要求观察数据之间相互独立,如果数据存在相关性或依赖性,可能会导致检验结果不准确。
卡方检验医学统计学卡方检验是医学统计学中最常用的检验方法之一,它可用于测量两组数据之间的关联性。
在研究中,我们常常需要探究二者之间是否存在某种关联,卡方检验就是我们解决这个问题的利器。
卡方检验的原理卡方检验的原理是基于期望频数和实际频数的差异来检验两个变量之间的关系。
期望频数指的是在假设两个变量独立的情况下,我们可以根据样本量和其他条件,计算出不同组之间的理论值。
而实际频数则是实验中观察到的实际结果。
卡方检验的步骤如下:1.建立零假设和备择假设。
零假设指的是假设两个变量之间不存在任何关系,备择假设则是反之。
2.确定显著性水平 alpha,通常取值为0.05。
3.构建卡方检验统计量。
计算方法为将所有观察值与期望值的差平方后,再除以期望值的总和。
4.根据自由度和显著性水平,查卡方分布表得到 P 值。
5.如果 P 值小于显著性水平,拒绝零假设;否则无法拒绝零假设。
卡方检验的应用卡方检验可以应用于多个领域,其中医学统计学是最为常见的一个。
卡方检验可以用来分析两个疾病之间的相关性或者测量一种治疗方法的效果。
举个例子,某药厂要研发一种新的药物来治疗心脏病。
为了验证该药的疗效,实验组和对照组各50 人。
在 6 个月的治疗后,实验组和对照组中分别有 10 人和 15 人痊愈了。
卡方检验的作用就在于此时可以用来检验两组之间的差异是否具有统计学意义。
除了医学统计学之外,卡方检验在社会学、心理学、市场营销、物理等领域也都有广泛应用。
卡方检验的限制虽然卡方检验被广泛应用于各种实验和研究中,但它也有着自己的限制。
其中比较明显的一点就是对样本量有一定的要求。
当样本量较小的时候,期望频数的计算就会出现一定的误差,进而导致检验结果不准确。
此外,在面对非常态分布数据时,卡方检验也会出现问题。
当数据呈现正态分布时,卡方检验的准确性最高。
然而,实际上,很多数据都呈现出非正态分布,这时需要使用一些修正方法来解决。
卡方检验是医学统计学中最常用的统计方法之一,它可以用来测量两个变量之间的关联性。
试验数据的正态检验、数据的转换和卡方检验目录一、符合正态分布的例子 (1)二、不符合正态分布的例子 (6)三、不符合正态分布数据的转换及转换后数据的方差分析 (11)四、次数分布资料的卡方检验 (14)在对试验数据进行方差分析前,应对数据的三性(即同质性、独立性和正态性)进行检验。
本文介绍对资料的正态性进行检验的方法,主要介绍3种检验方法:(1)频数检验——作频率分布图、看偏度系数和峰度系数,(2)作Q-Q图检验,(3)非参数检验——单个样本K-S检验。
下面以两个试验数据为例,例1为84头育肥猪的体重数据,通常符合正态分布。
例2为生长育肥猪7个试验处理组的腹泻率(百分数资料)统计结果,这类资料往往不符合正态,而大多数人以为是符合正态分布,进行方差分析的,因而不能得出正确的结论,却可能得出错误结论。
一、符合正态分布的例子【例1】 84头生长育肥猪的“体重”数据如表1-1,检验该数据是否呈正态分布。
表1-1 84头育肥猪的“体重”数据(排序后)检验方法一:频数检验——作频率分布图、看偏度系数和峰度系数步骤1:数据录入SPSS中,如图1-1。
图1-1 体重数据录入SPSS中步骤2:在SPSS里执行“分析—>描述统计—>频率”,然后弹出“频率”对话框(图1-2a),变量选择“体重”;再点右边的“统计量”按钮,弹出图“频率:统计量”对话框(图1-2b),选择“偏度”和“丰度”(图1-2b);再点右边的“图表”按钮,弹出图“频率:图表”对话框(图1-2c),选择“直方图”,并选中“在直方图显示正态曲线”图1-2a “频率”对话框图1-2b “频率:统计量”对话框图1-2c “频率:图表”对话框设置完后点“确定”后,就会出来一系列结果,包括2个表格和一个图,我们先来看看“统计量”表,如下:统计量体重N 有效84缺失0偏度.040偏度的标准误.263峰度-.202峰度的标准误.520偏度系数=0.040,峰度系数-0.202;两个系数都小于1,可认为近似于正态分布。
