有理数(五)
- 格式:doc
- 大小:512.50 KB
- 文档页数:12
初中数学有理数教案5篇关于初中数学有理数教案5篇初中数学有理数教案(篇1)教学目标:1、知识与技能:(1)通过学生熟悉的问题情景,以过探索有理数减法法则得出的过程,理解有理数减法法则的合理性。
(2)精通有理数的减法。
2、过程与方法通过实例,归纳出有理数的减法法则,培养学生的逻辑思维能力和运算能力,通过减法到加法的转化,让学生初步体会人归的数学思想。
重点、难点1.重点:有理数减法规则及其应用。
2.难点:有理数减法规则的应用改变了符号。
教学过程:一、创设情景,导入新课1、有理数加法运算是怎样做的?(-5)+3= —3+(—5)=—3+(+5)=2、-(-2)= -[-(+23)]=,+[-(-2)]=3、20__的某天,北京市的最高气温是-20C,最低气温是-100C,这天北京市的温差是多少?导语:可见,有理数的减法运算在现实生活中也有着很广泛的应用。
(出示课题)二、合作交流,解读探究1(-2)-(-10)=8=(-2)+82:珠穆朗玛峰海拔高度为8848米,与吐鲁番盆地海拔高度为-155米,珠穆朗玛峰比吐鲁番盆地高多少米?3、通过以上列式,你能发现减法运算与加法运算的关系吗?(学生分组讨论,大胆发言,总结有理数的.减法法则)减去一个数等于加上这个数的相反数教师提问、启发:(1)法则中的“减去一个数”,这个数指的是哪个数?“减去”两字怎样理解?(2)法则中的“加上这个数的相反数”“加上”两字怎样理解?“这个数的相反数”又怎样理解?(3)你能用字母表示有理数减法法则吗?三、应用迁移,巩固提高1、P.24例1 计算:(1) 0-(-3.18)(2)(-10)-(-6)(3)-解:(1)0-(-3.18)=0+3.18=3.18(2)(-10)-(-6)=(-10)+6=-4(3)-=+=12、课内练习:P.241、2、33、游戏:两人一组,用扑克牌做有理数减法运算游戏(每人27张牌,黑牌点数为正数,红牌点数为负数,王牌点数为0。
人教版七年级数学上册第一章有理数复习试题五(含答案)计算()3315130.75524828⎛⎫⎛⎫⎛⎫-++-+--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()1215232122346⎛⎫-÷⨯-+-⨯ ⎪⎝⎭ 【答案】(1)12;(2)314- 【解析】【分析】 (1)先将绝对值计算,然后将分母相同的利用加法交换律计算,最后用有理数的运算法则计算;(2)先利用除法法则计算,然后根据乘法分配律计算21512346⎛⎫+-⨯ ⎪⎝⎭,注意整体思想的处理,最后根据有理数的法则计算.【详解】(1)解:原式3335132+544882⎛⎫⎛⎫⎛⎫=-+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1652=-12= (2)解:原式11215312121222346⎛⎫=-⨯⨯-⨯+⨯-⨯ ⎪⎝⎭()3-83104=-+-314=- 【点睛】掌握有理数的运算法则是解题关键,注意符号的处理.82.某市居民生活用电可申请峰谷电,峰谷电价如下表:(1)小远家5月份高峰时间用电100千瓦时,低谷时间段用电40千瓦时,则应付电费多少元?(2)小远家6月份的高峰时间用电量为200千瓦时,低谷时间段用电量为140千瓦时,则按这种计费方式该家庭本月应付的电费多少元?(3)小远家7月份的高峰用电量为300千瓦时,所交电费为271.3元,则7月份低谷时间段用电量为多少千瓦时?【答案】(1)68.32元(2)156.62元(3)300千瓦时【解析】【分析】(1)根据表格中的各段电价列出算式,计算即可得到结果;(2)根据表格中的各段电价列出算式,计算即可得到结果;(3)先求出低谷时间段超过200千瓦时的电量,再加上200千瓦时即可得解.【详解】⨯+⨯=答:五月份应付电费68.32元.解:(1)0.5681000.2884068.32(2)()0.5682000.28850+0.318140-50=156.62⨯+⨯⨯答:六月份应付电费156.62元.(3)()271.30.5683000.288500.3181500.388200300-⨯-⨯-⨯÷+=答:七月份低谷时间段用电量为300千瓦时.故答案是:(1)68.32元(2)156.62元(3)300千瓦时【点睛】本题主要考查了有理数的混合运算的实际应用,解题时要注意根据题意列出式子.83.结合数轴和绝对值的知识回答下列问题:(1)数轴上,表示1和4的两点之间的距离是_________,表示3-和2的两点之间的距离是________;(2)数轴上,表示数x 和数y 的两点之间的距离可表示为____________.如果表示数x 和2-的两点之间的距离是3,那么x =_________;(3)若数轴上表示数x 的点位于5-和2之间,求|5||2|x x ++-的值;(4)当x 取何值时,|1||4|2x x x -+-++的值最小?最小值是多少?请说明理由.【答案】(1)3,5(2)x y ,1x =或5x =-(3)7(4)当1x =时,|1||4|2x x x -+-++有最小值,最小值为6,理由见解析【解析】【分析】(1)根据数轴可知,求出两个数的差的绝对值即可;(2)根据(1)的结论两点间的距离公式;根据距离公式列出方程求解即可;(4)判断出当1x =时,三个绝对值的和最小,然后进行计算即可得解.【详解】解:(1)表示1和4的两点之间的距离是143-=,表示3-和2的两点之间的距离是325--=;(2)①表示数x 和数y 的两点之间的距离可表示为x y②∵数x 和2-的两点之间的距离是3∴()23x --=∴1x =或5x =-;(3)∵数轴上表示数x 的点位于5-和2之间∴50x +>,20x -<∴|5||2|x x ++-52x x =+-+7=;(4)∵1x -为表示x 和1两点之间的距离,4x -为表示x 和4两点之间的距离,2x +为表示x 和2-两点之间的距离,如图:∴观察数轴可知,根据两点之间线段最短的原理,当1x =时,|1||4|2x x x -+-++有最小值,最小值为|11||14|126-+-++=.故答案是:(1)3,5(2)x y ,1x =或5x =-(3)7(4)当1x =时,|1||4|2x x x -+-++有最小值,最小值为6【点睛】本题考查了绝对值、数轴,读懂题目信息,理解数轴上两个数之间的距离的表示方法是解题的关键.的左边,同时点,A B 相距8个单位;点,A C 相距2个单位.点,,A B C 表示的数各是多少?【答案】点A 表示的数为4-,点B 表示的数为4,点C 表示的数为6-或2-【解析】【分析】先根据相反数的定义设出A 、B 两点所表示的数,再根据数轴上两点之间的距离公式解答即可.【详解】解:∵点A 、B 表示的数互为相反数,且点A 在点B 的左边∴A 为负数,B 为正数∵点A 、B 相距8个单位长度∴点A 表示的数为()824-÷=-,点B 表示的数为824÷=∵点A 、C 相距2个单位长度∴点C 表示的数为426--=-或422-+=-∴点A 表示的数为4-,点B 表示的数为4,点C 表示的数为6-或2-.如图所示:故答案是:点A 表示的数为4-,点B 表示的数为4,点C 表示的.数为6-或2-【点睛】本题考查的是数轴的特点及相反数的定义,熟知数轴上两点之间距离的定义是解答此题的关键.用几何方法借助数轴来求解,非常直观,且不容易85.计算下列各题(1)64-+;(2)343(2)+⨯-; (3)11322-÷⨯; (4)211(6)(6)32⎛⎫-⨯--- ⎪⎝⎭; (5)133|6|248⎛⎫⎛⎫-⨯-+-÷- ⎪ ⎪⎝⎭⎝⎭; (6)7779(18)131313⎛⎫-⨯+⨯--- ⎪⎝⎭. 【答案】(1)2-(2)20-(3)14(4)0(5)1-(6)14- 【解析】【分析】(1)根据有理数加法法则进行计算即可得解;(2)根据运算顺序,先算乘方再算乘法,最后计算加减即可得解;(3)根据运算顺序,先算乘除,再算加减即可得解;(4)先计算小括号里面的,再算乘法,最后计算加减即可得解;(5)先化简绝对值,再算乘除,最后计算加减即可得解;(6)先将各项符号确定,再逆用乘法分配律,进行计算即可得解.【详解】解:(1)64-+()64=--2=-;(2)343(2)+⨯-424=-20=-;(3)11322-÷⨯ 111322=-⨯⨯ 314=- 14=; (4)211(6)(6)32⎛⎫-⨯--- ⎪⎝⎭ 13666⎛⎫=⨯-+ ⎪⎝⎭66=-+0=;(5)133|6|248⎛⎫⎛⎫-⨯-+-÷- ⎪ ⎪⎝⎭⎝⎭ 1386243=-⨯+⨯ 32=-+1=-;(6)7779(18)131313⎛⎫-⨯+⨯--- ⎪⎝⎭ 7779181131313=-⨯-⨯+⨯ ()7918113=-⨯+- 72613=-⨯ 14=-.故答案是:(1)2-(2)20-(3)14(4)0(5)1-(6)14- 【点睛】本题考查了有理数加、减、乘、除、乘方以及绝对值的运算,一定要按运算顺序进行运算,注意不要跳步,每一步的运算结果都应在算式中体现出来.-(以警戒线为基准,记高于86.有一个水库某天8:00的水位为0.1m警戒线的水位为正),在以后的6个时刻测得的水位升降情况如下(记上升为正,单位:m):0.5,0.8,0,0.2,0.3,0.1--.经这6次水位升降后,水库的水位超过警戒线了吗?-;经这6次水位升降后,水库的水位没有超过警戒线【答案】0.4【解析】【分析】求得上述各数的和,然后根据结果与0的大小关系即可做出判断.【详解】-+-++-+=-<解:∵根据题意得,0.10.50.800.20.30.10.40∴经这6次水位升降后,水库的水位没有超过警戒线.-;经这6次水位升降后,水库的水位没有超过警戒线故答案是:0.4【点睛】此题主要考查正负数在实际生活中的应用,根据题意列出算式是解题的关键.87.杭州市出租车收费标准如下:3km以内(含3km)收费10元,3km 为起步里程,超过3km的部分每千米收费2元,超过13km的部分每千米收费3元.(不足1km以1km计算)(1)小明一次乘坐出租车行驶4.5km应付车费多少元?(2)若小明家距离学校13.1km,周末小明身边带了31元,则小明从钱?【答案】(1)应付车费14元;(2)不够,还缺少2元钱.【解析】【分析】(1)由题意可知:3<4.5<10,所以车费=3公里以内的收费+超过3公里的部分×2;(2)由于13.1>13,则应付车费=3公里以内的收费+7公里的部分×2+超过起步里程13公里×3,与31元进行比较即可.【详解】解:(1)不足1公里以1公里计算,4.5≈5,又3公里以内(含3公里)收费10元,超过3公里的部分每公里收费2元,故车费为10+(5-3)×2=14(元).∴小明一次乘坐出租车行驶4.5公里应付车费14元;(2)不足1公里以1公里计算,13.1≈14,又3公里以内(含3公里)收费10元,超过3公里的部分每公里收费2元,超过起步里程13公里以上每公里3元,故车费为10+10×2+(14-13)×3=33(元).∴小明的钱不够,还缺少2元钱.【点睛】本题考查有理数混合运算的实际应用.能理清题意,并依据题意计算是解决此题的关键.特别注意“不足1公里以1公里计算”这句话.88.计算:(1)20141813-+-+(2)375364129⎛⎫-+-⨯ ⎪(3)11(6)32⎛⎫-÷- ⎪⎝⎭(4)+(5)23121|64|82⎛⎫-⨯---÷ ⎪⎝⎭(6)3211(2)5⎡⎤⎛⎫---+-÷- ⎪⎢⎥⎝⎭⎣⎦【答案】(1)11-;(2)26-;(3)36;(4)83-;(5)26-;(6)45-. 【解析】【分析】(1)先将减法化为加法,再将负数和正数分别相加,把所得的结果相加;(2)利用乘法分配律进行计算,将所得的结果相加、减;(3)先计算括号,再用-6除以所得的结果;(4)分别计算立方根和算术平方根,将所得的结果相加;(5)先分别计算乘方和绝对值,再计算乘法和除法,然后将结果相减;(6)先计算小括号,再计算中括号,最后计算减法.【详解】解:(1)20141813-+-+2014(18)13=-++-+3827=-+11=-;(2)375364129⎛⎫-+-⨯ ⎪3753636364129=-⨯+⨯-⨯ 272120=-+-26=-;(3)11(6)32⎛⎫-÷- ⎪⎝⎭ 236)66(⎛⎫=-÷- ⎪⎝⎭ (6)16()=-÷- 6(6)=-⨯-36=;(4344=-+ 83=-; (5)23121|64|82⎛⎫-⨯---÷ ⎪⎝⎭ 986484=-⨯-÷ 18648=--÷188=--26=-;(6)3211(2)5⎡⎤⎛⎫---+-÷- ⎪⎢⎥⎝⎭⎣⎦=221(2)5⎡⎤---+÷-⎢⎥⎣⎦=121()5⎡⎤---+-⎢⎥⎣⎦ =62()5--- =45-. 【点睛】本题考查有理数的混合运算.熟练掌握有理数的混合运算的运算顺序和每一步的运算法则是解决此题的关键.89.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所,已知青少年宫在学校东500m 处,商场在学校西300m 处,医院在学校东600m 处.若将马路近似看作一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m .(1)请把数轴补画完整,并在数轴上表示出四家公共场所的位置;(2)列式计算青少年宫与商场之间的距离;(3)若小新家也位于这条马路旁,在青少年宫的西边,且到商场与青少年宫的距离之和等于到医院的距离,试求小新家与学校的距离.【答案】(1)数轴见解析;(2)青少年宫与商场之间的距离为800米;(3)小新家与学校的距离为200米或400米.