傅里叶变换的性质及常用函数的傅里叶变换
- 格式:docx
- 大小:55.23 KB
- 文档页数:3
常用傅立叶变换表
Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】
18
δ(ω) 代表分布. 这个变换展示了狄拉克δ函数的重要性:该函数是常函数的傅立叶变换
19 变换23的频域对应
20 由变换3和24得到.
21
由变换1和25得到,应用了:
时域信号
弧频率表示的 傅里叶变换
注释
1线性
2 时域平移
3 频域平移, 变换2的频域对应
4
如果
值较大,则
会收缩到
原点附近,而会扩散并变得扁平. 当 | a | 趋向无穷时,成为 Delta 函数。
5 傅里叶变换的二元性性质。
通过交换时域变量 和频域变量 得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示 和 的卷积 — 这就是 9
和归一化的 10 变换10的频域对应。
矩形函数是理想的低通滤波器,是这类滤波器对冲击的响应。
11
tri 是 12 变换12的频域对应 13 exp( αt 2) 的傅里叶变换是他本身. 只有当 Re(α) > 0时,这是可积的。
14
15
16 a>0
17
变换本身就是一个公式。
常用傅里叶逆变换公式傅里叶变换和逆变换是信号处理领域中非常基础的数学工具。
在现代数字信号处理领域中,它们被广泛应用于信号滤波、数据压缩和频谱分析等方面。
作为傅里叶变换的逆运算,傅里叶逆变换起着重要的作用。
在这篇文章中,我们将详细介绍一些常用的傅里叶逆变换公式,并说明它们在实际应用中的作用。
傅里叶逆变换的定义在深入讨论傅里叶逆变换公式之前,我们需要先了解一下傅里叶逆变换的定义。
傅里叶逆变换是指将复频域信号转换成复时域信号的过程。
与傅里叶变换不同的是,逆变换是不可逆的。
即使我们进行完傅里叶逆变换之后,再进行傅里叶变换,也不能恢复原来的复频域信号。
傅里叶逆变换的数学表达式如下:$$x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\omega)e^{j\omega t}d\omega$$其中,$x(t)$是时域信号,$X(j\omega)$是傅里叶变换后的频域信号,$j$是虚数单位,$\omega$是频率,$t$是时间。
这个公式的意思是,我们可以通过对傅里叶变换后的复频域信号做积分,得到复时域信号$x(t)$。
傅里叶逆变换的性质在实际应用中,我们常常需要使用傅里叶逆变换公式对信号进行处理。
为了更好地利用傅里叶逆变换公式,我们需要了解一些它的性质。
下面是一些常见的性质:1. 线性性质:傅里叶逆变换具有线性性,即如果$x_1(t)$的傅里叶变换是$X_1(j\omega)$,$x_2(t)$的傅里叶变换是$X_2(j\omega)$,那么$ax_1(t)+bx_2(t)$的傅里叶逆变换就是$aX_1(j\omega)+bX_2(j\omega)$。
2. 时移性质:如果$x(t)$的傅里叶变换为$X(j\omega)$,那么$x(t-t_0)$的傅里叶逆变换就是$e^{-j\omega t_0}X(j\omega)$,其中$t_0$是一个常数。
3. 频移性质:如果$x(t)$的傅里叶变换为$X(j\omega)$,那么$x(t)e^{j\omega_0t}$的傅里叶逆变换就是$X(j(\omega-\omega_0))$,其中$\omega_0$是一个常数。
广义Fourier 变换:函数不严格满足存在条件,但是函数可定义另一函数 所组成的序列的极限,序列中的函数有F.T.;对组成序 列的每一个函数进行变换,就产生一个相应的变换序 列,该新序列的极限即为原函数的广义F.T.g ( x, y ) = lim f N ( x, y ) ℑ{ f N ( x, y )} = FN ( f x , f y )N →∞ N →∞lim FN ( f x , f y ) = ℑ{ g ( x, y )} = G ( f x , f y )ℑ{δ ( x, y )}lim ℑ{ N exp(−N π (x + y ))} = limexp(−2 2 2 2 N→∞π ( f x2 + f y 2 )2N→∞N fy ⎫ ⎧ 1 fx 1 2 lim ℑ{ N rect(Nx)rect(Ny)} = lim ⎨N ⋅ sin c( )N ⋅ sin c( )⎬ =1 N→∞ N→∞ N N N ⎭ ⎩ N fy ⎫ ⎧ 1 fx 1 lim ℑ{ N sin c(Nx)sin c(Ny)} = lim ⎨N ⋅ rect( )N ⋅ rect( )⎬ =1 N→∞ N→∞ N N N ⎭ ⎩ N2) =1δ−function Properties 1. 