当x=9时, x 2 9 2 7.
(3)要使式子
1 x 1
有意义,则x的取值范围是( A)
A. x>1
B. x>-1
C. x ≥1
D. x ≥-1
归纳 要使二次根式在实数范围内有意义,即需满足被开方数≥0,列不等 式求解即可.若二次根式处在分母的位置,应同时考虑分母不为零.
初中数学课件
(2)由题意知,1-x≥0,且x-1≥0,联立解得x=1.从而知y=2016, 所以x+2y=1+2×2016=4033.
归纳 多个非负数的和为零,则可得每个非负数均为零.初 中阶段学过的非负数主要有绝对值、偶次幂及二次根式.
当堂练习
初中数学课件
1. 下列式子中,不属于二次根式的是( C )
a C D
想一想:
当x是怎样的实数时, x2 在实数范围内有意义? x3 呢?
前者x为全体实数;后者x为正数和0.
初中数学课件
二 二次根式的双重非负性
思考: 二次根式的实质是表示一个非负数(或式)的算术平
方根.对于任意一个二次根式 a ,我们知道:
(1)a为被开方数,为保证其有意义,可知a≥0; (2) a 表示一个数或式的算术平方根,可知 a ≥0.
一般地,我们把形如 a (a 0) 的式子叫做二次根式. “ ”称为二次根号,a叫做被开方数.
要点提醒
①外貌特征:含有“ ” 两个必备特征
②内在特征:被开方数a ≥0
初中数学课件
典例精析
例1 下列各式是二次根式吗?不含二次根号
被开方数是负数
(1) 32, (2) 6, (3)
是
不是
(4) -m 当m>0时被开 方数是负数