【解析】【分析】(1)规定向东为正,单位长度是以100米为1个单位,根据青少年宫、学校、商场、医院的位置画出数轴即可;(2)根据数轴上两点之间的距离是表示这两点的数的差的绝对值求值(3)设小新家在数轴上表示的数为x ,根据小新家在青少年宫的西边,且到商场与青少年宫的距离之和等于到医院的距离列出方程求出x ,即可确定小新家与学校的距离.【详解】(1)如图,青少年宫、学校、商场、医院即为所示:(2)青少年宫与商场之间的距离|500-(-300)|=800m ,(3)设小新家在数轴上表示的数为x ,∵小新家到商场与青少年宫的距离之和等于到医院的距离,∴|x-(-300)|+|500-x|=|600-x|,∵小新家在青少年宫的西边,∴x <500,∴500-x >0,600-x >0,∴|x+300|+500-x=600-x ,∴x+300=±100,解得:x=-200或x=-400,∵以学校为原点,∴小新家与学校的距离为200米或400米.【点睛】本题主要考查正负数在实际生活中的应用,熟练掌握绝对值的定义及数轴上两点间的距离公式是解题关键.90.小杨对算式“11111(24)483423⎛⎫⎛⎫-⨯-++÷- ⎪ ⎪⎝⎭⎝⎭”进行计算时的过程解:原式①11111(24)(24)(24)483423⎛⎫⎛⎫=-⨯+-⨯-+-⨯+÷-⋯⋯ ⎪ ⎪⎝⎭⎝⎭3864(23)=-+-+⨯-⋅⋅⋅⋅⋅⋅②14=--⋅⋅⋅⋅⋅⋅③5=-⋅⋅⋅⋅⋅⋅④根据小杨的计算过程,回答下列问题:(1)小杨在进行第①步时,运用了___________律;(2)他在计算中出现了错误,其中你认为在第________步出错了(只填写序号);(3)请你给出正确的解答过程.【答案】(1)乘法分配;(2)②;(3)原式=23,正确过程见解析.【解析】【分析】(1)根据运算定律可知第①步运用了乘法分配律;(2)根据有理数除法运算法则可得第②步错误;(3)根据有理数混合运算法则计算即可点正确解答过程.【详解】(1)小杨在进行第①步时,运用了乘法分配律,故答案为:乘法分配(2)他在计算中出现了错误,他在第②步出错了,故答案为:②(3)11111(24)483423⎛⎫⎛⎫-⨯-++÷- ⎪ ⎪⎝⎭⎝⎭11111(24)(24)(24)483423⎛⎫⎛⎫=-⨯+-⨯-+-⨯+÷- ⎪ ⎪⎝⎭⎝⎭=-3+8-6+4÷16=-1+24=23.【点睛】本题考查有理数的混合运算,熟练掌握运算法则是解题关键.。
有理数的定义数的概念是随着生产和生活的需要不断发展的。
在现实生活中,我们常常遇到一些量,它们具有相反意义。
本讲的内容涉及数的扩展,我们对于数的认识从原来的正数和零扩展到负数。
所有的正负整数、正负分数和零统称为有理数。
另外,我们还要学会如何来用数轴上的点表示有理数,还要充分理解绝对值的含义。
知识梳理1.有理数及其分类、数轴1正数和负数正数就是带有正号的数(正号可以省略不写),是大于零的数;而负数是带有负号的数,是比零小的数。
2有理数:整数和分数统称有理数。
⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数(2) 而按照正、负数来分又有如下分类:⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数零负整数负有理数负分数 3数轴是这样的东西:规定了零点,正方向,单位长度的直线叫做数轴.4只有符号不同的两个数,叫做互为相反数。
5如果两个数的乘积为1,那么这两个数互为倒数.6相反数的数轴表现:在数轴上,位于原点两边,并且到原点的距离相等的数互为相反数。
知识梳理2. 绝对值一个数在数轴上所对应的点与原点的距离,叫做这个数的绝对值。
用符号∣а∣表示数a 的绝对值。
绝对值: 在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.两个互为相反数的数的绝对值相等00||00||00a a a a a a a a a a a >⎧≥⎧⎪===⎨⎨-<⎩⎪-<⎩或者说两个负数大小的比较因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数的左边,所以,两个负数,绝对值大的反而小。
比较两个负数大小的方法是:一、先分别求出这两个负数的绝对值;二、比较这两个绝对值的大小;三、根据“两个负数,绝对值大的反而小”做出正确的判断。
知识梳理3.综合提升有理数定义、数轴、绝对值综合运用。
【试题来源】【题目】(1)最大的负整数是 ; 最小的正整数是 ;(2)既不是整数,也不是正数的有理数是 ;(3)所有的小数都能化成分数吗? 。
第1讲有理数五大概念第一章有理数第1讲有理数五大概念知识导航1.正数和负数2.有理数3.数轴4.相反数5.绝对值方法技巧熟练掌握有理数的五大概念,依据定义解题【板块一】正数和负数题型一正数和负数的意义----表示相反意义的量【例1】用正负数表示下列各题中具有相反意义的量:(1)足球比赛中,若输2个球记作-2,那么赢3个球记作;(2)若规定向东走3米记作+3米,那么向西走5米记作米;(3)银行若存入3000元记作+3000元,那么从中取出2000元记作;(4)负债100元也可以说成是拥有;题型二判断数的正负【例2】下列各数:0.6,-3,+2,10%,0,-8,-1.2,+,π,,。
(1)正数有;(2)负数有【例3】想一想:如果字母a表示一个有理数,那么“-a”是正数还是负数呢?题型三根据数的正负性求值或范围【例4】若a-1表示正数,2a-6表示负数,求整数a表示的数。
针对练习11.若规定海平面的高度为0米,且规定高出海平面的高度为正,一潜水艇在水面下40米处航行,一条鲨鱼在潜水艇上方10米处游动,用正负数分别表示潜水艇和鲨鱼的高度分别为,,鲨鱼比潜水艇高出米。
2.通常高于海平面的地方,用正数表示它的高度,低于海平面的地方,用负数表示它的高度,已知甲、乙、丙三地的海拔高度分别为+100米、-10米和-80米,下列说法中不正确的是()A.甲地高出海平面100米B.丙地最低C.乙地比甲地低90米D.乙地比丙地高70米3.下列各数:+5.9,,-7,0,,8中,正数的个数是()A.1个B.2个C.3个D.4个4.大于-4且小于3的所有整数有()A.3个B.4个C.5个D.6个【板块二】有理数知识导航有理数:整数和分数统称有理数。
(可以化为两个整数的比的数)1.按定义分类2.按性质分类非负数:正数和0统称非负数;非正数:负数和0统称非正数;非负整数:正整数和0统称非负整数;非正整数:负整数和0统称非正整数。
第二章《有理数》中的动点问题培优训练(五)1.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A;B;(2)观察数轴,与点A的距离为4的点表示的数是;(3)若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数表示的点重合;(4)若数轴上M、N两点之间的距离为2018(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,求M、N表示的数.2.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,沿AC方向,以每秒1个单位的速度向终点C运动,设点P运动时间为t秒.(1)用含t的代数式表示点P到点A、C的距离,PA=;PC=.(2)当点P运动到点B时,点Q从C点出发,沿CA方向,以每秒3个单位的速度向A点运动,当其中一点到达目的地时,另一点也停止运动.①当t=,点P、Q相遇,此时点Q运动了秒.②请用含t的代数式表示出在P、Q同时运动的过程中PQ的长.3.邮递员骑摩托车从邮局出发,先向东骑行2km到达A村,继续向东骑行3km到达B村,然后向西骑行9km到C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)若摩托车每1km耗油0.03升,这趟路共耗油多少升?4.【新知理解】如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB=;(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC BD;(填“=”或“≠”)【解决问题】如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N是线段OC的圆周率点,求MN的长;(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.5.如图所示,一个点从数轴上的原点开始,先向右移动2个单位长度,再向左移动5个单位长度,可以看到终点表示是﹣3,已知A、B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A表示的数﹣3,将点A向右移动5个单位长度,那么终点B表示的数是.A、B两点间的距离是.(2)如果点A表示的数3,将点A向左移动3个单位长度,再向右移动6个单位长度,那么终点B表示的数是.A、B两点间的距离是.(3)如果点A表示的数x,将点A向右移动p个单位长度,再向左移动n个单位长度,那么请你猜想终点B表示的数是.A、B两点间的距离是.6.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(注:结果保留π)(1)把圆片沿数轴向右滚动半周,点B到达数轴上点C的位置,点C表示的数是数(填“无理”或“有理”),这个数是;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3.①第次滚动后,A点距离原点最近,第次滚动后,A点距离原点最远.②当圆片结束运动时,A点运动的路程共有,此时点A所表示的数是.7.已知,如图A、B分别为数轴上的两点,A点对应的数为﹣10,B点对应的数为70.(1)请写出AB的中点M对应的数;(2)现在有一只电子蚂蚁P从A点出发,以3个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以2个单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的C点相遇,请你求出C点对应的数;(3)若当电子蚂蚁P从A点出发,以3个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以2单位/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距35个单位长度,并写出此时P点对应的数.8.探究:数轴上任意两点之间的距离与这两点对应的数的关系.(1)如果点A表示数5,将点A先向左移动4个单位长度到达点B,那么点B表示的数是,A、B两点间的距离是.如果点A表示数﹣2,将点A向右移动5个单位长度到达点B,那么点B表示的数是,A、B两点间的距离是.(2)发现:在数轴上,如果点M对应的数是m,点N对应的数是n,那么点M与点N 之间的距离可表示为(用m、n表示,且m≥n).(3)应用:利用你发现的结论解决下列问题:数轴上表示x和﹣2的两点P与Q之间的距离是3,则x=.9.已知A、B两地相距54米,小乌龟从A地出发前往B地,第一次它前进1米,第二次它后退2米,第三次再前进3米,第四次又向后退4米…,按此规律行进,如果A地在数轴上表示的数为﹣17.(1)求出B地在数轴上表示的数;(2)若B地在原点的右侧,经过第九次行进后小乌龟到达点M,第十次行进后到达点N,点M到A地的距离与点N到A地的距离相等吗?说明理由.(3)若B地在原点的右侧,那么经过50次行进后,小乌龟到达的点与点B之间的距离是多少?10.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:(1)若数轴上数2表示的点与﹣2表示的点重合,则数轴上数﹣6表示的点与数表示的点重合.(2)若数轴上数﹣3表示的点与数1表示的点重合.①则数轴上数3表示的点与数表示的点重合.②若数轴上A、B两点之间的距离为2017,并且A、B两点经折叠后重合,如果A点表示的数比B点表示的数大,则A点表示的数是多少?(请在答题卡写出解答过程)参考答案1.解:(1)观察图象可知A表示1,B表示﹣2.5.故答案为1,﹣2.5.(2)观察数轴,与点A的距离为4的点表示的数是﹣3或5;故答案为﹣3或5.(3)若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数0.5表示的点重合;故答案为0.5.(4)设N表示的是为x,由题意可知x﹣(﹣1)=1009,∴N表示的数为1008,∴点M表示的数为﹣1010.2.解:(1)PA=t;PC=36﹣t;(2)①有依题意有t+3(t﹣16)﹣16=20,解得:t=21,t﹣16=21﹣16=5.故当t=21,点P、Q相遇,此时点Q运动了5秒.答案为:24或30;②当16≤t≤21时PQ=36﹣t﹣3(t﹣16)=84﹣4t;当21<t≤28时PQ=3(t﹣16)+t﹣36=4t﹣84.故答案为:t,36﹣t;21,5.3.解:(1)依题意得,数轴为:(2)依题意得:点C与点A的距离为:2+4=6km(3)依题意得,邮递员骑了:2+3+9+4=18km∴共耗油量为:18×0.03=0.54(升)答:这趟路共耗油0.54升.4.解:(1)∵AC=3,BC=πAC,∴BC=3π,∴AB=AC+BC=3π+3.故答案为:3π+3;(2)∵点D、C都是线段AB的圆周率点且不重合,∴BC=πAC,AD=πBD,∴设AC=x,BD=y,则BC=πx,AD=πy,∵AB=AC+BC=AD+BD,∴x+πx=y+πy,∴x=y∴AC=BD故答案为:=.