汽轮机负荷波动原因分析和处理措施
- 格式:doc
- 大小:153.50 KB
- 文档页数:7
汽轮机负荷波动原因分析和处理措施姓名:XXX部门:XXX日期:XXX汽轮机负荷波动原因分析和处理措施以长江动力Q3052C型汽轮机为例,针对汽轮发电机组在运行中出现功率波动的问题,通过对505E控制系统调节回路各环节的分析和试验,找出了EH油内含颗粒杂质过多是造成该问题的主要原因,并结合实际工况通过控制器内部PID参数整定消除部分影响。
列举运行中可能出现的问题,提出分析建议和处理措施。
湖北大峪口化工有限责任公司3#机为长江动力Q3052C型。
在试车成功后一段时间,突然出现电负荷有大幅波动且滞后很大现象。
经多方排查,检测出EH油质不达标准,经处理后虽已无明显波动现象,但控制滞后还是较大。
根据实际工况重新整定PID参数后,基本能达到工艺控制要求。
调节回路波动主要原因分析2.1主控制器(505E)故障2.1.1原因分析:505E是以微处理器为基础的调速器,通过电液转换机构对汽轮机调节汽门进行控制,实现对汽轮发电机组实行自动控制的系统。
在机组运行过程中,505的工作直接影响汽轮机转速和机组负荷,密切关系机组的发电质量和安全。
2.1.2处理措施:关闭阀位限制器试着手动控制汽阀。
用这种方式锁定汽阀且执行机构输出稳定,但系统仍然振荡,则说明问题不在于控制器2.2转速传感器、功率变送器故障2.2.1原因分析:本机组采用的是2个磁阻式探头互为冗余,输入信号高选为主。
505E实测机组功率和机组转速作为反馈信号,转速偏差作为一次调频信号对给定功率进行修正,功率给定与功率反馈比较后,第 2 页共 7 页经PID运算和功率放大后,通过电液转换器和油动机控制调节阀门开度来消除偏差信号,对机组功率实现无差调节,若功率不反馈,则以阀位控制方式运行,即通过增加转速设定,开大调节汽阀,增加进汽量达到增加负荷的目的。
若转速传感器、功率变送器故障则会影响到整个回路的稳定。
2.2.2处理措施:分别拆下2各转速传感器接至转速数字显示仪,转速均为正常。
汽轮机调速系统波动原因分析与处理摘要:在电厂的汽轮机组生产过程中,汽轮机的调速系统是一个重要的组成部分,关乎着整个机组的运行状态。
因此,汽轮机调速系统的安全、稳定运行是保证机组高效运行和电网安全的一个重要因素。
对此,电厂日常管理工作中就要加强对汽轮机调速系统的管理。
调速系统波动是汽轮机的一个常见问题,但是出于其对汽轮机组整体运行的重要性,工厂要提高重视,针对这个问题提出一些解决办法,目的在于提升汽轮机调速系统的稳定性和可靠性。
关键词:汽轮机调速系统;波动原因汽轮起调速系统出现波动是一个常见的问题,因此可能诱发这个问题发生的因素有很多。
对于这个问题,首先要提高重视,因为汽轮机调速系统对于汽轮机的整体运行有着重要的影响。
其次,要仔细研究辨别造成波动的具体原因,记录具体的故障状态。
最后,针对问题提出解决措施。
本文将针对汽轮机调速系统出现波动的原因和解决方法进行探讨。
汽轮机调速系统是汽轮机的一个重要组件,它直接影响整体的稳定运行。
在整体运行系统中,有应急部件的设定可以在设备出现问题的时候对主要的部件进行保护,卸去油压保证阀门处于关闭状态。
同时系统内部设有辅助油门,可以避免故障油门再次自发启动。
一、汽轮机调速系统设备介绍汽轮机的调速系统是反馈汽轮机运行状态的一个重要部件,它接受和传输的信号都会反映汽轮机的运行情况。
汽轮机调速系统接受两个转速传感器的信号,同时会将这些信号和设定值进行比较,比较后会输出执行信号。
电信号经过转化器会转化成为油压,可以推动相关部件运行。
不过,汽轮机的调速设备对于各项参数都有着明确的要求,过高或者过低都会引起调速系统的非正常波动。
下面对于引起调速系统波动的原因做了一定的分析,但是目前仍有一些未知的因素对调速系统的稳定运行产生影响,这都是有关部门仍需进行研究的方面。
