导线切割磁感线运动解读教学提纲
- 格式:ppt
- 大小:584.50 KB
- 文档页数:9
第2讲:导体切割磁感线运动(教师版)__________________________________________________________________________________ __________________________________________________________________________________1、熟练右手定则的应用。
2、掌握导体切割磁感线运动的处理方法。
1.右手定则(1)内容:伸开右手,使拇指与其余四指垂直,并且都与手掌在同一平面内,让磁感线从手心垂直进入,并使拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向。
(2)适用范围:适用于判断闭合电路中的部分导体切割磁感线产生感应电流的情况。
2.导体在匀强磁场中平动(1)一般情况:运动速度v 和磁感线方向夹角为θ,则E =Blv sin_θ。
(2)常用情况:运动速度v 和磁感线方向垂直,则E =Blv 。
3.导体棒在匀强磁场中转动导体棒以端点为轴,在垂直于磁感线的平面内以角速度ω匀速转动产生感应电动势E =12Bωl 2(导体棒的长度为l )。
题目类型:导体平动切割磁感线例1.半径为a 的圆形区域内有匀强磁场,磁感应强度为B =0.2 T,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心放置,磁场与环面垂直,其中a =0.4 m,b =0.6 m,金属圆环上分别接有灯L 1、L2,两灯的电阻均为R0=2 Ω,一金属棒MN与金属圆环接触良好,棒与环的电阻均忽略不计。
(1)若棒以v0=5 m/s的速率在环上向右匀速滑动,求棒滑过圆环直径OO'的瞬间(如图所示)MN中的电动势和流过灯L1的电流。
(2)撤去中间的金属棒MN,将右面的半圆环O L2O'以OO'为轴向上翻转90°,若此时磁场随时间均匀变化,其变化率为 ,求L1的功率。
解析:(1)棒通过圆环直径时切割磁感线的有效长度l=2a,棒中产生的感应电动势为E=Blv=B·2av0=0.2×0.8×5 V=0.8 V。
导线切割磁感线产生电磁感应的几个基本模型要点1.磁通量的变化:当导线与磁感线相互运动时,如果导线割过磁感线,并且与磁感线的夹角发生变化,那么磁通量就会发生变化。
磁通量的变化可以通过磁场强度和面积的乘积来表示。
根据法拉第电磁感应定律,磁通量的变化会在导线中产生感应电动势。
2.磁感应线的密度:磁感应线是用来描述磁场的一种辅助工具,其形状和分布表示了磁场的性质。
磁感应线的密度决定了单位面积上通过的磁感应线的数量,也反映了磁场的强弱。
当导线切割的磁场中磁感应线的密度发生变化时,会产生感应电动势。
3.磁感线的方向:磁感线有方向性,总是从磁北极指向磁南极。
当导线与磁感线的夹角发生变化时,磁感线的方向也会发生变化,导线内部也会产生感应电动势。
磁感线的方向变化越剧烈,感应电动势越大。
4.导线长度和速度:导线的长度和速度也会影响导线切割磁感线产生的电磁感应。
当导线的长度增加时,割过的磁感线数量也会增加,导致感应电动势增大。
当导线的速度增加时,割过磁感线的数量也会增加,进而引起感应电动势的增大。
5.磁场的强弱:磁场的强弱也会影响导线切割磁感线产生的电磁感应。
当磁场的强度增加时,磁感线的密度也会增加,从而感应电动势增大。
磁场的强度可以通过磁场强度的大小和方向来描述。
总结起来,导线切割磁感线产生的电磁感应可以通过以下几个要点进行描述:磁通量的变化、磁感线的密度、磁感线的方向、导线长度和速度以及磁场的强弱。
这些要点是理解和应用电磁感应理论的基础,也是研究和设计电磁设备的重要依据。
磁感线实验教案了解磁感线的分布和磁场的强弱磁感线实验教案:了解磁感线的分布和磁场的强弱实验教案引言:磁感线实验是帮助学生更好地了解磁感线的分布以及磁场的强弱的重要实验。
通过这个实验,学生将能够直观地感受到磁场的特性,并通过观察磁感线的形态和排列,深入了解磁场的分布情况和强弱程度。
实验目的:通过磁感线实验,使学生了解磁感线的分布和磁场的强弱,培养学生的实验观察力和科学思维能力。
