B
O·
1300多年前,我国隋朝建造的赵州石拱桥(如图)的桥拱是圆弧形,它的跨度(弧所对是弦的长)为37.
2m,求桥拱的半径(精确到0. 做这类问题是,思考问题一定要全面,考虑到多种情况. 2m,求桥拱的半径(精确到0.
A
C
把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?
方法归纳:
解决有关弦的问题时,经常连接半径; 过圆心作一条与弦垂直的线段等辅助线,为 应用垂径定理创造条件。
垂径定理经常和勾股定理结合使用。
课堂讨论
①
根据已知条件进行推导: ②
③ ④ ⑤
①过圆心 ②垂直于弦 ③平分弦
① ③
② ④ ⑤
① ④
③ ② ⑤
④平分弦所对优弧 ① ⑤平分弦所对劣弧 ⑤
③② ④③ ②
3.已知⊙O的弦AB=4㎝,圆心O到AB的中点C的距离为1 ㎝,那么⊙O的半径为 5 Cm
4.如图,在⊙O中弦AB⊥AC,
OM⊥AB,ON⊥AC,垂足分别为B M, M
A
N,且OM=2,0N=3,则A6B= , AC=4 ,OA= 13
ON C
5.如图,在⊙O中,AB、AC为互相垂直且 相等的两条弦,OD⊥AB于D,OE⊥AC于E, 求证四边形ADOE是正方形.
8cm
小于半圆的弧(如图中的 )叫做劣弧;
做这类问题是,思考问题一定要全面,考虑到多种情况.
把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?
O
E
AB
O
E
A
B
3.半径为2cm的圆中,过半径中点且
O
垂直于这条半径的弦长是 2 3cm 。 A E