确保调速系统的稳定运行是保证整体运行状态的重要环节。
二、汽轮机调速系统产生波动的原因分析2.1系统的部件有卡涩现象系统部件有卡涩现象大多都会引起汽轮机调速系统产生波动。
某公司300MW机组并网后负荷波动异常分析本文结合某公司300MW机组并网后,由于机组高压调门的开度与通过阀门的蒸汽流量不对应而出現的负荷异常波动问题进行了总结概括,并对其进行原因分析,通过在线对机组高压调门开度进行修正,使机组负荷最终恢复正常。
同时本文也提出了相应的处理及防范措施以供参考,避免类似事故再次发生。
标签:300MW机组;负荷波动;高压调门开度修正;防范引言某公司300MW机组为哈尔滨汽轮机厂生产的亚临界、一次中间再热、双缸双排汽、单轴、凝汽式汽轮机,型号为N300-16.7/538/538。
该型汽轮机共配有2只高压主气门、6只高压调门、2只中压主气门、2只中压调门,汽门通过油动机操作控制,汽门油动机每两年返厂维修一次,油动机维修完成后,所有汽门行程,均需重新定位。
1、事件经过7月9日,该机组在机组检修任务完成后启机。
20:20H,机组并网后负荷至160MW时,高压调门开度31%,主汽压力14.35MPa,在投入机组协调、AGC 后,机组负荷、高压调门开度、主汽压力等参数出现波动现象,且随时间推移,参数波动逐渐加剧。
20:33H,运行人员退出AGC,解除机组协调,手动控制机组负荷,机组负荷趋于稳定。
此时机组负荷值165MW,高压调门开度30.87%,主汽压力14.7MPa。
在机组参数波动期间,机组负荷最高达到186MW,最低至156MW;高压调门开度最高开至37.86%,最低至29.08%,主汽压力在14.08-14.5MPa之间来回振荡、波动,一个波动周期约10S。
图1负荷等参数波动曲线在机组投入协调、AGC后,负荷等开始波动,机务人员随即对机组汽门进行了现场确认,确认所有汽门外观运行正常;其后又对高压旁路电动门进行了刹紧操作,确认高压旁路电动门关闭严密。
调阅机组1月15日启机后运行参数发现,机组此次运行参数较1月参数偏高(详见下表),初步怀疑存在机组高压调门汽门开度不足、蒸汽流量与阀门开度不对应[1]。
49我公司共有汽轮机组十四套,其中十套为杭汽汽轮机组,主要作为离心压缩机组(气压机组)的驱动设备,汽轮机组调速系统均采用电液转换器-错油门-油动机控制调节系统,其基本原理是如图1所示,通过电子转速传感器采集汽轮机转速并通过数字式调速器转换成4mA至20mA电信号,电信号再通过电液转换器产生0.15MPa至0.45MPa二次油压,二次油压通过错油门控制油动机的上下升程并进而控制其所连接的调节气阀的开度,达到调节蒸汽量及汽轮机转速的目的。
图1 工作原理1 问题的提出汽轮机组在运行过程中出现的最大问题就是速度的大幅度波动,我公司的几台汽轮机在运行过程中曾相继几次出现转速大幅度非周期性波动的故障现象,其中一台最大波动幅度曾达到300rpm左右,如此大的速度波动使机组的稳定性受到极大的影响。
2 原因分析针对这种故障现象,我们首先从以下几个方面加以分析。
2.1 气压机工艺系统的原因速度波动直接影响到气压机的负荷,但反过来气压机的负荷变化如压力、流量的变化则同样会影响速度的变化。
如果气压机出现非周期性喘振,则其负荷就会出现非周期性的变化,在某一点上甚至会出现零负荷的现象,这种现象会使汽轮机瞬间失速,因此,气压机负荷波动会使汽轮机出现转速大幅度非周期性波动的故障现象。
但是,问题的关键点在于气压机负荷的波动特别是压力波动与汽轮机速度波动出现的先后顺序,要明确谁先谁后及谁影响谁,这需要通过现场的仔细观察来确定,如果每次出现波动是压力变化均滞后于速度变化,那么可以排除气压机工艺系统的原因。
如果每次出现波动是速度变化均滞后于压力变化,那么可以认定是气压机工艺系统的原因。