(3)由题意可知,C点表示的数是π+1,M、N均为线段OC的圆周率点,不妨设M点离O点近,且OM=x,x+πx=π+1,解得x=1,∴MN=π+1﹣1﹣1=π﹣1;(4)设点D表示的数为x,如图1,若CD=πOD,则π+1﹣x=πx,解得x=1;如图2,若OD=πCD,则x=π(π+1﹣x),解得x=π;如图3,若OC=πCD,则π+1=π(x﹣π﹣1),解得x=π++2;如图4,若CD=πOC,则x﹣(π+1)=π(π+1),解得x=π2+2π+1;综上,D点所表示的数是1、π、π++2、π2+2π+1.5.解:(1)∵﹣3+5=2,∴B表示的数为2,A、B两点间的距离为2﹣(﹣3)=5,故答案为:2,5;(2)∵3﹣3+6=6,∴B表示的数为6,A、B两点间的距离为6﹣3=3,故答案为:6,3;(3)根据题意,点B表示的数为x+p﹣n,A、B两点间的距离为|x+p﹣n﹣x|=|p﹣n|,故答案为:x+p﹣n,|p﹣n|.6.解:(1)把圆片沿数轴向左滚动半周,点B到达数轴上点C的位置,点C表示的数是无理数,这个数是π;故答案为:无理,π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;故答案为:4π或﹣4π;(3)①∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3,∴第4次滚动后,A点距离原点最近,第3次滚动后,A点距离原点最远,故答案为:4,3;②∵|+2|+|﹣1|+|+3|+|﹣4|+|﹣3|=13,∴13×2π×1=26π,∴A点运动的路程共有26π;∵(+2)+(﹣1)+(+3)+(﹣4)+(﹣3)=﹣3,(﹣3)×2π=﹣6π,∴此时点A所表示的数是:﹣6π,故答案为:26π,﹣6π.7.解:(1)M点对应的数是(﹣10+70)÷2=30;(2)∵A、B分别为数轴上的两点,A点对应的数为﹣10,B点对应的数为70,∴AB=70+10=80,设t秒后P、Q相遇,∴3t+2t=80,解得t=16;∴此时点Q走过的路程=2×16=32,∴此时C点表示的数为70﹣32=38.答:C点对应的数是38;(3)相遇前:(80﹣35)÷(2+3)=9(秒),相遇后:(35+80)÷(2+3)=23(秒).则经过9秒或23秒,2只电子蚂蚁在数轴上相距35个单位长度,9秒对应的数为17,23秒对应的数为59.8.解:(1)点A表示数5,将点A先向左移动4个单位长度到达点B,那么点B表示的数是5﹣4=1,A、B两点间的距离是5﹣1=4;如果点A表示数﹣2,将点A向右移动5个单位长度到达点B,那么点B表示的数是﹣2+5=3,A、B两点间的距离是5;(2)点M对应的数是m,点N对应的数是n,那么点M与点N之间的距离可表示为m﹣n;(3)根据题意得,|x﹣(﹣2)|=3,解得:x=1或﹣5;故答案为:(1)1,4,3,5;(2)m﹣n;(3)1或﹣5.9.解:依题意(1)﹣17﹣54=﹣71,﹣17+54=37答:B地在数轴上表示的数是﹣71或37.(2)第9次行进后:1﹣2+3﹣4+5﹣6+7﹣8+9=5第十次行进后:1﹣2+3﹣4+5﹣6+7﹣8+9﹣10=﹣5∵点M、点N与的距离都是5米∴点M、点N与的距离相等.(3)当行进了50次后,它在数轴上表示的数为:﹣17+1﹣2+3﹣4+…+49﹣50=﹣17﹣25=﹣42∵点B在原点右则∴与B点间距离为|37﹣(42)|=69答:小乌龟到达的点与点B之间的距离是69米.10.解:(1)数轴上数2表示的点与﹣2表示的点关于原点对称,所以数轴上数﹣6表示的点与数6表示的点重合;(2)①数轴上数﹣3表示的点与数1表示的点关于点﹣1对称,所以数轴上数3表示的点与数﹣5表示的点重合;②∵AB=2017,∴点A、B到﹣1的距离均为1008.5,∴两点表示的数分别﹣1+1008.5=1007.5,﹣1﹣1008.5=﹣1009.5,∵A点表示的数比B点表示的数大,∴A点表示的数是1007.5.故答案为:(1)6;(2)﹣5.。
2.2有理数与无理数分层练习考察题型一有理数的识别1.在5-,0,1.3 ,2.121121112⋯(每两个2之间多一个1),3.1415926中,有理数的个数有()A .5个B .4个C .3个D .2个【详解】解:在5-,0,1.3 ,2.121121112⋯(每两个2之间多一个1),3.1415926中,有理数有:5-,0,1.3,,3.1415926,共4个.故本题选:B .2.在0.010010001,0.3333⋯,227-,0,2π-,43%-,0.313113111⋯(每两个3之间依次多一个1)中,有理数有()A .4个B .5个C .6个D .7个【详解】解:在0.010010001,0.3333⋯,227-,0,2π-,43%-,0.313113111⋯(每两个3之间依次多一个1)中,有理数有:0.010010001,0.3333⋯,227-,0,43%-,共5个.故本题选:B .考察题型二有理数的分类1.在下列数π,1+,6.7,15-,0,722,1-,25%中,属于整数的有()A .2个B .3个C .4个D .5个【详解】解:在数π,1+,6.7,15-,0,722,1-,25%中,整数的有:1+,15-,0,1-,共4个.故本题选:C .2.在10.1-,25,3.14,2π, 1.53- ,2.4224222422224⋯中,正分数有()A .4个B .3个C .2个D .1个【详解】解:在10.1-,25,3.14,2π, 1.53- ,2.4224222422224⋯中,正分数有:25,3.14,共2个.故本题选:C .3.在数12-,π, 3.4-,0,3+,73-中,属于非负整数的个数是()A .4B .3C .2D .1【详解】解:12-、 3.4-、73-为负数,不属于非负整数;π不属于整数;0,3+属于非负整数.故本题选:C .4.下列各数:452,1,8.6,7,0,,4,101,0.05,9563---+--中,()A .只有1,7-,101+,9-是整数B .其中有三个数是正整数C .非负数有1,8.6,101+,0D .只有42,453--,0.05-是负分数【详解】解:由题意可知:A 、整数包括:1,7-,0,101+,9-,故本选项错误;B 、正整数包括:1和101+,故本选项错误;C 、非负数包括:1,8.6,101+,0,56,故本选项错误;D 、负分数包括:45-,243-,0.05-,故本选项正确.故本题选:D .5.把下列各数填入相应的集合中:6+,0.75,3-,0, 1.2-,8+,245,13-,9%,正分数集合:{}⋯;正整数集合:{}⋯;整数集合:{}⋯;有理数集合:{}⋯.【详解】解:正分数集合:{0.75,245,9%,}⋯;正整数集合:{6+,8+,}⋯;整数集合:{6+,3-,0,8+,}⋯;有理数集合:{6+,0.75,3-,0, 1.2-,8+,245,13-,9%,}⋯.6.把下列将数填入相应的集合中:23-,0.5,23-,28,0,4,135, 5.2-.【详解】解:如图所示:.7.将数分类:2-,0,0.1314-,11,227,143-,0.03,2%.正数:{};非负数:{};负分数:{};非负整数:{}.【详解】解:正数有:11,227,0.03,2%,非负数有:0,11,227,0.03,2%,负分数有:0.1314-,143-,非负整数有:0,11.8.把下列各数填在相应的集合内:3-,4,2-,15-,0.58-,0, 3.4- ,0.618,139,3.14.整数集合:{}⋯;分数集合:{}⋯;负有理数集合:{}⋯;非正整数集合:{}⋯.【详解】解:整数集合:{3-,4,2-,0}⋯;分数集合:1{5-,0.58-, 3.4- ,0.618,139,3.14}⋯;负有理数集合:{3-,2-,15-,0.58-, 3.4}-⋯;非正整数集合:{3-,2-,0}⋯.考察题型三有理数的概念辨析1.下列关于0的说法错误的是()A.任何情况下,0的实际意义就是什么都没有B.0是偶数,也是自然数C.0不是正数也不是负数D.0是整数也是有理数【详解】解:A、0的实际意义不是什么都没有,符合题意;B、0是偶数,也是自然数,不合题意;C、0不是正数也不是负数,不合题意;D、0是整数也是有理数,不合题意.故本题选:A.2.下面是关于0的一些说法:①0既不是正数也不是负数;②0是最小的自然数;③0是最小的正数;④0是最小的负数;⑤0既不是奇数又不是偶数.其中正确说法的个数是()个.A.0B.1C.2D.3【详解】解:①0是正数与负数的分界,所以0既不是正数也不是负数,故原说法正确;②0和正整数都是自然数,所以0是最小的自然数,故原说法正确;③0既不是正数也不是负数,故原说法错误;④0既不是正数也不是负数,故原说法错误;⑤整数按能否被2整除分为奇数与偶数,0属于偶数,故原说法错误;综上,①②正确.故本题选:C.3.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数【详解】解:负整数和负分数统称负有理数,A正确,不合题意;整数分为正整数,0,负整数,B正确,不合题意;正有理数,0,负有理数组成全体有理数,C错误,符合题意;3.14是小数,也是分数,小数是分数的一种表达形式,D正确,不合题意.故本题选:C.4.下列说法正确的是()A.正整数、负整数统称为整数B.正分数、负分数统称为分数C.正数、0、负数统称为有理数D.整数、分数、小数都是有理数【详解】解:A.正整数、0、负整数统称为整数,故本选项错误;B.正分数、负分数统称为分数,故本选项正确;C.正有理数、0、负有理数统称为有理数,故本选项错误;D.无限不循环小数不是有理数,故本选项错误.故本题选:B.5.下列说法中正确的是()A.非负有理数就是正有理数B.有理数不是正数就是负数C.正整数和负整数统称为整数D.整数和分数统称为有理数【详解】解:A、非负有理数就是正有理数和0,故A选项不正确;B、0既不是正数也不是负数,是有理数,故B选项不正确;C、正整数、0、负整数统称为整数,故C选项不正确;D、整数和分数统称有理数,故D选项正确.故本题选:D.6.下列说法:(1) 3.56既是负数、分数,也是有理数;(2)正整数和负整数统称为整数;(3)0是非正数;(4)2023-既是负数,也是整数,但不是有理数;(5)自然数是整数.其中正确的个数是()A.1个B.2个C.3个D.4个【详解】解:(1)正确;(2)错误,还有0;(3)正确;(4)错误,2023-是有理数;(5)正确.正确的有3个,故本题选:C.7.下列说法中,正确的是()A.在有理数集合中,有最大的正数B.在有理数集合中,有最小的负数C.在负数集合中,有最大的负数D.在正整数集合中,有最小的正整数【详解】解:A、在有理数集合中,没有最大的正数,故A选项错误;B、在有理数集合中,没有最小的负数,故B选项错误;C、在负数集合中,没有最大的负数,故C选项错误;D、在正整数集合中,有最小的正整数1,故D选项正确.故本题选:D.8.下面说法中正确的有()A.非负数一定是正数B.有最小的正整数,有最小的正有理数C.a-一定是负数D.0既不是正数,也不是负数【详解】解: 非负数包括0和正数,A∴选项不合题意;∴选项不合题意;没有最小的正有理数,B若a是负数,则a∴选项不合题意;-是正数,C∴选项符合题意.既不是正数,也不是负数,D故本题选:D.9.下列说法正确的是()A.最小的正有理数是1B.最小的正整数是1C.0是最小的有理数D.有理数由正数和负数组成【详解】解:A.没有最小的有理数,故本选项不合题意;B.最小的正整数是1,故本选项符合题意;C.有最小的有理数,故本选项不合题意;D.有理数由正有理数,0,负有理数组成,故本选项不合题意.故本题选:B.10.有下列说法:①最小的自然数为1;②最大的负整数是1-;③没有最小的负数;④最小的整数是0;⑤最小非负整数为0,其中,正确的说法有()A.2个B.3个C.4个D.5个【详解】解:①最小的自然数为0,故①不正确;②最大的负整数是1-,故②正确;③没有最小的负数,故③正确;④没有最小的整数,故④不正确;⑤最小非负整数为0,故⑤正确;综上,正确的说法有3个.故本题选:B.考察题型四数感问题1.有两个正数a,b,且a b<,把大于等于a且小于等于b所有数记作[a,]b,例如大于等于1且小于等于4的所有数记作[1,4].如果m在[5,15]内,n在[20,30]内,那么nm的一切值中属于整数的有()A.1,2,3,4,5B.2,3,4,5,6C.2,3,4D.4,5,6【详解】m在[5,15]内,n在[20,30]内,515m∴,2030n,∴2030155nm,即463nm,∴nm的一切值中属于整数的有2,3,4,5,6.故本题选:B.2.设有三个互不相等的有理数,既可表示为1-,a b+,a的形式,又可表示为0,ba-,b的形式,则ab 的值为.【详解】解: 三个互不相等的有理数,既可表示为1-,a b +,a 的形式,又可表示为0,b a,b 的形式,∴这两个数组的数分别对应相等,a b ∴+与a 中有一个是0,b a-与b 中有一个是1-,若0a =,则b a无意义,0a ∴≠,0a b +=,∴a b =-,即1b a =-,b a-1=,∴1b =-,1a =,ab ∴的值为1-.故本题答案为:1-.考察题型五无理数的识别1.在数2021-,0.777⋯⋯,2π,833-,3.1415926,3π-中,无理数的个数是()A .2个B .3个C .4个D .5个【详解】解:在数2021-,0.777⋯⋯,2π,833-,3.1415926,3π-中,无理数有:2π,3π-,共2个.故本题选:A .2.下列八个数:8-,2.7,2-,2π,0.6 ,0,132,0.8080080008⋯⋯(每两个8之间逐次增加一个0),无理数的个数有()A .0个B .1个C .2个D .3个【详解】解:在实数8-,2.7,2-,2π,0.6 ,0,132,0.8080080008⋯⋯(每两个8之间逐次增加一个0)中,无理数有:2π,0.8080080008⋯⋯(每两个8之间逐次增加一个0),共2个.故本题选:C .3.介于3和π之间的一个无理数是()A .32π+B .3.15C .3.1D .0.15π-【详解】解:介于3和π之间的一个无理数是32π+.故本题选:A .4.(1)请你写出一个比1大且比2小的无理数,该无理数可以是;(2)两个无理数,它们的和为1,这两个无理数可以是.【详解】解:(1)无理数为:2π-,故本题答案为:2π-(答案不唯一);(2)(1)1ππ+-=,故本题答案为:π,1π-(答案不唯一).1.循环小数0.15可化分数为.【详解】解:设0.15x ⋅⋅=,则10015.15x ⋅⋅=,15.15150.15⋅⋅⋅⋅∴=+,10015x x ∴=+,解得:533x =.故本题答案为:533.2.已知有A ,B ,C 三个数集,每个数集中所包含的数都写在各自的大括号内,{2A =-,3-,8-,6,7},{3B =-,5-,1,2,6},{1C =-,3-,8-,2,5},请把这些数填在图中相应的位置.【详解】解:如图所示:.3.10个互不相等的有理数,每9个的和都是“分母为22的既约真分数(分子与分母无公约数的真分数)”,则这10个有理数的和为()A.12B.1118C.76D.59【详解】解:由题意可得:这10个有理数,每9个相加,一共得出另外10个数,原10个有理数互不相等,∴它们相加后得出的另外10个数也是互不相等的,而这10个数根据题意都是分母22的既约真分数,而满足这个条件的真分数恰好正好有10个,∴这10项分别是:1/22,3/22,5/22,7/22,9/22,13/22,15/22,17/22,19/22,21/22, 它们每一个都是原来10个有理数其中9个相加的和,∴如果再把这10个以22为分母的真分数相加,得出来的结果必然是原来的10个有理数之和的9倍.∴10个真分数相加得出结果为5,故所求的10个有理数之和为5/9.故本题选:D.。