筛选性(定义性质)∞ −∞∫ g ( x)δ ( x − x ) dx = g ( x )0 0δ ( x − x0 ) = 0, x ≠ x02. 尺度缩放性质δ (ax) =3. 偶函数x 1 1 δ ( x), δ (ax − x0 ) = δ ( x − 0 ) a a aδ ( x ) = δ ( − x ) , δ ( − x + x 0 ) = δ ( x − x0 )3. 乘积性质g ( x)δ ( x − x0 ) = g ( x0 )δ ( x − x0 ); xδ ( x − x0 ) = x0δ ( x − x0 )4. 积分性质∞−∞∫ Aδ ( x − x ) dx = A0∞−∞∫ δ ( x − x ) dx = 105. 卷积性质g ( x) ∗ δ ( x − x0 ) = g ( x − x0 )卷积定义∞f ( x) ∗ h( x) =−∞∫ f (a)h(x − a)da反转,平移,相乘,积分卷积在光学中的应用卷积表示一输出,在光学上就表示成像系统的像分 布 ;对于线性空间不变光学系统,其输出的信息可 表示为输入信息g与系统脉冲响应函数h(系统对点 源的响应)的卷积 的响应x0处点源:I 0 Δξ 对应的像强度分布P( xi − x0 )输出像:I i ( xi ) = I 0 Δξ P ( xi ) + I 0 Δξ P( xi − ξ 1 ) +KΔξ → 0:I i ( xi ) = ∫ I 0 (ξ ) P( xi − ξ )d ξ二维:g(x, y)表示物(输入信息); h(x,y)表示系统对点源的响应(点扩散函数、脉冲响应函数)输出=g( x, y ) ∗ h(x,y)卷积的性质1. 符合交换律g ( x,y ) ∗ h( x, y ) = h( x, y ) ∗ g ( x,y )2.函数平移不变性f ( x, y ) ∗ h ( x, y ) = g ( x, y ) ↔ f ( x − x0 , y − y0 ) ∗ h( x, y ) = g ( x − x0 , y − y0 )3. 线性运算(af + bh) ∗ g = af ∗ g + bh ∗ g4.δ函数的卷积f ( x, y )* δ ( x, y ) = f ( x, y )δ 函数与任何函数卷积仅重新产生该函数严格再生 5. 光滑作用脉冲响应函数h是 对光学系统性能的 定量评价。
傅里叶变换的性质这里主要介绍二维离散傅里叶变换(DFT ,discrete FT )中的几个常用性质(可分离线、周期性和共轭对称性、平移性、旋转性质、卷积与相关定理):可分离性二维离散傅立叶变换DFT 可分离性的基本思想是二维DFT 可分离为两次一维DFT 。
因此可以用通过计算两次一维的FFT 来得到二维快速傅立叶变换FFT 算法 。
根据快速傅里叶变换的计算要求,需要图像的行列数均满足2的n 次,如果不满足,在计算FFT 之前先要对图像补零以满足2的n 次。
一个M 行N 列的二维图像f(x,y),先按行对列变量y 做一次长度为N 的一维离散傅里叶变换,再将计算结果按列向对变量x 做一次长度为M 傅里叶变换就可以得到该图像的傅里叶变换结果,如下式所示:()()()()∑∑-=-=-⎥⎥⎦⎤⎢⎢⎣⎡-=10102exp 2exp ,1,M x N y M ux j N vy j y x f MN v u F ππ 将上式分解开来就是如下两部分,首先得到F(x,v)再由F(x,v)得到F(u,v):∑-=-=-=101...10]/2exp[),(1),(N y N v N vy j y x f N v x F ,,,π∑-=-=-=101,...,1,0,]/2exp[),(1),(N x M v u M ux j v x F M v u F πu=0,1,2,…M-1;v=0,1,2,...N-1计算过程如下图所示:每一行有N 个点,对每一行的一维N 点序列进行离散傅里叶变换得到F(x,u),再对得到F(x,u)按列向对每一列做M 点的离散傅里叶变换,就可以得到二维图像f(x,y)的离散傅里叶变换F(u,v)同样,做傅里叶逆变换时,先对列向做一维傅里叶逆变换,再对行做一维逆傅里叶变换,如下式所示:()()()()∑∑-=-=⎥⎦⎤⎢⎣⎡=10102exp 2exp ,,M u N v M ux j N vy j v u F y x f ππ x=0,1,2,…M-1;y=0,1,2,...N-1周期性和共轭对称性由傅里叶变换的基本性质可以知道,离散信号的频谱具有周期性。