第3讲 有限元梁单元.
- 格式:ppt
- 大小:1.50 MB
- 文档页数:40
有限元受力分析–结构梁-力-计算1. 前言受力分析是工程设计中至关重要的一环,能够帮助工程师完善设计并避免安全事故的发生。
在此,我们将介绍有限元受力分析在结构梁设计中的应用。
本文将重点讲解有限元受力分析的相关理论和计算方法。
2. 有限元受力分析有限元分析是数值计算的一种方法,可用于解决工程中的受力分析问题。
它把结构离散为有限个单元,然后对每个单元进行分析。
有限元分析可分为线性有限元分析和非线性有限元分析两种类型。
本文我们只讨论线性有限元分析。
在有限元分析中,结构被分解为离散的单元,每个单元都是基于解析解的一部分。
有限元的形状、尺寸和材料属性可以通过计算机程序进行定义。
使用数学模型和有限元方法,可以计算单元的应力、变形和应变,从而进行结构的受力分析。
3. 结构梁结构梁相信大家应该都知道,它是工程中最为常用的结构之一。
它具有一定的强度和刚度,可以支撑和传递载荷。
一般来说,结构梁通常由简单的杆件单元组成。
在进行结构梁受力分析时,我们需要考虑弯曲、剪切和挤压等不同形式的载荷,以及结构在工作条件下的应变和应力分布情况。
有限元受力分析对于这些问题的研究提供了很好的解决方案。
4.力的分析在受力分析中,载荷是非常关键的参数。
载荷可以是点载荷、均布载荷、集中荷载等。
在本文中,我们将分别介绍这些载荷类型的有限元分析方法。
4.1 点载荷分析点载荷通常是一个单点受到的载荷。
对于点载荷的有限元分析,我们可以通过构建一个网格模型,然后将点载荷作用在网格的节点上。
此外,还需要设定材料的弹性模量和截面的截面面积,以计算结构的应力和变形。
需要注意的是,点载荷分析过程中的网格划分应当尽量精细,以达到更为优秀的数值精度。
4.2 均布载荷分析均布载荷是沿着梁的长度方向均匀分布的载荷,例如一根梁的自重、荷载等。
在进行均布载荷的有限元分析时,我们可以在网格的中央位置放置均布载荷,然后将梁的边缘节点设置为固定的约束条件。
同样,需要设定材料的弹性模量和截面的截面面积以计算结构的应力和变形。
梁的有限元分析原理梁的有限元分析原理是一种工程结构分析方法,广泛应用于建筑、桥梁、航空航天、汽车等领域。
它通过将连续的结构离散化为有限数量的小单元,通过数学模型进行计算,得出结构的力学性能和响应情况。
梁的有限元分析原理是有限元分析的基础,下面将对其进行详细介绍。
首先,梁的有限元分析原理基于梁理论,即在横向较小、纵向较长的情况下,结构可以近似为一维梁。
梁的有限元分析原理通过将梁划分为多个单元,每个单元内部可以看作两个节点之间的一段杆件,通过建立节点之间的力学关系方程,得到整个结构的力学性能。
其次,梁的有限元分析原理利用了变分原理,即将结构的势能取极小值,建立了结构的力学方程。
通过对于梁的弯曲、剪切和轴向力等方面的力学模型进行合理的假设与简化,可以得到结构的位移与力的关系,从而解决结构的力学问题。
在梁的有限元分析中,需要进行以下几个步骤:1.几何离散化:将梁结构划分为多个单元,每个单元具有相同的形状与尺寸,通常为矩形或三角形。
2.模型建立:根据梁理论以及力学方程的简化假设,建立节点的力学关系方程,包括位移、应力、应变等参数。
3.材料性能定义:确定梁材料的力学性能参数,如弹性模量、截面惯性矩等。
这些参数对梁结构的力学性能具有重要影响。
4.边界条件施加:根据实际问题设定边界条件,包括固定支座、约束条件等。
这些条件对于解决梁结构的位移、应力等问题至关重要。
5.方程求解:通过数学方法求解得到节点之间的力学关系方程,利用数值计算技术进行迭代求解,得到梁结构的位移、应力等参数。
6.结果分析:根据求解得到的结果,进行力学性能分析,如最大应力、挠度、模态分析等。