2.2 汽轮机工艺系统的原因蒸汽的品质对转速的影响很大,此外,对于凝汽式汽轮机凝汽器的真空度也是一个主要的影响因素。
蒸汽饱和度是关键的指标,过饱和时会出现汽中带水,在水含量达到一定程度就会出现水击现象,当出现这种现象时汽轮机的转速会急剧下降,但此种现象的出现会伴随着较大的振动、异音及轴位移,因此,较易判断;而真空度的波动则会直接影响到机组效率,进而造成速度波动;蒸汽的压力、温度及流量的波动则同样不可避免地会造成速度的波动,工艺系统的原因造成的速度波动可以通过工艺参数的变化规律快速得出结论。
汽轮机负荷大幅度摆动现象原因及对策摘要:本文以汽轮机符合波动现象为研究对象,在充分认识汽轮机调节系统结构和运行中常见问题的基础上,针对性展开对汽轮机符合大幅度摆动问题应对措施的探究,以此确保汽轮机组安全稳定运行,进而为电力生产行业的发展提供经验借鉴。
关键词:汽轮机;负荷;摆动;调节策略引言:众所周知,汽轮机是火力发电厂中应用最为广泛的原动机。
汽轮机以蒸汽为动力,在具体工作中将热能转化为机械能,从而实现装备设计目的。
应用在生产实际中的汽轮机在硬件方面具有突出的优越性,但是经过长期使用后,汽轮机的稳定运行也会受到不利影响。
为了防止汽轮机负荷大幅度摆动等不稳定运行状况出现,技术人员应对汽轮机调节系统保持高度关注,依托调节系统的有序工作实现汽轮机组的稳定运行。
一、问题提出汽轮机调节系统不稳定就会直接导致负荷变动时出现负荷摆动现象,正如CC12—35/10/1.2型汽轮机在经过长时间使用后,在设备无人调整的情况下,可能会出现相同负荷,转速脉冲二次油压数值异常的状况。
据设备运行记录显示,以往汽轮机负荷大摆动时,负荷摆动前负荷为11.3MW,油动机行程为102mm,转速脉冲二次油压0.081MPa,这便意味着汽轮机调节系统呈现出处于不稳定状态。
二、问题分析1. 调节系统组成与机构异常排查根据功能差异性,可以将汽轮机调节系统分为调速和调压两个部分。
顾名思义,调速部分可以对旋转阻尼及系统内其他调速器进行调节,具体包括转速感应、传达放大、反馈等机构。
调速部分产生的一次油压和转速成正相关,系统实际运行中的转速脉冲油压需要经过传递放大机构才能对继动器产生有效作用。
通常来说,系统内存在高中低三只继动器,当转速发生变化时,继动器的方向一致,所以低压旋隔板和高中压调节气阀同时关闭或开启。
调节系统的调压部分主要有两只杠杆蝶阀式的调压器构成,两只调压器因为压力方面的差异性,因此可以实现对低压抽气口和中压抽气口的控制。
经过比较后,可以认识到两种调压器在运行功能上的不同,中压调压器的两次脉冲油分别控制高压油动机(一次脉冲油)和中低压油动机(二次脉冲油)的行程;低压调压器分别控制高、中压油动机(一次脉冲油)和低压油动机(二次脉冲油)的行程。
汽轮发电机组负荷波动原因分析魏战乾发表时间:2019-03-26T10:23:28.190Z 来源:《电力设备》2018年第29期作者:魏战乾[导读] 摘要:近几年,随着电能的增长,发电技术越来越先进。
(国家能源神华新疆化工有限公司新疆乌鲁木齐 831400)摘要:近几年,随着电能的增长,发电技术越来越先进。
汽轮发电机组运行中负荷波动一直是个难于解决的问题。
机组自动化程度的提高虽明显地改善了负荷的稳定性,但由于热电元件、配汽机构仍然存在各种问题,负荷波动现象依然存在。
以DEH调节系统为例,对控制和配汽机构进行了分析,重点探讨了引发负荷波动的机理和原因,提出有效的解决方案。
关键词:汽轮发电机;负荷;波动原因发电机组的负荷波动问题一直是直接影响发电机组能否安全稳定、持续高效运行的重要因素之一,甚至会影响到机组负荷的控制精度,进而大幅削弱机组对外部工况负荷需求变化的动态响应能力。
在以往的日常运行维护记录中,导致发电机组负荷波动较大的因素多半是调节系统发生了故障,在应用DEH调节控制系统之后调节幅度有很大提升,负荷控制精确也更加高,机组负荷大幅波动的现象得到明显控制,但是仍然未能消除,加之DEH控制系统自带大量敏感电子元件,对故障的实时跟踪更加繁琐。