第5讲 有理数章末复习一、知识梳理1. 有理数1.有理数:(1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数.(2) 有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,互为相反数,即a 和- a 互为相反数;0的相反数还是0;(2) a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)绝对值的意义是数轴上表示某数的点离开原点的距离; (2) ⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a 或⎩⎨⎧<-≥=)0a (a )0a (a a 或⎩⎨⎧≤->=)0()0(a a a a a ; 正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;绝对值的问题经常分类讨论,零既可以和正数一组也可以和负数一组;5.有理数比大小:两个负数比大小,绝对值大的反而小;数轴上的两个数,右边的数总比左边的数大;大数-小数 > 0,小数-大数 < 0.6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.【例1】.(1)下列各数中,最小的数是( )A .﹣2B .0C .﹣6D .3【分析】根据负数都小于0,负数都小于正数,得出﹣2和﹣6小,根据两个负数比较大小,其绝对值大的反而小,即可得出答案.【解答】解:∵﹣6<﹣2<0<3,∴最小的数是﹣6,故选:C .(2)下列说法不正确的是( )A .﹣3.14既是负数、分数,也是有理数B .0既不是正数,也不是负数,但是整数C .﹣2019是负整数,但不是有理数D .0是正数和负数的分界【分析】依据有理数分类、正负数分类逐项判断即可.【解答】解:A 、﹣3.14属于负数,分数,有理数,故A 不符合题意;B 、0不属于正数,也不属于负数,属于整数,故B 不符合题意;C 、﹣2019属于有理数,故C 符合题意;D 、0为正数和负数的分界,故D 符合题意.(3)在数轴上从左到右有A,B,C三点,其中AB=1,BC=2,如图所示.设点A,B,C所对应数的和是x,则下列说法错误的是()A.若以点A为原点,则x的值是4B.若以点B为原点,则x的值是1C.若以点C为原点,则x的值是﹣4D.若以BC的中点为原点,则x的值是﹣2【分析】利用数轴的意义对各选项进行分析判断即可.【解答】解:A、若以点A为原点,则B、C对应的数为1,3,则x=0+1+3=4,故本选项说法正确,不符合题意;B、若以点B为原点,则A、C对应的数为﹣1,2,则x=0﹣1+2=1,故本选项说法正确,不符合题意;C、若以点C为原点,则B、A对应的数为﹣2,﹣3,则x=0﹣2﹣3=﹣5≠﹣4,故本选项说法错误,符合题意;D、若以BC的中点为原点,则B、C对应的数为﹣1,1,A对应的数为﹣2,则x=﹣2﹣1+1=﹣2,故本选项说法正确,不符合题意;故选:C.(4)﹣1的倒数是﹣,相反数是1绝对值是1.【分析】利用绝对值、倒数、相反数的定义进而求出即可.【解答】解:﹣1的倒数是:﹣,相反数是:1;绝对值是:1;故答案为:﹣;1;1.【变式训练1】.(1)下列各数中最大的是()A.﹣3B.﹣2C.0D.1【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的其值反而小,依此比较大小【解答】解:因为﹣3<﹣2<0<1,所以其中最大的数为1.故选:D.(2)下列说法中正确的个数有()①﹣4.2是负分数;②3.7不是整数;③非负有理数不包括零;④正有理数、负有理数统称为有理数;⑤0是最小的有理数A.1个B.2个C.3个D.4个【分析】结合有理数的分类分析即可.【解答】解:①﹣4.2是负分数是正确的;②3.7不是整数是正确的;③非负有理数包括零,原来的说法错误;④正有理数、0、负有理数统称为有理数,原来的说法错误;⑤没有最小的有理数,原来的说法错误.故说法中正确的个数有2个.故选:B.(3)如图所示,有理数a、b在数轴上的位置如图,则下列说法错误的是()A.b﹣a>0B.a+b<0C.ab<0D.b<a【分析】根据数轴上点的位置关系,可得a、b的大小,判定D,根据有理数的加法,可判断B;根据有理数的乘法,可判断C;根据有理数的减法,可判断A.【解答】解:由数轴上点的位置关系,得a>0>b,|a|<|b|,A.b﹣a<0,故此选项错误;B.a+b<0,故此选项正确;C.ab<0,故此选项正确;D.b<a,故此选项正确.故选:A.(4)﹣1.2的倒数是﹣,相反数是 1.2,绝对值是 1.2.【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数,根据只有符号不同的两个数互为相反数,可得一个数的相反数,再根据负数的绝对值等于他的相反数,可得一个数的绝对值.【解答】解:﹣1.2的倒数是﹣,相反数是1.2,绝对值是1.2,故答案为:﹣,1.2,1.2.2.有理数的四则运算1. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.2.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).4. 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定,负因数为奇数个时乘积为负,负因数为偶数个时乘积为正.5. 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .6.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即a.【例2】.(1)计算:11.125﹣1+4﹣4.75.【分析】根据有理数的加减运算法则及加法交换律和结合律进行计算.【解答】解:原式=11﹣1+4﹣4=(11+4)﹣(1+4)=16﹣6=10(2)计算:(﹣)÷(﹣2)×.【分析】直接利用有理数的乘除运算法则计算得出答案.【解答】解:原式=××=.【变式训练2】.(1)计算:.【分析】先将减法转化为加法,再依据法则计算可得.【解答】解:原式=0.4+3.6﹣8﹣12=4﹣20=﹣16.(2)计算:1×1.4.【分析】将带分数化为假分数,小数化为分数,除法变为乘法,再约分计算即可求解.【解答】解:1×1.4=××3.有理数的乘方与有理数的混合运算1.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;2.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .3.混合运算法则:先乘方,后乘除,最后加减.,有括号的先算括号.【例3】.(1)下列算式中结果为负数的是()A.﹣(﹣3)B.|﹣2|C.(﹣2)3D.(﹣2)2【分析】根据相反数、绝对值、和理数的乘方逐一判断即可.【解答】解:A.﹣(﹣3)=3,不合题意;B.|﹣2|=2,不合题意;C.(﹣2)3=﹣8,符合题意;D.(﹣2)2=4,不合题意.故选:C.(2)计算:[2+(﹣5)2]÷3×﹣|﹣4|+23.【分析】先算乘方,再算乘除,最后算加减.同级运算,从左往右计算.【解答】解:原式=[2+25]÷3×﹣4+8=27÷3×﹣4+8=9×﹣4+8=7.【变式训练3】.(1)已知下列各数:﹣(﹣2),﹣34,5.2,﹣|﹣|,(﹣1)2009,0中,其中是非负数的有()A.1个B.2个C.3个D.4个【分析】从6个数中找到非负数即可.【解答】解:﹣(﹣2),﹣34,5.2,﹣|﹣|,(﹣1)2009,0中,其中是非负数有:其中是非负数的有:﹣(﹣2),5.2,0共3个,故选:C.(2)计算:24÷(﹣2)3+[(﹣3)2+5]×|﹣|.【分析】先算乘方,再算乘除,最后算加减.【解答】原式=24÷(﹣8)+[9+5]×=﹣3+14×=﹣3+7=4.4.科学记数法与近似数1.科学记数法:把一个大于10的数记成a×10n的形式,(其中1≤a<10)这种记数法叫科学记数法.2.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.3.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.【例3】.(1)2021年5月21日,国新办举行新闻发布会,介绍第七次全国人口普查情况,全国人口总数约为14.12亿人.用科学记数法表示14.12亿人,可以表示为 1.412×109人.【分析】把一个大于10的数写成科学记数法形式:a×10n,其中1≤a<10,n为正整数,n的值比这个数的整数位数少1.【解答】解:14.12亿=1412000000=1.412×109,故答案为:1.412×109.(2)用四舍五入法把数6.5378精确到0.01,得近似数为 6.54.【分析】对千分位数字四舍五入即可.【解答】解:用四舍五入法把数6.5378精确到0.01,得近似数为6.54,故答案为:6.54.(3)近似数0.0320有3个有效数字.【分析】根据有效数字的定义和题目中的数据,可以写出有效数字的个数,从而可以解答本题.【解答】解:近似数0.0320有3个有效数字,故答案为:3.【变式训练3】.(1)人民网哈尔滨1月10日电,1月10日在黑龙江省政府新闻办举办的“重振雄风再出发﹣﹣龙江这一年”系列主题新闻发布会上表示,全省实现旅游收入2683.8亿元,将2683.8亿用科学记数法表示为2.683×1011.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数.【解答】解:2683.8亿=268380000000=2.683×1011,故答案为:2.683×1011.(2)用四舍五入法将3.1415精确到百分位约等于 3.14.【分析】把千分位上的数字1进行四舍五入即可.【解答】解:3.1415(精确到百分位)是3.14.故答案为:3.14.(3)近似数1.024有4个有效数字.【分析】根据有效数字的定义和题目中的数据,可以写出相应的有效数字.【解答】解:似数1.024有四个有效数字,故答案为:4.二、课堂训练1.在四个数﹣5、﹣1、0、3中最小的数是()A.﹣5B.﹣1C.0D.3【分析】正数大于0,负数小于0,两个负数比较大小,绝对值大的反而小.【解答】解:∵﹣5<﹣1<0<3,∴最小的数为﹣5,故选:A.2.下列数轴表示正确的是()A.B.C.D.【分析】注意数轴的三要素以及在数轴上,右边的数总比左边的数大即可做出判断.【解答】解:A选项,应该正数在右边,负数在左边,故该选项错误;B选项,负数的大小顺序不对,故该选项错误;C选项,没有原点,故该选项错误;D选项,有原点,正方向,单位长度,故该选项正确;故选:D.3.﹣(﹣6)的相反数是()A.B.C.﹣6D.6【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣(﹣6)=6,故﹣(﹣6)的相反数是﹣6.故选:C.4.如图是小竹观察到温度计的示数,该示数的绝对值是()A.﹣9B.9C.﹣11D.11【分析】观察温度计的示数,这个示数在0℃以下,这个示数为﹣9,所以绝对值为9.【解答】解:观察温度计,这个示数为﹣9,所以该示数的绝对值为9,故选:B.5.经过4.6亿公里的飞行,我国首次火星探测任务“天问一号”探测器于2021年5月15日在火星表面成功着陆,火星上首次留下了中国的印迹.将4.6亿用科学记数法表示为()A.4.6×109B.0.46×109C.46×108D.4.6×108【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:4.6亿=460000000=4.6×108.故选:D.6.用四舍五入法将0.0375精确到0.01是0.04.