表1 男女比例的差异检验
由表1可得,男女生人数在比例上存在着显著差异,表现在男生人数明显小于女生人数。
表2 文理科的差异检验
文科 理科 χ 2 p 32
29
21.82
<.001
由表2可得,文理科在人数比例上存在着显著差异,表现在文科人数明显多余理科人数。
表3 吸烟与患癌症死亡原因间的差异检验
是否吸烟
是 否 χ
2
p 癌症死亡原因
因吸烟 6 4 1.82
0.18
其他
3
7
由表3可得,癌症的死亡原因与是否吸烟无明显差异。
表4 学生课外活动调查结果 活动内容 体育 文娱 阅读 χ2 p 性别
男 21 11 23 8.32
.016
女
6
7
29
由表4可得,男女生人数在课外活动内容上存在着显著差异。
表5 男女生在学业水平人数上的比例差异
学生成绩 中等以上 中等以下 χ2 p 性别
男 23 17 0.02
.887
女
28
22
由表5可得,男女生人数在学习成绩上不存在显著差异。
表6 三种意见上的人数差异 不同意见 同意 不置可否 不同意 χ2 p 人数
24
12
12
6
.05
由表6可得,持这三种意见的人在人数上存在着显著差异。
表7 男女生人数在升学比例上的差异检验
由表7可得,男女生升学比例与该校长的经验不存在着显著差异。
男生人数 女生人数 χ2 p 13
52
23.40
<.001。
准实验研究设计方法从研究设计的思想和要求来推论,可以认为准实验设计是一种降低了控制标准的类似真实验的研究方法,因此准实验研究设计的方法在许多方面与真实验有相同之处,常用的准实验设计方法有不相等实验组控制组前后测准实验设计、不相等区组后测准实验设计、单组前测后测时间系列准实验设计、多组前测后测时间系列准实验设计、修补法准实验设计等五种。
(一)不相等实验组控制组前后测准实验设计这种准实验设计方法通常应用的情况是:需要安排两组被试作为实验组和控制组进行研究,但又不能按照随机化原则重新选择被试样本和分配被试。
这是一种典型的准实验设计方法,用于针对不同被试组在一开始就不相等时,进行实验组和控制组后测结果的比较,实验程序安排如表7-6所示:表7-6 不相等实验组控制组前测后测准实验设计程序不相等实验组控制组前后测准实验设计在进行过程中要注意两个问题。
⑴进行前测是用于检验在实验要考证的问题上实验组和控制组原有的近似程度,而不考虑其它因素。
只有当两个组在考证问题上原有水平相接近时,才能进行该种准实验研究。
⑵对结果进行分析时,要对R3和R4之间的差异进行统计检验,而非简单比较平均分、方差等,通过检验确定进行实验后两个组之间是否存在差异,差异程度如何。
[例6-1] 某一课题要研究利用多媒体计算机辅助物理教学后学生的学习效果,应用准实验方法进行研究,设计方案如下:第一步:选取实验对象。
为保证正常教学的进行,在某个年级中选择两个现成的整班参加实验。
为了保证参加研究的两个班物理学习的原始水平相似,对该年级所有的班进行前测以检测起始水平,从中选出两个水平接近的整班参加研究,保证选出的两个班在物理学习上总体水平相同或相近。
然后从中随机确定一个班作为实验组,接受多媒体计算机辅助物理教学;同时另一个班作为控制组按照原有教学计划和教学方式进行学习。
第二步:经过同一进度的教学活动后,同时对两个班级的物理课学习成绩进行考核,考核的结果进行后测。
卡方检验是一种常用的假设检验方法,用于比较两个或更多变量之间的关系。
以下是卡方检验的一般写法:1. 假设:- H0:两个变量之间没有显著关系。
- H1:两个变量之间存在显著关系。