笔者所在发电分厂在配置新型DEH调节控制系统后,在正常运行时,实际转速的控制精度不低于±1r/min,同时功率的控制精度不高于0.1MW。
但是在机组的实际运维中,因调节控制系统内部发生故障时,其负荷的动态变化常常会超出预期值。
1、DEH系统组成及工作原理DEH 系统主要包括 PC控制模块和 EH液压执行机构模块。
PC控制部分由操作员站、HUB(或交换机)、控制柜及伺服放大器组成;EH液压执行机构涵盖油动机、电液转换器以及LVDT(位移传感器)三个部分。
工作原理及其结构示意图见图1和图2。
调速系统接到DEH 指令后,经伺服放大器放大转换为电信号模式,由电液转换器再将其转化为匹配的液压模式信号,最后到达液压执行机构。
汽轮机负荷波动原因分析和处理措施汽轮机的负荷波动是指在汽轮机运行过程中,发电负荷出现波动的现象。
负荷波动会对电网的稳定性和设备运行带来不利影响,因此需要进行原因分析和相应的处理措施。
一、负荷波动的原因分析:1.电网负荷波动:电网负荷波动是导致汽轮机负荷波动的主要原因之一、电网负荷波动会直接传递到汽轮机,造成其负荷波动。
2.其他发电设备负荷波动:在复杂的电力系统中,存在其他发电设备的负荷波动,例如水轮发电机组的开机、停机或负荷变化等。
3.燃料供应波动:燃料供应的不稳定也是导致汽轮机负荷波动的原因之一,例如燃煤发电厂可能受到煤炭价格、供应量以及运输等因素的影响。
4.其他外界因素:例如天气、交通等因素也可能导致汽轮机负荷波动,例如恶劣的天气影响了燃气的输送或煤炭的供应。
二、处理措施:1.优化负荷调节系统:对汽轮机负荷调节系统进行优化,提高其响应速度和控制精度,以应对电网负荷波动。
2.提高汽轮机控制系统的稳定性:对汽轮机控制系统进行优化升级,提高其稳定性和控制精度,减小负荷波动。
3.加强与电网的协调:加强电网运行与汽轮机运行之间的协调,通过合理的电网调度和负荷预测,减小电网负荷波动对汽轮机的影响。
4.控制燃料供应波动:与燃料供应商建立稳定的合作关系,确保燃料供应的稳定性。
同时,建立合理的备用燃料供应体系,以应对可能的燃料供应波动。
5.增加备用发电设备:在电网发展不完善或不稳定的地区,增加备用发电设备,以应对电网负荷波动导致的汽轮机负荷波动。
6.加强预防措施:对可能导致汽轮机负荷波动的外界因素进行评估和预测,并采取相应的措施进行防范,减小其对汽轮机负荷的影响。
总结起来,处理汽轮机负荷波动问题需要从优化控制系统、加强与电网的协调、控制燃料供应波动、增加备用发电设备和加强预防措施等方面入手,以保障汽轮机的稳定运行和电网的可靠供电。
汽轮机负荷波动原因分析和处理措施背景汽轮机是重要的发电设备之一,但在实际操作中经常会出现负荷波动的情况,影响发电效率和设备寿命。
为了保证发电的稳定性和可靠性,需要对汽轮机负荷波动的原因进行深入的分析和研究,并采取相应的处理措施。
本文将从汽轮机负荷波动的原因、常见的负荷波动形式和对策三个方面进行论述。
汽轮机负荷波动的原因汽轮机负荷波动的原因是多方面的,如下所述。
发电负荷变化电力系统中负荷不断变化也是造成汽轮机负荷波动的一个重要原因。
电力系统中负荷的变化导致了汽轮机输出功率的变化,从而引起了汽轮机转速和运转稳定性的变化。
内部调节系统故障汽轮机内部调节系统故障也会造成负荷波动。
内部调节系统能够对发电机输出的电压和频率进行稳定控制,但如果出现故障,会导致汽轮机负荷波动。
过热、过冷和过载汽轮机在运转过程中可能会出现过热、过冷和过载的现象,这些现象都会对汽轮机的运转稳定性产生影响,从而导致负荷波动。
其他原因除上述原因外,还有其他原因也会对汽轮机的负荷波动产生影响,如压力波动、流量波动、外部扰动等。
常见的负荷波动形式汽轮机负荷波动的形式多种多样,下面列举几种常见的形式。