【分析】把千分位上的数字7进行四舍五入即可.【解答】解:将0.0375精确到0.01是0.04.故答案为0.04.7.比较大小:>.【分析】先比较与的大小,再根据比较两个负数大小的方法确定最后答案.【解答】解:∵|﹣|=,|﹣2|=,<,∴﹣>﹣2,故答案为:>.8.已知A,B是数轴上的两点,且AB=4.5,点B表示的数为1,则点A表示的数为﹣3.5或5.5.【分析】根据AB=4.5,点B表示的数为1,进行分类讨论A可以在B的左边或右边,求得点A表示的数.【解答】解:∵AB=4.5,B表示1,∴A表示为1﹣4.5=﹣3.5或1+4.5=5.5.故答案是:﹣3.5或5.5.9.计算:.【分析】利用有理数混合运算的法则运算:先做乘方,再做乘除,最后做加减,有括号的先做括号里面的.【解答】解:原式=﹣9÷(4﹣1)+(﹣)×24=﹣9÷3+(×24﹣×24)=﹣3+(16﹣6)=﹣3+10=7.10.一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+6,﹣2,+10,﹣8,﹣7,+11,﹣10.(1)守门员是否回到了原来的位置?(2)守门员离开球门的位置最远是多少?(3)守门员一共走了多少路程?【分析】(1)只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)将所有绝对值相加即可.【解答】解:(1)根据题意得:6﹣2+10﹣8﹣7+11﹣10=0.答:回到了原来的位置.(2)第一次离开6米,第二次离开4米,第三次离开14米,第四次离开6米,第五次离开1米,第六次离开10米,第七次离开0米,则守门员离开守门的位置最远是14米;(3)总路程=|+6|+|﹣2|+|+10|+|﹣8|+|﹣7|+|+11|+|﹣10|=54米.三、课后巩固1.下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃﹣183﹣253﹣196﹣268.9则沸点最高的液体是()A.液态氧B.液态氢C.液态氮D.液态氦【分析】根据有理数大小的比较方法解答即可.【解答】解:因为﹣268.9<﹣253<﹣196<﹣183,所以沸点最高的液体是液态氧.故选:A.15.下列各数中,既是分数又是负数的是()A.﹣3.1B.﹣4C.0D.2.8【分析】根据小于零的分数是负分数,可得答案.【解答】解:A、﹣3.1既是分数又是负数,故本选项符合题意;B、﹣4是负整数,故本选项不合题意;C、0不是正数,也不是负数,故本选项不合题意;D、2.8是正分数,故本选项不合题意;故选:A.3.下列几种说法正确的是()A.0是最小的数B.最大的负有理数是﹣1C.1是绝对值最小的正数D.平方等于本身的数只有0和1【分析】根据有理数是有限小数或无限循环小数,平方的意义,可得答案.【解答】解:A、没有最小的数,故A错误;B、没有最大的负有理数,故B错误;C、没有绝对值最小的正数,故C错误;D、平方等于它本身的数只有0和1,故D正确;故选:D.4.已知a,b,c三个数在数轴上,对应点的位置如图所示,下列各式错误的是()A.b<a<c B.﹣a<b C.a+b<0D.c﹣a>0【分析】先根据在数轴上,右边的数总比左边的数大,得出b<a<c,再由相反数的定义、绝对值的性质以及有理数的加减法法则得出结果.【解答】解:根据数轴可得:b<a<0<c,∴a+b<0、c﹣a>0.∴A、C、D选择正确.∵a<0.∴﹣a>0.∴﹣a>b.∴B选项错误.故选:B.5.﹣|﹣2021|的相反数为()A.﹣2021B.2021C.﹣D.【分析】根据绝对值的定义、相反数的定义解题即可.【解答】解:∵﹣|﹣2021|=﹣2021,∴﹣2021的相反数为2021.故选:B.6.计算:﹣(﹣1)4=﹣1.【分析】根据乘方的意义直接得出.【解答】解:﹣(﹣1)4=﹣1.故答案为:﹣1.7.“⊗”定义新运算:对于任意的有理数a和b,都有a⊗b=b2+1.例如:9⊗5=52+1=26.当m为有理数时,则m⊗(m⊗3)等于101.【分析】根据题目中的新定义a⊗b=b2+1.可以计算出所求式子的值.【解答】解:∵a⊗b=b2+1.∴m⊗(m⊗3)=m⊗(32+1)=m⊗(9+1)=m⊗10=102+1=100+1=101,故答案为:101.8.上海市于2011年6月8日宣布撤销黄浦区、卢湾区建制,设立新的黄浦区,新黄浦区全区户籍人口约有906300人,把这个人口数用科学记数法来表示为9.063×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:906300=9.063×105.故答案为:9.063×105.9.计算:﹣22+3×(﹣1)2021﹣(﹣12)×().【分析】根据有理数的乘方、有理数的乘法和加减法可以解答本题.【解答】解:﹣22+3×(﹣1)2021﹣(﹣12)×()=﹣4+3×(﹣1)+12×﹣12×=﹣4+(﹣3)+4﹣9=﹣12.10.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+12,﹣5.(1)请你帮忙确定B地相对于A地的方位?(2)救灾过程中,冲锋舟离出发点A最远处有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?【分析】(1)把题目中所给数值相加,若结果为正数则B地在A地的东方,若结果为负数,则B地在A地的西方;(2)分别计算出各点离出发点的距离,取数值较大的点即可;(3)先求出这一天走的总路程,再计算出一共所需油量,减去油箱容量即可求出途中还需补充的油量.【解答】解:(1)∵14﹣9+8﹣7+13﹣6+12﹣5=20,∴B地在A地的东边20千米;(2)∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5千米;14﹣9+8=13千米;14﹣9+8﹣7=6千米;14﹣9+8﹣7+13=19千米;14﹣9+8﹣7+13﹣6=13千米;14﹣9+8﹣7+13﹣6+12=25千米;14﹣9+8﹣7+13﹣6+12﹣5=20千米.∴最远处离出发点25千米;(3)这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+12+|﹣5|=74千米,应耗油74×0.5=37(升),故还需补充的油量为:37﹣28=9(升)。
沪教版数学六年级下册第五章《有理数》全章教学设计及习题一. 教材分析沪教版数学六年级下册第五章《有理数》是学生学习数学的重要内容,本章主要介绍了有理数的定义、性质、运算及其应用。
教材通过丰富的实例和生动的语言,引导学生认识和理解有理数,掌握有理数的加、减、乘、除运算,并能运用有理数解决实际问题。
本章内容在数学体系中占据重要地位,为学生进一步学习代数、几何等数学分支奠定了基础。
二. 学情分析六年级的学生已经具备了一定的数学基础,对实数有一定的认识。
但在学习有理数时,仍存在以下问题:1. 对有理数的定义和性质理解不深刻;2. 有理数的运算规则掌握不熟练;3. 运用有理数解决实际问题的能力较弱。
因此,在教学过程中,要注重引导学生深入理解有理数的概念,熟练掌握有理数的运算方法,提高运用有理数解决实际问题的能力。
三. 教学目标1.理解有理数的定义,掌握有理数的性质;2. 熟练掌握有理数的加、减、乘、除运算方法;3. 能够运用有理数解决实际问题;4. 培养学生的逻辑思维能力和创新能力。
四. 教学重难点1.有理数的定义和性质;2. 有理数的运算方法;3. 运用有理数解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入有理数的概念,使学生能够直观地理解有理数;2. 讲授法:讲解有理数的定义、性质和运算方法,引导学生深入理解有理数;3. 练习法:布置适量的习题,让学生巩固所学知识;4. 小组讨论法:分组讨论,培养学生的合作意识和解决问题的能力。
六. 教学准备1.准备相关的教学PPT和教学素材;2. 准备习题和实际问题;3. 准备黑板和粉笔。
七. 教学过程1.导入(5分钟)利用生活实例,如温度、海拔等,引导学生认识有理数,激发学生的学习兴趣。
2.呈现(10分钟)讲解有理数的定义、性质和运算方法,让学生初步了解有理数的基本概念和运算规则。
3.操练(10分钟)布置适量的习题,让学生独立完成,检验对有理数的理解和运算方法的掌握程度。
有理数教案(精彩8篇)有理数教案篇一1、要求学生会进行有理数的加法运算;2、使学生更多经历有关知识发生、规律发现过程。
重点:对乘法运算法则的运用,对积的确定。
难点:如何在该知识中注重知识体系的延续。
一、知识导向:有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的过程,多让学生经历知识、规律发现的过程。
在学习中应掌握有理数的乘法法则。
二、新课:1、知识基础:其一:小学所学过的乘法运算方法;其二:有关在加法运算中结果的确定方法与步骤。
2、知识形成:(引例)一只小虫沿一条东西向的跑道,以每分钟3米的速度爬行。
情形1:小虫向东爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?列式:即:小虫位于原来出发位置的东方6米处拓展:如果规定向东为正,向西为负情形2:小虫向西爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?列式:即:小虫位于原来出发位置的西方6米处发现:当我们把中的一个因数3换成它的相反数-3时,所得的积是原来的积6的相反数-6同理,如果我们把中的一个因数2换成它的相反数-2时,所得的积是原来的。
积6的相反数-6概括:把一个因数换成它的相反数,所得的积是原来的积的相反数3、设疑:如果我们把中的一个因数2换成它的相反数-2时,所得的积又会有什么变化?当然,当其中的一个因数为0时,所得的积还是等于0。
综合:有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零。
例:计算:(1)(2)三、巩固训练:p52.1、2、3四、知识小结:本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。
在运算中应强调注意如何正确得到积的结果。
五、家庭作业:p57.1、2,3六、每日预题:1、小学多学过哪些乘法的运算律?2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?有理数教案篇二知识与技能:熟记有理数的减法法则,能熟练进行有理数减法运算。
七年级上第一章《有理数》整章水平测试(五)安徽 周其林一、认真填一填(每题3分,共30分)。
1、某天早晨的气温是-7℃,中午上升了11℃,则中午的气温是 ℃.2、在数轴上到表示2的点的距离为4的点的数是_________。
3、一个数的相反数是它本身,这个数是_________;一个数的倒数是它本身,这个数是_________。
4、计算:=+-3121 ,=⨯-200620055)51( 。
5、已知42=x ,则x =_______________。
6、2003年10月15日9时,航天英雄杨利伟乘“神舟”五号载人飞船首次发射升空,于9时9分50秒准确进入预定轨道开始飞行,飞了十四圈,飞行路程约为6.01×105千米. 这个路程保留有哪几个有效数字________.7、下表是我国四个城市某一月份的平均气温,把它们按从高到低的顺序排列:_____ __。
8、 从1999年11月1日起,全国储蓄存款需征收利息税,利息税的税率是20%(即储蓄利息的20%,由各银行储蓄点代扣代收),张老师于1999年5月1日在银行存入人民币2万元,定期一年,年利息为3.78%,存款到期时,张老师净得本金和利息共计_________元。
9、观察:31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6651……,根据以上的规律,判断数字32004的个位数字是 。
10、规定一种新的运算:1+--⋅=∆b a b a b a .如,3434341∆=⨯--+.请比较大小:)3(4_____4)3(-∆∆-。
(填“<”,“=”或“>”)二、精心选一选(每题3分,共30分)1、某粮店出售三种品牌的面粉,袋上分别标有质量为(25±0.1)kg 、(25±0.2)kg 、(25±0.3)kg 的字样,从中任意拿出两袋,这两袋之间质量最多相差 ( )A. 0.8kgB. 0.6kgC. 0.5kgD. 0.4kg2、22-的值是( )A .2-B .2C .4D .4-3、下列说法正确的是( )A. 零除任何数得零B. 绝对值相等的两个数相等C. 几个有理数相乘,积的符号由负因数的个数决定D. 两个数互为倒数,则它们的相同次幂仍为倒数4、下列说法正确的是( )A. 绝对值等于它本身的有理数只有0B. 倒数等于它本身的有理数只有1C. 平方等于本身的有理数为0和±1D. 相反数等于它本身的有理数只有05、对于近似数0.1830,下列说法正确的是( )A. 有两个有效数字,精确到千位B. 有三个有效数字,精确到千分位C. 有四个有效数字,精确到万分位D. 有五个有效数字,精确到万分位6、下列各组运算中,运算后结果相等的是( )A. 34和43B. 3)5(-和35-C. 24-和2)4(-D. 2)32(-和3)23(-7、 近似数1.20所表示的准确数a 的范围是( )A. 11951205..≤<aB. 115116..≤<a C. 110130..≤<a D. 12001205..≤<a 8、我国股市交易中每买、卖一次需交千分之七点五的各种费用。
有理数1五分钟测试姓名 分数1.有最 的正整数,是 ;有最 负整数,是 ;最小的非负整数是 ,最大的非正数是 。