2. 计算卡方值:- 根据样本数据计算卡方值(X^2),使用下面的公式:X^2 = Σ (O - E)^2 / E其中,O表示观测频数,E表示期望频数。
3. 查找卡方分布表:- 根据自由度和显著性水平查找卡方分布表,找到对应的临界值。
4. 比较卡方值和临界值:- 如果卡方值大于临界值,则拒绝原假设,接受备择假设,即认为两个变量之间存在显著关系。
- 如果卡方值小于等于临界值,则无法拒绝原假设,认为两个变量之间没有显著关系。
当进行卡方检验时,需要按照以下步骤进行详细的操作:1. 假设设定:- 首先,明确原假设(H0)和备择假设(H1)。
原假设通常表明两个变量之间没有显著关系,备择假设则认为两个变量之间存在显著关系。
2. 构建观测频数表:- 将数据整理成一个观测频数表,以便计算期望频数。
表格包含两个或更多行和列,用于记录不同变量的观测频数。
3. 计算期望频数:- 根据观测频数表,计算期望频数(E)。
期望频数是在原假设下,根据总体比例计算出的预期值。
计算期望频数的方法取决于具体的卡方检验类型。
4. 计算卡方值:- 使用观测频数和期望频数,按照公式X^2 = Σ (O - E)^2 / E,计算卡方值(X^2)。
这个公式计算了观测频数与期望频数之间的差异,并将其标准化。
5. 确定自由度:- 自由度(df)是指可以自由变动的独立数据值的数量。
在卡方检验中,自由度的计算方法取决于观测频数表的大小和特征。
6. 查找临界值:- 根据所选择的显著性水平(通常为0.05),查找卡方分布表以确定对应的临界值。
临界值是在给定自由度下的临界点,用于判断卡方值是否显著。
7. 比较卡方值和临界值:- 将计算得到的卡方值与临界值进行比较。
如果卡方值大于临界值,则拒绝原假设,认为两个变量之间存在显著关系。
案例分析-四格表确切概率法【例1—5】为比较中西药治疗急性心肌梗塞的疗效,某医师将27例急性心肌梗塞患者随机分成两组,分别给予中药和西药治疗,结果见表1-4。
经检验,得连续性校正χ2=3。
134,P>0。
05,差异无统计学意义,故认为中西药治疗急性心肌梗塞的疗效基本相同.表1-4 两种药物治疗急性心肌梗塞的疗效比较药物有效无效合计有效率(%)中药12(9.33)2(4.67)1485。
7西药 6(8。
67)7(4。
33)1346。
2合计1892766。
7【问题1—5】(1)这是什么资料?(2)该资料属于何种设计方案?(3)该医师统计方法是否正确?为什么?【分析】(1) 该资料是按中西药的治疗结果(有效、无效)分类的计数资料。
(2) 27例患者随机分配到中药组和西药组,属于完全随机设计方案. (3)患者总例数n=27<40,该医师用χ2检验是不正确的。
当n<40或T<1时,不宜计算χ2值,需采用四格表确切概率法(exact probabilities in 2×2 table)直接计算概率案例分析-卡方检验(一)【例1—1】某医师为比较中药和西药治疗胃炎的疗效,随机抽取140例胃炎患者分成中药组和西药组,结果中药组治疗80例,有效64例,西药组治疗60例,有效35例。
该医师采用成组t检验(有效=1,无效=0)进行假设检验,结果t=2.848,P=0.005,差异有统计学意义检验(有效=1,无效=0)进行进行假设检验,结果t=2。
848,P=0。
005,差异有统计学意义,故认为中西药治疗胃炎的疗效有差别,中药疗效高于西药。
【问题1—1】(1)这是什么资料?(2)该资料属于何种设计方案?(3)该医师统计方法是否正确?为什么?(4)该资料应该用何种统计方法? 【分析】(1)该资料是按中西药疗效(有效、无效)分类的二分类资料,即计数资料。
(2)随机抽取140例胃炎患者分成西药组和中药组,属于完全随机设计方案.(3) 该医师统计方法不正确.因为成组t检验用于推断两个总体均数有无差别,适用于正态或近似正态分布的计量资料,不能用于计数资料的比较。