瞬时波动瞬时波动是指短暂的、快速的、幅度小的波动。
这种波动不会对汽轮机的运行状态产生较大的影响,但如果过于频繁,也会对汽轮机造成损害。
持续波动持续波动是指相对较长时间内,波动相对稳定的波动。
这种波动会对汽轮机的运行状态产生较大的影响,因此需要及时采取措施处理。
爆发性波动爆发性波动是指出现异常波动的情况,一般是由突发事件或设备故障导致的。
这种波动对汽轮机造成极大的危害,需要紧急采取应对措施。
跳变波动跳变波动是指由于外部扰动等因素导致汽轮机负荷在一段时间内突然发生跳跃的现象。
这种波动对汽轮机运转的稳定性和寿命都会造成影响。
处理措施为了保证汽轮机运行的稳定性和可靠性,需要采取相应的处理措施。
下面是几种常见的处理措施。
负荷调整负荷调整是指通过调整电力系统中的负荷来控制汽轮机的输出功率,从而达到减小负荷波动的目的。
汽轮机负荷波动原因分析和处理措施
姓名:XXX
部门:XXX
日期:XXX
汽轮机负荷波动原因分析和处理措施
以长江动力Q3052C型汽轮机为例,针对汽轮发电机组在运行中出现功率波动的问题,通过对505E控制系统调节回路各环节的分析和试验,找出了EH油内含颗粒杂质过多是造成该问题的主要原因,并结合实际工况通过控制器内部PID参数整定消除部分影响。
列举运行中可能出现的问题,提出分析建议和处理措施。
湖北大峪口化工有限责任公司3#机为长江动力Q3052C型。
在试车成功后一段时间,突然出现电负荷有大幅波动且滞后很大现象。
经多方排查,检测出EH油质不达标准,经处理后虽已无明显波动现象,但控制滞后还是较大。
根据实际工况重新整定PID参数后,基本能达到工艺控制要求。
调节回路波动主要原因分析
2.1主控制器(505E)故障
2.1.1原因分析:505E是以微处理器为基础的调速器,通过电液转换机构对汽轮机调节汽门进行控制,实现对汽轮发电机组实行自动控制的系统。
在机组运行过程中,505的工作直接影响汽轮机转速和机组负荷,密切关系机组的发电质量和安全。
2.1.2处理措施:关闭阀位限制器试着手动控制汽阀。
用这种方式锁定汽阀且执行机构输出稳定,但系统仍然振荡,则说明问题不在于控制器
2.2转速传感器、功率变送器故障
2.2.1原因分析:本机组采用的是2个磁阻式探头互为冗余,输入信号高选为主。
505E实测机组功率和机组转速作为反馈信号,转速偏差作为一次调频信号对给定功率进行修正,功率给定与功率反馈比较后,
第 2 页共 7 页
经PID运算和功率放大后,通过电液转换器和油动机控制调节阀门开度来消除偏差信号,对机组功率实现无差调节,若功率不反馈,则以阀位控制方式运行,即通过增加转速设定,开大调节汽阀,增加进汽量达到增加负荷的目的。
若转速传感器、功率变送器故障则会影响到整个回路的稳定。
2.2.2处理措施:分别拆下2各转速传感器接至转速数字显示仪,转速均为正常。
校验功率变送器电流和功率均输出正常。
功率变送器校验表输入电流(A)输出电流(mA)功率
(KW)17.255195210.4510388313.6515581416.852*******.0525969备注:此表型号:JA866-4P3 最大功率25969KW
2.3位移传感器故障
2.3.1原因分析:作为阀门位置反馈的线性位移传感器,随着阀门的变化而变化,其芯杆在线圈中反复移动,由于芯杆与线圈间存在一定的间隙,芯杆移动过程中经常与线圈发生摩擦,线圈磨损,金属芯杆与磨损的线圈接触会影响传感器的输出,造成位置反馈的不稳定引起阀门的波动。
更严重的是芯杆被线圈卡涩而不能畅通地移动,在位移信号增大给芯杆积聚了一定的力后,又使芯杆产生一个跳动,通过调节回路的作用也使调节汽门产生波。
2.3.2处理措施:拆下后检查发现传感器无故障,但芯杆有细微弯曲,校直后波动相对之前较为平稳。
2.4调节阀控制系统