2.写出5个数,(不能重复)同时满足下列三个条件:(1)其中三个数是非正数;(2)其中三个数是非负数;(3)五个数都是有理数。
这五个数是 。
有理数(2)五分钟测试姓名 分数1.在数轴上表示-1和3的两点间的距离是 。
2.-9的相反数是 ,132的相反数是 ,+11.2是相反数是 ,0是相反数是 。
3.-21的绝对值是 ,0的绝对值是 ,绝对值是6的整数是 ,绝对值小于3的整数有 。
4.比较大小:-6.76 0;2 132-;13- 12-;1011。
有理数(3)五分钟测试姓名 分数1.填空:(-30)+(-40)= ;-(10)+(+10)= ;1117(28)24-++= ;0-(4.5)= 。
2.计算:114.11(10.7)724⎛⎫⎛⎫++-+-+ ⎪ ⎪⎝⎭⎝⎭有理数(4)五分钟测试姓名 分数 1. 计算(1)-4-(-5)+(-6) (2)2116115105⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭(3)1112130.5236⎛⎫⎛⎫++----+ ⎪ ⎪⎝⎭⎝⎭姓名 分数1.35-的倒数是 ;-1的倒数是 ;0.125的倒数是 ;517-的倒数是 ;0 倒数。
2.计算(1)-(6)×(-25)×(-0.04) (2)890.5601918⎛⎫⎛⎫⨯-⨯⨯- ⎪ ⎪⎝⎭⎝⎭(3)32213111925⎛⎫⎛⎫-⨯⨯-⨯ ⎪ ⎪⎝⎭⎝⎭有理数(6)五分钟测试姓名 分数 1. 计算(1)(-15)÷(-3) (2)0÷(-1.26)(3)33(3)10.75(6)47⎛⎫-÷-⨯÷⨯- ⎪⎝⎭(4)1923(6)2637⎛⎫-+-÷⨯- ⎪⎝⎭姓名 分数 1.填空题(1)39-的底数是 ,指数是 ,它表示 . (2)比较大小:11(11)- 0;26(2)- 0;26890 0;2013(0.18)--2.计算题 (1)201322(1)5(3)-⨯⨯-. (2)3221132(1)32⎛⎫⨯--÷ ⎪⎝⎭有理数(8) 五分钟测试姓名 分数 1.把下列各数用科学计数法表示:6960000= ; -100000000= ;-0.00053= ;0.000001= . 2.下列各数的原数是:5.18×310= ;51.0210-⨯= 。
《有理数》数轴中的运动类问题同步培优练习(五)1.如图,在数轴上有三个点A、B、C,完成系列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E到A、C两点的距离相等.并在数轴上标出点E表示的数.(3)在数轴上有一点F,满足点F到点A与点F到点C的距离和是9,则点F表示的数是.2.操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的1点与﹣1表示的点重合,则﹣3表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数表示的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.3.如图①,在数轴上有一条线段AB ,点A ,B 表示的数分别是﹣2和﹣11. (1)线段AB = .(2)若M 是线段AB 的中点,则点M 在数轴上对应的数为 .(3)若C 为线段AB 上一点,如图②,以点C 为折点,将此数轴向右对折;如图③,点B 落在点A 的右边点B ′处,若AB ′=B ′C ,求点C 在数轴上对应的数是多少?4.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分別为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复…).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点Q 1处;第2步,从点Q 1继续运动2t 个单位长度至点Q 2处;第3步,从点Q 2继续运动3t 个单位长度至点Q 3处….例如:当t =3时,点Q 1,Q 2,Q 3,的位置如图2所示.解决如下问题:(1)如果t =4,那么线段Q 1Q 3= ;(2)如果t <4,且点Q 3表示的数为3,那么t = ; (3)如果t ≤2,且线段Q 2Q 4=2,那么请你求出t 的值.5.已知在纸面上画有一根数轴,现折叠纸面.(1)若﹣1表示的点与1表示的点重合,则3表示的点与数表示的点重合;(2)若﹣1表示的点与3表示的点重合,回答以下问题:①6表示的点与数表示的点重合;②若数轴上A、B两点之间的距离为d(点A在点B的左侧,d>0),且A、B两点经折叠后重合,则用含d的代数式表示点B在数轴上表示的数是.6.已知A、B两地相距50米,小乌龟从A地出发前往B地,第一次它前进1米,第二次它后退2米,第三次再前进3米,第四次又向后退4米…,按此规律行进,如果A地在数轴上表示的数为﹣16.(1)求出B地在数轴上表示的数;(2)若B地在原点的右侧,经过第七次行进后小乌龟到达点P,第八次行进后到达点Q,点P、点Q到A地的距离相等吗?说明理由?(3)若B地在原点的右侧,那么经过100次行进后,小乌龟到达的点与点B之间的距离是多少?7.在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示.设点A,B,C所对应数的和是p.(1)若以B为原点,则点A,C所对应的数为,p的值为;(2)若以C为原点,p的值为;(3)若原点O在图中数轴上点C的右边,且CO=28,求p的值.8.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1)若b=﹣4,则a的值为(2)若OA=3OB,求a的值.(3)点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.9.某出租车一天上午从A地出发在沿着东西向的大街营运,向东为正,向西为负,行驶里程(单位:km)依先后次序记录如下:+18,﹣5,﹣2,+3,+10,﹣9,+12,﹣3,﹣7,﹣15.(1)将最后一名乘客送到目的地,出租车相对出发地的位置?(2)不超过3千米时,按起步价收费10元,超过3千米的部分,每千米收费2元,司机上午的营业额是多少?10.定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是【A,B】的美好点.例如:如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的美好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的美好点,但点D是【B,A】的美好点.如图2,M,N为数轴上两点,点M所表示的数为﹣7,点N所表示的数为2.(1)点E,F,G表示的数分别是﹣3,6.5,11,其中是【M,N】美好点的是;写出【N,M】美好点H所表示的数是.(2)现有一只电子蚂蚁P从点N开始出发,以2个单位每秒的速度向左运动.当t为何值时,P,M和N中恰有一个点为其余两点的美好点?参考答案1.解:(1)﹣5+6=1;如图.(2)点E表示的数为(﹣2+3)÷2=1÷2=0.5;如图,(3)由已知得:|x﹣(﹣2)|+|x﹣3|=9,解得:x1=5,x2=﹣4.故答案为:5或﹣4.2.解:(1)∵1与﹣1重合,∴折痕点为原点,∴﹣3表示的点与3表示的点重合.故答案为:3.(2)①∵由表示﹣1的点与表示3的点重合,∴可确定折痕点是表示1的点,∴5表示的点与数﹣3表示的点重合.故答案为:﹣3.②由题意可得,A、B两点距离折痕点的距离为11÷2=5.5,∵折痕点是表示1的点,∴A、B两点表示的数分别是﹣4.5,6.5.3.解:(1)线段AB=﹣2﹣(﹣11)=9.(2)∵M是线段AB的中点,∴点M在数轴上对应的数为(﹣2﹣11)÷2=﹣6.5.(3)设AB′=x,因为AB′=B′C,则B′C=5x.所以由题意BC=B′C=5x,所以AC=B′C﹣AB′=4x,所以AB=AC+BC=AC+B′C=9x,即9x=9,所以x=1,所以由题意AC=4,又因为点A表示的数为﹣2,﹣2﹣4=﹣6,所以点C在数轴上对应的数为﹣6.故答案为:9;﹣6.5.4.解:(1)当t=4时,Q1表示的数为4,Q 1Q2=4×2=8,Q2表示的数为4+8=12,Q 2Q3=4×3=12,Q3所表示的数为0,∴Q1Q3=4,故答案为:4.(2)①当Q3未到点N返回前,有t+2t+3t=3,解得:t=,②当Q3点到达N返回再到表示3的位置,t+2t+3t+3=12×2,解得:t=,故答案为:或;(3)①当Q4未到点N,有3t+4t=2,解得:t=;②当Q4到达点N返回且在Q2的右侧时,有24﹣10t﹣3t=2,解得:t=;③当Q4到达点N返回且在Q2的左侧时,有3t﹣(24﹣10t)=2,解得:t=2;答:t的值为或或2.5.解:(1)∵,∴0×2﹣3=﹣3,故答案为:﹣3;(2)①∵,∴1×2﹣6=﹣4,故答案为:﹣4;②∵,A、B两点之间的距离为d(点A在点B的左侧,d>0),且A、B两点经折叠后重合,∴表示点B在数轴上表示的数是:,故答案为:.6.解:(1)﹣16+50=34,﹣16﹣50=﹣66.答:B地在数轴上表示的数是34或﹣66.(2)第七次行进后:1﹣2+3﹣4+5﹣6+7=4,第八次行进后:1﹣2+3﹣4+5﹣6+7﹣8=﹣4,因为点P、Q与A点的距离都是4米,所以点P、点Q到A地的距离相等;(3)当n为100时,它在数轴上表示的数为:﹣16+1﹣2+3﹣4+…+(100﹣1)﹣100==﹣66,34﹣(﹣66)=100(米).答:小乌龟到达的点与点B之间的距离是100米.7.解:(1)若以B为原点,则点A,C所对应的数为﹣2、1,﹣2+1=﹣1故答案为﹣2、1,﹣1.(2)若C为原点,则A、B所对应的数为﹣1、﹣3,所以p的值为﹣1+(﹣3)=﹣4.故答案为﹣4.(3)由题意知:C点表示的数为﹣28,B点表示的数为﹣29,A点表示的数为﹣31,P=﹣28+(﹣29)+(﹣31)=﹣88,或p=(﹣28)+(﹣28﹣1)+(﹣28﹣3)=﹣28﹣29﹣31=﹣88.答:p的值为﹣88.8.解:(1)∵b=﹣4,AB=14,∴14=a+4,∴a=10,故答案为10;(2)当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,m=,所以,OA=,点A在原点O的右侧,a的值为.当A在原点的左侧时(如图),a=﹣,综上,a的值为±;(3)当点A在原点的右侧,点B在点C的左侧时(如图),c=﹣a,﹣b=3(c﹣b),a﹣b=14,∴c=﹣;当点A在原点的右侧,点B在点C的右侧时(如图),c=﹣8.当点A在原点的左侧,点B在点C的右侧时,c=.当点A在原点的左侧,点B在点C的左侧时,c=8.综上,点c的值为:±8,±.9.解:(1)+18﹣5﹣2+3+10﹣9+12﹣3﹣7﹣15=43﹣41=2,∴将最后一名乘客送到目的地,出租车位于出发地东边2km的位置;(2)因为每一次营运,起步价都是10元,再计算七次超过3千米超出的收费即可得到 10×10+(18+5+10+9+12+7+15﹣7×3)×2=100+110=210答:司机上午的营业额是210元.10.解:(1)根据美好点的定义,结合图2,直观考察点E,F,G到点M,N的距离,只有点G符合条件,故答案是:G.结合图2,根据美好点的定义,在数轴上寻找到点N的距离是到点M的距离2倍的点,点N的右侧不存在满足条件的点,点M和N之间靠近点M一侧应该有满足条件的点,进而可以确定﹣4符合条件.点M的左侧距离点M的距离等于点M和点N的距离的点符合条件,进而可得符合条件的点是﹣16.故答案是﹣4或﹣16.(2)根据美好点的定义,P,M和N中恰有一个点为其余两点的美好点分6种情况,第一情况:当P为【M,N】的美好点,点P在M,N之间,如图1,当MP=2PN时,PN=3,点P对应的数为2﹣3=﹣1,因此t=1.5秒;第二种情况,当P为【N,M】的美好点,点P在M,N之间,如图2,当2PM=PN时,NP=6,点P对应的数为2﹣6=﹣4,因此t=3秒;第三种情况,P为【N,M】的美好点,点P在M左侧,如图3,当PN=2MN时,NP=18,点P对应的数为2﹣18=﹣16,因此t=9秒;第四种情况,M为【P,N】的美好点,点P在M左侧,如图4,当MP=2MN时,NP=27,点P对应的数为2﹣27=﹣25,因此t=13.5秒;第五种情况,M为【N,P】的美好点,点P在M左侧,如图5,当MN=2MP时,NP=13.5,点P对应的数为2﹣13.5=﹣11.5,因此t=6.75秒;第六种情况,M为【N,P】的美好点,点P在M,N左侧,如图6,当MN=2MP时,NP=4.5,因此t=2.25秒;第七种情况,N为【P,M】的美好点,点P在M左侧,当PN=2MN时,NP=18,因此t=9秒,N为【M,P】的美好点,点P在M右侧,当MN=2PN时,NP=4.5,因此t=2.25秒,综上所述,t的值为:1.5,2.25,3,6.75,9,13.5.。
有理数5.1有理数的意义 一、选择题:1、在下列各数中,-3.8,+5,0,- 1 2 , 3 5 ,- 27,8.1中,属于负数的个数为 ( )(A )2个 (B )3个 (C )4个 (D )5个 2、零是( )(A) 正数 (B) 负数 (C) 自然数 (D) 以上都不是 3、-a 表示的数一定是( )(A )负数; (B )正数; (C)正数或负数; (D )以上答案都不对。
4、下列说法正确的是( )(A )有最小的正整数 (B )有最小的整数 (C )有最小的正数 (D )有最小的有理数 5、以下说法正确的是 ( )(A )正数和负数统称有理数 ; (B )用字母-a 表示的数不一定是负数;(C )小数都是有理数 ; (D )π4是分数 。