根据分析结果评估结构的强度与稳定性。
总结起来,梁的有限元分析原理是一种基于梁理论的工程结构分析方法,通过将结构离散化为多个小单元,利用力学关系方程和数值计算技术求解得到结构的力学性能。
通过梁的有限元分析原理,工程师可以更加准确地评估结构的强度与稳定性,对结构进行优化设计。
梁单元-有限元分析一、有限元法介绍有限元法的基本思想是将结构离散化,用有限个容易分析的单元来表示复杂的对象,单元之间通过有限个节点相互连接,然后根据变形协调条件综合求解。
由于单元的数目是有限的,节点的数目也是有限的,所以称为有限元法(FEM,Finite Element Method)。
是随着电子计算机的发展而迅速发展起来的一种弹性力学问题的数值求解方法。
有限元法是最重要的工程分析技术之一。
它广泛应用于弹塑性力学、断裂力学、流体力学、热传导等领域。
有限元法是60年代以来发展起来的新的数值计算方法,是计算机时代的产物。
虽然有限元的概念早在40年代就有人提出,但由于当时计算机尚未出现,它并未受到人们的重视。
随着计算机技术的发展,有限元法在各个工程领域中不断得到深入应用,现已遍及宇航工业、核工业、机电、化工、建筑、海洋等工业,是机械产品动、静、热特性分析的重要手段。
早在70年代初期就有人给出结论:有限元法在产品结构设计中的应用,使机电产品设计产生革命性的变化,理论设计代替了经验类比设计。
目前,有限元法仍在不断发展,理论上不断完善,各种有限元分析程序包的功能越来越强大,使用越来越方便。
二.梁单元的分类所谓梁杆结构是指其长度比横截面尺寸大很多的梁和杆件、以及由它们组成的系统,这一类结构的应力、应变和位移都是一个坐标的函数,所以属于一维单元问题。
1.平面桁架特点:杆件位于一个平面内,杆件间用铰节点连接,作用力也在该平面内。
单元特性:只承受拉力或压力。
单元划分:常采用自然单元划分。
即以两个铰接点之间的杆件作为一个单元。
为使桁架杆件只产生轴力,桁架的计算常作以下假定:①桁架中每根杆件的两端由理想铰联结;②每根杆件的轴线必须是直线;③所有杆件的轴线都只交于所联理想铰的几何中心。
④荷载均只作用于理想铰的几何中心。
在此条件下所算得的各种应力称为主应力。
实际上各种桁架结构不可能完全满足上述各假定,因而杆件将产生弯曲,由这种弯曲而在杆件中所引起的轴向应力称为次应力。
梁单元、梁板单元和实体块单元有限元数值模拟
及材料力学计算公式之间的比较分析
1.模型描述:
工字钢的截面尺寸见图1,轴向长100mm,一端固定,另一端加1000N的集中力作用。
求此条件下,工字钢的最大挠度。
用三种模型来进行计算,再用材料力学的理论公式进行计算,比较它们的计算结果。
第一种模型是用一个梁单元来计算,模型见图2(a)中最下面的模型;第二种模型是用梁单元和板单元组合起来进行计算,模型见图2(a)中中间的模型;第三种模型是用实体块单元来进行计算,模型见图2(a)中最上面的模型。
图 1 工字钢的截面尺寸(单位:mm)
(a) (b)
图 2 计算模型示意图
材料力学的理论公式如下:
图 3 图 4
P是集中力,l是工字钢的长度,H是工字钢的高度。
挠曲线方程(见图3):)3(62x l EI
Px --
=ν
应力值计算公式(见图3和图4):I
H
x l P 2)(-=σ
2. 挠度比较
图 5 各模型的挠度计算云图
表 1观察点处的挠度值(单位mm )
3.应力比较
图 6 梁单元模型的应力云图
图 7 梁板单元模型的应力云图
图 8 实体块单元模型的应力云图
表 2观察点处的应力值(单位MPa)
4.结果分析
通过以上计算,可以看出有限元数值模拟与材料力学的理论计算公式的结果相接近,另外,对于同一问题,可以采用多种单元组合来达到计算的目的。