2.4.1原因分析:汽轮机进汽调节阀控制系统主要由DDV伺服阀、油动机、卸荷阀、LVDT组件、伺服卡等构成,电液转换器由汽轮机前轴承座中的主油泵供油。
主油泵(即汽轮机轴头油泵)输出1.1MPa的压力油,经节流孔和电调装置专用的滤油器后供给电液转换器。
当汽轮机
第 3 页共 7 页
转速变化或抽汽压力变化时,输入信号与给定值比较输出一个偏差值,经运算放大后改变两路分别送给两只电液转换器的控制信号,使两个电液转换器输出的脉冲油压变化。
脉冲油直接作用在错油门滑阀下部,从而控制高、中压油动机的位移,改变高压调节汽阀和旋转隔板的开度,达到自整调节的目的。
当电信号进入DDV伺服阀内放大电路后,此电信号将转换成一个脉宽调制电流作用在线性力马达上,力马达将产生一推力并使阀芯产生一位移。
同时激励器激励阀芯位移传感器产生一个与阀芯实际位移成正比的电信号,并与输入指令信号进行比较,所得偏差信号将改变输入至力马达的电流大小,直到阀芯位移达到所需值,即阀芯位移与输入指令信号成正比。
DDV伺服阀采用的线性力马达可在中位产生左右两个方向的驱动力。
推动阀芯产生两个方向的位移。
双筒滤油器上设有差压发讯装置,它以开关形式对滤油器的堵塞作报警,当进出口压差达0.35MPa时,即发出电信号。
由于线性度关系本机组DDV阀芯位置定在63.5%,故当DDV阀芯动作完毕后会回到63.5%即为正常。
机组运行后DDV阀虽工作位置在67.3%,但压差发讯装置未发出堵塞信号,故没有判断阀芯堵塞。
2.5.2处理措施:首先更换伺服卡及DDV伺服阀,均未见异常。
在更换双筒滤油器滤芯时发现滤芯内机械杂质较多,更换后后阀芯位置从67.3%降至6
3.5%,故判断是油内机械杂质过多,导致堵塞滤网进油量不够,阀位动作滞后增大,最终使整个调节系统紊乱,出现负荷大幅波动现象。
因在电液转换装置中油质要达到美国国家宇航标准(NAS1638)7级或以上,其中机械杂质在每100Ml油中大于100µm粒子数不得超过32个。
故我们在用滤油机过滤的情况下还在滤油器出口加装滤网且至少每个星期更换一次。
当阀芯位置大于67.0%时更换双筒滤油器滤芯,待
第 4 页共 7 页
油内机械杂质合格后,重新整定PID参数。
经过一系列措施之后,负荷已能得到及时控制且无明显波动。
PID参数对回路的影响在整个调节系统中,当外部因素不可逆时,可适当的通过调整PID 参数来达到稳定调节的目的。
PID控制回路的增益是回路中所有增益的综合。
回路的总增益包括执行机构增益,阀门增益,阀门连杆机构的增益,变送器增益,汽轮机内部增益和505调速器的可调整增益等。
如果累加的机械增益(执行机构、阀门、阀门连杆)等很大的话,要加入的505调速器增益必须很小以满足系统稳定要求的系统总增益。
对于恰当调整好的系统来说,当给其一个阶跃变化时,应稍微过调后就达到稳定控制。
为了获得较佳的响应,比例增益和积分增益应尽可能地大。
要获得较快的过渡响应,缓慢地增大比例增益设定值直到执行机构或最终驱动器输出开始晃动或摆动,然后调整积分增益使输出稳定。
如果调整积分增益无法使输出稳定,则减小比例增益的设定值。
下列是505E一种简便的调整方法,能使PID增益值调整至接近最佳值。
(1)
将积分增益减至最小
(2)
增加比例增益直至系统刚开始晃动
(3)
记录系统增益(G)和晃动周期(T)
(4)
按下列说明调整动态参数
对于PI控制设定比例增益=0.45*G,积分增益=12/T,DR=100
第 5 页共 7 页
这种调整方法将使增益设定值接近最佳,然后再从这一点对它们作微调。
对于负荷波动是汽轮机常见问题之一,造成负荷原因较多,一旦出现,严重影响机组的安全稳定运行。
通过本次对湖北大峪口化工有限责任公司3#汽轮机负荷波动原因分析,系统的分析了造成负荷多种原因,提出了具体的处理措施,对于其他电厂处理此类事故有一定的借鉴意义。
第 6 页共 7 页
感谢您的浏览!整理范文,仅供参考。
第7 页共7 页。