二、填空题:6、______________________统称为有理数。
7、如果温度上升6℃记作+6℃,那么温度下降3℃记作______℃。
8、如果气球上升6米记作+6米,那么—6米表示:________________________________。
9、 若把收入50元,记作50元,则3.5元表示 ,—100元表示 , 0元表示 。
10、3,4.6,-73 ,2.51,0,-1.99,13,0.3030030003......,-6(1) 负数: (2)非负数:(3) 非正有理数: (4)非负整数: 11、高度每增加1公里,气温大约降低4℃,现在地面气温是12℃,那么4公里高空的温度是________.12、室内温度10℃,室外温度是-3℃,那么室内温度比室外温度高________. 13、在有理数中,既不是正数也不是负数的数是__________.14、甲地的海拔高度为1225米,乙地的海拔高度为-275米,甲地比乙地高出_________米. 15、观察下面一列数,按其规律在横线上写上适当的数: - 1 2 , 2 3 ,- 3 4 , 4 5 ,- 56 ,________. 三、解答题:16、如果-3米表示向南走3米,则一下各数分别表示什么意义? (1)8米 (2)-6米 (3)4米17、六(7)班在一次期中测验中,数学平均分为86分,把高于平均分的高出部分记为正数,小明得95分,应记为多少?小红被记为-8分,她实际得分是多少?18、现定义两种运算“⊕” “*”。
1.2 有理数第1课时有理数教学目标:1.理解有理数的意义.2.能把给出的有理数按要求分类.3.了解0在有理数分类中的作用.教学重点:会把所给的各数填入它所在的数集图里.教学难点:掌握有理数的两种分类.教与学互动设计:(一)创设情境,导入新课讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究3,5.7,-7,-9,-10,0,,,-3, -7.4,5.2…议一议你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.说明我们把所有的这些数统称为有理数.试一试你能对以上各种类型的数作出一张分类表吗?有理数做一做以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.有理数数的集合把所有正数组成的集合,叫做正数集合.试一试试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.(三)应用迁移,巩固提高【例1】把下列各数填入相应的集合内:,3.1416,0,2004,- ,-0.23456,10%,10.1,0.67,-89【例2】以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?有理数有理数(四)总结反思,拓展升华提问:今天你获得了哪些知识?由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?(五)课堂跟踪反馈夯实基础1.把下列各数填入相应的大括号内:-7,0.125,,-3,3,0,50%,-0.3(1)整数集合{};(2)分数集合{};(3)负分数集合{};(4)非负数集合{};(5)有理数集合{}.2.下列说法中正确的是()A.整数就是自然数B. 0不是自然数C.正数和负数统称为有理数D. 0是整数,而不是正数提升能力3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?第2课时数轴教学目标:1.掌握数轴三要素,能正确画出数轴.2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.教学重点:数轴的概念.教学难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计:(一)创设情境,导入新课课件展示课本P7的“问题”(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴.【点拨】(1)引导学生学会画数轴.第一步:画直线,定原点.第二步:规定从原点向右的方向为正(左边为负方向).第三步:选择适当的长度为单位长度(据情况而定).第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴:规定了原点、正方向和单位长度的直线叫数轴.做一做学生自己练习画出数轴.试一试你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?讨论若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?小结整数在数轴上都能找到点表示吗?分数呢?可见,所有的都可以用数轴上的点表示;都在原点的左边,都在原点的右边.(三)应用迁移,巩固提高【例1】下列所画数轴对不对?如果不对,指出错在哪里?【例2】试一试:用你画的数轴上的点表示4,1.5,-3,-,0.【例3】下列语句:①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有()A.1个B.2个C.3个D.4个【例4】在数轴上表示-2和1,并根据数轴指出所有大于-2而小于1的整数.【例5】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为2000cm的线段AB,则线段AB盖住的整点有()A.1998个或1999个B.1999个或2000个C.2000个或2001个D.2001个或2002个(四)总结反思,拓展升华数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.(五)课堂跟踪反馈夯实基础1.规定了、、的直线叫做数轴,所有的有理数都可从用上的点来表示.2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P点所表示的数是 .3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是()A.7B.-3C.7或-3D.不能确定4.在数轴上,原点及原点左边的点所表示的数是()A.正数B.负数C.不是负数D.不是正数5.数轴上表示5和-5的点离开原点的距离是,但它们分别表示.提升能力6.与原点距离为3.5个单位长度的点有2个,它们分别是和.7.画出一条数轴,并把下列数表示在数轴上:+2,-3,0.5,0,-4.5,4,3.开放探究8.在数轴上与-1相距3个单位长度的点有个,为;长为3个单位长度的木条放在数轴上,最多能覆盖个整数点.9.下列四个数中,在-2到0之间的数是()A.-1B.1C.-3D.3第3课时相反数教学目标:1.借助数轴了解相反数的概念,知道互为相反数的位置关系.2.给一个数,能求出它的相反数.教学重点:理解相反数的意义.教学难点:理解和掌握双重符号简化的规律.教与学互动设计:(一)创设情境,导入新课活动请一个学生到讲台前面对大家,向前走5步,向后走5步.交流如果向前走为正,那向前走5步与向后走5步分别记作什么?(二)合作交流,解读探究1.观察下列数:6和-6,2和-2,7和-7,和- ,并把它们在数轴上标出.想一想(1)上述各对数有什么特点?(2)表示这四对数的点在数轴上有什么特点?(3)你能够写出具有上述特点的n组数吗?观察像这样只有符号不同的两个数叫相反数.互为相反数的两个数在数轴上的对应点(0除外)是在原点两旁,并且与原点距离相等的两个点.即:我们把a的相反数记为-a,并且规定0的相反数就是零.总结在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数.2.在任意一个数前面添上“-”号,新的数就是原数的相反数.如-(+5)=-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0的相反数是0.(三)应用迁移,巩固提高【例1】填空(1)-5.8是的相反数,的相反数是-(+3),a的相反数是;a-b的相反数是,0的相反数是.(2)正数的相反数是,负数的相反数是,的相反数是它本身.【例2】下列判断不正确的有()①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.A.1个B.2个C.3个D.4个【例3】化简下列各符号:(1)-[-(-2)];(2)+{-[-(+5)]};(3)-{-{-…-(-6)}…}(共n个负号).【归纳】化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负.【例4】数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A的距离为2,则点B 和点C各对应什么数?(四)总结反思,拓展升华【归纳】(1)相反数的概念及表示方法.(2)相反数的代数意义和几何意义.(3)符号的化简.(五)课堂跟踪反馈夯实基础1.判断题(1)-3是相反数.()(2)-7和7是相反数.()(3)-a的相反数是a,它们互为相反数.()(4)符号不同的两个数互为相反数.()2.分别写出下列各数的相反数,并把它们在数轴上表示出来.1,-2,0,4.5,-2.5,33.若一个数的相反数不是正数,则这个数一定是()A.正数B.正数或0C.负数D.负数或04.一个数比它的相反数小,这个数是()A.正数B.负数C.非负数D.非正数5.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是.提升能力6.若a与a-2互为相反数,则a的相反数是.7.已知有理数m、-3、n在数轴上位置如图所示,将m、-3、n的相反数在数轴上表示出来,并将这6个数用“<”连接起来.第4课时绝对值教学目标:1.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念,能求一个数的绝对值.2.通过应用绝对值解决实际问题,体会绝对值的意义和作用.教学重点:给出一个数,会求它的绝对值.教学难点:理解绝对值的几何意义、代数定义的导出.教与学互动设计:(一)创设情境,导入新课活动请两位同学到讲台前,分别向左、向右行3米.交流①他们所走的路线相同吗?②若向右为正,可分别怎样表示他们的位置?③他们所走的路程的远近是多少?(二)合作交流,解读探究观察出示一组数6与-6,3.5与-3.5,1和-1,它们是一对互为,它们的不同,相同.总结数轴上表示6和-6的两个点虽然在原点的两边,但它们到原点的距离相等,如果我们不考虑两点在原点的哪一边,只考虑它们离开原点的距离,这个距离都是6,我们就把这个距离叫做6和-6的绝对值.绝对值:在数轴上表示数a的点与原点的距离叫做a的绝对值,记作│a│.想一想(1)-3的绝对值是什么?(2)+2的绝对值是多少?(3)-12的绝对值呢?(4)a的绝对值呢?交流同桌间合作交流,每位同学任说五个数,由同桌指出它们的绝对值.思考求8,-8,3,-3,,-的绝对值.(出示胶片)由此,你想到什么规律?总结互为相反数的两个数的绝对值相同.思考说出下列各组数的绝对值:(1)+2.3,9,+3;(2)-1.6,-7,30%;(3)0.总结归纳:(1)正数的绝对值是它本身.用式子表示是:a>0,则|a|=a.(2)负数的绝对值是它的相反数.用式子表示是:a<0,则|a|=-a.(3)零的绝对值是零.用式子表示是:a=0,则|a|=0.(4)a为任意有理数,a的绝对值总是正数或零,用式子表示是:|a|≥0.(三)应用迁移,巩固提高例题填空:(1)绝对值等于4的数有个,它们是;(2)绝对值等于-3的数有个;(3)绝对值等于它本身的数有个,它们是;(4)①若│a│=2,则a= ,②若│-a│=3,则a= ;(5)绝对值不大于2的整数是.(四)总结反思,拓展升华本节课中,我们认识了绝对值,要注意掌握以下两点:①一个数的绝对值是在数轴上表示这个数的点到原点的距离;②求一个数的绝对值必须先判断这个数是正数还是负数.(五)课堂跟踪反馈夯实基础1.填空题.(1)-│-3│= ,+│-0.27│= , -│+26│= ,-│+24│= .(2)若│x│=2,则x= ;若│-x│=2,则x= .2.选择题.(1)若│a│≥0,那么()A.a>0B.a<0C.a≠0D.a为任意数(2)若│a│=│b│,则a、b的关系是()A.a=bB.a=-bC.a+b=0或a-b=0D.a=0且b=0(3)下列说法正确的是()A.两个数的绝对值相等,这两个数也相等B.两个数不相等,这两个数的绝对值也不相等C.一个数等于另一个数的绝对值,这两个数相等或互为相反数D.绝对值是同一个正数的有理数有两个,这两个数互为相反数提升能力3.若实数a、b满足│3a-1│+│b-2│=0,求a+b的值.4.抽查8个零件,内直径超过标准毫米数的记作正数,不足标准毫米数的记作负数.这种零件的标准内直径是30mm,且30±0.5mm为优等品,8个零件的内直径记录如下:(1)序号为几的零件最接近标准?(2)哪几个零件为优等品?第5课时比较有理数的大小教学目标:会利用绝对值比较两个有理数的大小.教学重难点:利用绝对值比较两个负数的大小.教与学互动设计:(一)创设情境,导入新课投影你能比较下列各组数的大小吗?(1)│-3│与│-8│;(2)4与-5;(3)0与3;(4)-7和0;(5)0.9和1.2.(二)合作交流,解读探究讨论交流由以上各组数的大小比较可见:正数都大于0,0都大于负数,正数都大于负数.思考若任取两个负数,该如何比较它们的大小呢?总结两个负数,绝对值大的反而小,或者说,两个负数,绝对值小的反而大.注意(1)比较两个负数的大小又多了一种方法,即两个负数,绝对值大的反而小;(2)异号的两数比较大小,要考虑它们的正负;同号两数比较大小,要先比较它们的绝对值;(3)在数轴上表示有理数,它们从左到右的顺序也就是从小到大的顺序,即:左边的数总比右边的数要小.即利用数轴来比较有理数的大小.(三)应用迁移,巩固提高【例1】比较下列各组数的大小:(1)- 和-2.7;(2)- 和- .【例2】自己任写三个数,使它大于- 而小于-.【例3】已知│a│=4,│b│=3,且a>b,求a、b的值.(四)总结反思,拓展升华通过本节课所学的有理数的大小比较,你能掌握以下两种方法吗?(1)利用数轴,在数轴上把这些数表示出来,然后根据“数轴上左边的数总比右边的数小”来比较.(2)利用比较法则:“正数大于零,负数小于零;两个负数,绝对值大的反而小”来进行.(五)课堂跟踪反馈夯实基础1.填空题(1)绝对值小于3的负整数有,绝对值不小于2且不大于5的非负整数有.(2)用“>”、“=”、“<”填空:①-7-5,②-0.1-0.01,③- -,④-(-)0.025.(3)若│x+3│=5,则x= .2.选择题(1)下列判断正确的是()A.a>-aB.2a>aC.a>-D.│a│≥a(2)│m│与-5m的大小关系是()A.│m│>-5mB.│m│<-5mC.│m│=-5mD.以上都有可能提升能力3.解答题(1)比较-和- 的大小,并写出比较过程;(2)求同时满足:①│a│=6,②-a>0这两个条件的有理数a;(3)将有理数:-(-4),0,-│-3│,-│+2│,-│-(+1.5)│,-(-3),│-(+2)│表示到数轴上,并用“<”把它们连接起来.。
《有理数》的教学设计【优秀5篇】有理数教案篇一教学目标:1、经历探索有理数减法法则的过程。
2、理解并初步掌握有理数减法法则,会做有理数减法运算。
3、能根据具体问题,培养抽象概括能力和口头表达能力。
教学重点运用有理数减法法则做有理数减法运算。
教学难点有理数减法法则的得出。
教具学具多媒体、教材、计算器教学方法研讨法、讲练结合教学过程一、引入新课:师:下面列出的是连续四周的最高和最低气温:第1周第二周第三周第四周最高气温+6℃0℃+4℃-2℃最低气温+2℃-5℃-2℃-5℃周温差求每周的温差时,应运用哪一种运算?℃生:温差分别是4℃、5℃、6℃、3℃,应使用减法运算。
列式为;(+6)-(+2)=40-(-5)=5(+4)-(-2)=6(-2)-(-5)=3教学过程二、有理数减法法则的推倒:师:1、根据上面的计算和计算结果,让我们以求四周的温差为例子研究一下,是否可以用加法的知识类做减法的运算。
2、是否能直接把减法转化为加法来求差?猜想一下,完成这个转化的法则是什么?3、自己设计一些有理数的减法,用计算器检验一下你归纳的减法法则是否正确。
举例:(-5)+()=-2得出(-5)+(+3)=-2所以得到(-2)-(-5)=+3而(-2)+(+5)=+3有理数减法法则:减去一个数,等于加上这个数的相反数。
教学过程三、法则的应用:例1:先做笔算,再用计数器检验。
(1)(-34)-(+56)-(-28);(2)(+25)-(-293)-(+472)教学过程解:(1)原式=-34+(-56)+(+28)=-90+(+28)=-62(2)原式=+25+(+293)+(-472)=+25+(-836)= 676注意:强调计算过程不能跳步,体现有理数减法法则的运用。
检测题教学过程四、练习反馈:师:巡视个别指导,订正答案。
教学过程五、小结:有理数减法法则:减去一个数,等于加上这个数的相反数。
有理数减法法则:减去一个数,等于加上这个数的相反数。
有理数乘方及混合运算一、教学目标1、知识与技能目标①、理解并掌握有理数的乘方及法则②、能准确地进行有理数的乘方运算③、使学生经历探索有理数乘方的运算法则,总结将有理数乘法归与有理数运算中。
④、掌握有理数混合运算法则及顺序2、过程与方法ⅰ、通过有理数乘方,训练学生扩大数学思维方式及理念ⅱ、通过对问题的变式探索,培养观察、分析、抽象的能力ⅲ、学会类比的手法来学习、探究新知识点3、情感、态度与价值观⑴、通过观察、归纳、推断得到数学猜想,体验数学活动中的探索性和创造性。
⑵、能面对数学全新知识,保持良好的心理态度⑶、在独立思考的基础上,积极参与对数学问题的讨论,能从交流中获益二、教学重难点重点:正确理解有理数乘法的意义理解有理数混合运算顺序及法则难点:掌握有理数乘法运算法则正确运用法则进行运算三、实景设计(一)、情景导入1、在乘法运算中,我们会遇到相同因数连乘的情况.例如:5x5x5=125,(-3)(-3)(-3)(-3)=81.为了简便,把5x5x5记作53,把(-3)(-3)(-3)(-3)记作(-3)4.于是53=125,(-3)4=81.(二)、互动交流、探究归纳1、读作底数的几次方或几次幂.特别的,指数“2”通常读作“平方”,指数“3”通常读作“立方”.一个数可以看作这个数本身的一次方,a就是a1,指数1通常省略不写.乘方运算是相同因数的乘法运算.例如:(21)3=21 x 21 x 21= , (21)4=21 x 21 x 21 x 21=(-2)3=(-2)x (-2)x (-2)=-8,(-2)4=(-2)x (-2)x (-2)x (-2)=16.联想有理数乘法运算法则即可得有理数乘方运算法则: 正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数; 零的任何正整数次幂都是零.注意 分数乘方、负数乘方在书写时一定要将整个底数用小括号括起来,然后在右上角写上指数,因为有括号与没有括号,它的意义、读法及计算结果有时是不同的.例如 ()3表示三个 连乘,而表示3的3次幂与5的商;()3= x x = ,而 =.所以运算结果也不同. 又如 (-2)4表示四个-2连乘,而-24表示2的四次幂的相反数;(-2)4读作“-2的四次方或四次幂”,而-24读作2的四次幂的相反数;(-2)4=(-2)x (-2)x (-2)x (-2)=16;-24=-(2x 2x 2x 2)=-16.计算结果也不同.2、 ①、说一说我们学过的有理数的运算律:加法交换律:a +b=b+a ; 加法结合律:(a +b)+c=a +(b+c); 乘法交换律:a b=b a ; 乘法结合律:(a b)c=a (bc); 乘法分配律:a (b+c)=a b+a c3、 ①、观察下面的算式里有哪几种运算? 3+50÷22×(51)-1。
这个算式里,含有有理数的加减乘除乘方多种运算,称为有理数的混合运算。
②、有理数混合运算的运算顺序规定如下:ⅰ、先算乘方,再算乘除,最后算加减; ⅱ、同级运算,按照从左至右的顺序进行;ⅲ、如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。
注意:ⅰ、加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方(今后将会学到)叫做第三级运算。
ⅱ、可以应用运算律,适当改变运算顺序,使运算简便。
(三)、应用迁移、巩固提高1、 ①、计算(-0.125)3, (-)4, (-0.1)5 ;(-1)n= ,(n 是自然数)②、 计算(-2)x (-3)3, (-36)÷(-2)4③、-14-(1-0.5)×31×[2-(-3)2]④、练习2、①、计算:(1) (―2)+(―3); (2) 7×(―12); (3);―31+21;(4) 17―(―32); (5)―252; (6) (―2)3;(7) ―23; (8) 021; (9) (―4)2; (10) ―32; (11) (―2)4; (12) ―100―27; (13) (―1)101; (14) 1―61―31; (15) 187×(―221);(16) ―7+3―6; (17) (―3)×(―8)×25。
3、 ①、试一试:指出下列各题的运算顺序:ⅰ⎪⎭⎫⎝⎛⨯÷-51250; ⅱ()236⨯÷; ⅲ236⨯÷; ⅳ()()342817-⨯+-÷-; ⅴ1101250322-⎪⎪⎭⎫⎝⎛⨯÷-; ⅵ911325.0321÷⎪⎪⎭⎫ ⎝⎛-⨯-;ⅶ()[]345.0111⨯----; ⅷ 1014112131÷÷⎪⎪⎭⎫ ⎝⎛-。
②、例题:计算:1014112131÷÷⎪⎪⎭⎫ ⎝⎛-解:原式=341054611014112131-=⨯⨯⎪⎭⎫ ⎝⎛-=÷÷⎪⎭⎫⎝⎛-。
这里要注意三点: ⅰ小括号先算;ⅱ进行分数的乘除运算,一般要把带分数化为假分数,把除法转化为乘法; ⅲ同级运算,按从左往右的顺序进行,这一点十分重要。
例题:计算:2782411813318833⨯÷⎪⎪⎭⎫⎝⎛-⨯ 分析:揭示思路:本例按常规运算顺序,应先算小括号里的减法,运算较繁,观察算式中的数字特征,可发现首尾两数互为倒数,根据这一迹像,抓住算式的结构特点及数与数之间的关 系,利用运算定律,适当改变运算顺序,可得如下新颖解法:()()222222222244222224444)2(35)2(343133133132212213)324(324324)324(3242)5()5(5)5(1------⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫⎝⎛-⨯-⎪⎭⎫ ⎝⎛⨯⨯+---⨯-÷-÷-------、、;;;;、;;;;、;;;、解;原式=⎪⎭⎫ ⎝⎛-⨯⨯⨯8253252524278827=82525243252524⨯-⨯=8―3=5由上运算可知,把原算式根据运算法则统一为乘法,又把括号里的数字为一个数,再次运 用乘法交换律,利用倒数关系,使问题进一步简化,最后又根据数学特征,运用乘法分配律, 顺利达到目的,本例在求解过程中,不断创新,寻求新的解法,这样既把所学知识用活,用巧, 又培养自己的创新能力,提高数学素养,必须有这种学习精神,才能在素质教育的大道上不断 进取! ③、练习: ⅰ、2÷(21―2)与2÷21―2有什么不同?ⅱ、2÷(2×3)与2÷2×3有什么不同? ④、试一试:计算:⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯22176412。
小结: 理数混合运算的规律:1.先乘方,再乘除,最后加减;2.同级运算从左到右按顺序运算;3.若有括号,先小再中最后大,依次计算。
(四)、总结反思,拓展升华1、有理数乘法运算法则即可得有理数乘方运算法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数; 零的任何正整数次幂都是零.2、 加法交换律:a +b=b+a ; 加法结合律:(a +b)+c=a +(b+c);乘法交换律:a b=b a ; 乘法结合律:(a b)c=a (bc); 乘法分配律:a (b+c)=a b+a c3、有理数混合运算的运算顺序规定如下:ⅰ、先算乘方,再算乘除,最后算加减; ⅱ、同级运算,按照从左至右的顺序进行;ⅲ、如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。
注意:ⅰ、加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方(今后将会学到)叫做第三级运算。
ⅱ、可以应用运算律,适当改变运算顺序,使运算简便。
有理数的混合运算的关键是运算的顺序,运算法则和性质。
运算过程中,始终遵循四个方面:一是运算法则;二是运算律; 三是运算顺序; 四是近似计算。
为了提高运算适度,要灵活运用运算律,还要能创造条件利用运算律,如拆数,移动小数点等,对于复杂的有理数运算,要善于观察,分析,类比与联想,从中找出规律,再运用运算律进行计算,至此,便可在有理数的混合运算中稳操胜卷。
(五)、课堂知识反馈1、 ①、填空题(1).(-1)2n = ,(-1)2n +1= , (-1)n= (n 是正整数).(2).在(-3)5中底数是 ,指数是 ,幂是 ,(-3)5读作 . (3).在(-)2中,底数是 ,指数是 ,幂是 . (4) 平方等于9,平方等于2.89的数是 。
(5)立方等于-641的数是 (-2)2×(-2)3= (6)-34+(-3)4= (-0.125)2×83= (7)512×0.212= -22÷94×(-32)2= (8) 的平方等于本身, 的立方等于本身。
(9)平方小于20的整数有 ,立方小于100的非负整数有 。
(10)用“=”、“<”、“>”号连接。
①(-3)2 -32 -3×23 (-3×2)2②18÷32(18÷3)2(32)2 322③53 5×3 -0.93 (-0.9)3(11)最小的非负整数是 ,-│-3│3=(12)( )3= -125,│ │=5 (13)│(-1)3-(-2)2│= ,若│x-2│+(y+23)2=0,则y x= 。
(14)-(-3)2-33= ,-9÷(-3)2= 。
②、计算1.(-0.2)3, (-)5, (-2)62.(-4)3, (-6)3, (-5)43.0.12, (-0.1)2, -0.12 ; 4.(-2)3, -(-2)3, -235.-22÷2x (-3)3 6.(-0.25)2x (-8)7.(-3)2 ×(-32) 8.(-1)+(-1)2+……+(-1)9+(-1)10*9.3)1.0(1--22.01-+│-23-3│-│-32-4│③、选择题(1)下列算式没有意义的是( )A.-1994÷[(-5)3+125]B.[(-5)3+125]÷(-1994)C.([3121-]÷[0-(-18)]×(-2) D.[(-0.01)3+1000001÷[-(-2)2-22] (2)一个数的平方一定是( )。
A.正数B.负数C.非正数D.非负数(3)(-5)8表示( )。
A.8乘以-5B.5个8连加C.5个-8连乘D.8个-5连乘 (4)如果一个有理数的偶次幂是非负数,那么这个数是( )。
A.正数B.负数C.非负数D.任何有理数 (5)下列说法正确的是( )。