实验材料:1. 磁铁2. 铁磁粉末(或铁屑)3. 透明玻璃片4. 线圈5. 直流电源6. 导线实验步骤:注意:实验前确保安全,并请老师或者专业人员指导和监督。
步骤一:磁感线的观察1. 将透明玻璃片平放在桌上,确保干净无尘。
2. 在玻璃片上撒上一层铁磁粉末(或铁屑)。
3. 将一个磁铁放在玻璃片上,并轻轻移动磁铁,观察磁感线在粉末上的分布情况。
4. 注视磁感线的形态和排列方式,观察磁场的分布情况。
步骤二:磁场强弱的观察1. 将线圈放在桌上,并连接直流电源。
2. 将磁铁从线圈旁边移动,观察线圈内磁感线的分布情况。
3. 记录下磁铁离线圈越远,磁感线越稀疏的观察结果。
4. 将磁铁靠近线圈,并观察磁感线的变化。
记录下磁铁离线圈越近,磁感线越密集的观察结果。
步骤三:实验报告根据观察结果填写实验报告表格,包括磁感线的形态、分布,以及磁场的强弱等内容。
根据实验观察结果,我们发现磁感线呈现环绕磁铁的形态,并从磁南极指向磁北极。
在线圈的实验中,我们观察到磁感线在磁铁远离线圈时变得稀疏,而在磁铁靠近线圈时变得密集。
这表明磁场的强弱与距离磁源的远近有关,离磁源越远,磁场越弱,离磁源越近,磁场越强。
结论:通过这个实验,我们深入了解了磁感线的分布和磁场的强弱。
磁感线实验帮助我们直观地感受到磁场的特性,加深了对磁场性质的理解。
同时,实验也培养了我们的实验观察力和科学思维能力,在实践中学习和探索。
延伸应用:1. 利用磁感线实验,可进一步探究其他磁场性质,如研究磁场对电流的影响等。
“导体棒切割磁感线”题型与归类“导体棒切割磁感线”问题的题型与归类问题一:电磁感应现象中的图象在电磁感应现象中,回路产生的感应电动势、感应电流及磁场对导线的作用力随时间的变化规律,也可用图象直观地表示出来.此问题可分为两类(1)由给定的电磁感应过程选出或画出相应的物理量的函数图像;(2)由给定的有关图像分析电磁感应过程,确定相关的物理量.1.判断函数图象如果是导体切割之动生电动势问题,通常由公式:E=BLv确定感应电动势的大小随时间的变化规律,由右手定则或楞次定律判断感应电流的方向;如果是感生电动势,则由法拉弟电磁感应定律确定E的大小,由楞次定律判断感应电流的方向。
题型1-1-1:例1、如图甲所示,由均匀电阻丝做成的正方形线框abcd的电阻为R1,ab=bc=cd=da=l,现将线框以与ab垂直的速度v匀速穿过一宽度为2l、磁感应强度为B的匀强磁场区域,整个过程中ab、cd两边始终保持与边界平行.令线框的cd边刚与磁场左边界重合时t=O,电流沿abcda流动的方向为正.(1)在图乙中画出线框中感应电流随时间变化的图象.(2)在图丙中画出线框中a、b两点间电势差Uab随时间t变化的图象.分析:本题是电磁感应知识与电路规律的综合应用,要求我们运用电磁感应中的楞次定律、法拉第电磁感应定律及画出等效电路图用电路规律来求解,是一种常见的题型。
解答:(1)令I0=Blv/R,画出的图像分为三段(如下图所示)t=0~l/v,i=-It= l/v~2l/v,i=0t=2l/v~3l/v,i=-I=Blv,面出的图像分为三段(如上图所示)(2)令Uab小结:要求我们分析题中所描述的物理情景,了解已知和所求的,然后将整个过程分成几个小的阶段,每个阶段中物理量间的变化关系分析明确,最后规定正方向建立直角坐标系准确的画出图形例2、如图所示,一个边长为a ,电阻为R 的等边三角形,在外力作用下以速度v 匀速的穿过宽度均为a 的两个匀强磁场,这两个磁场的磁感应强度大小均为B ,方向相反,线框运动方向与底边平行且与磁场边缘垂直,取逆时针方向为电流的正方向,试通过计算,画出从图示位置开始,线框中产生的感应电流I 与沿运动方向的位移x 之间的函数图象分析:本题研究电流随位移的变化规律,涉及到有效长度问题.解答:线框进入第一个磁场时,切割磁感线的有效长度在均匀变化.在位移由0到a/2过程中,切割有效长度由0增到23a ;在位移由a/2到a 的过程中,切割有效长度由23a 减到0.在x=a/2时,,I=R avB 23,电流为正.线框穿越两磁场边界时,线框在两磁场中切割磁感线产生的感应电动势相等且同向,切割的有效长度也在均匀变化.在位移由a 到3a/2 过程中,切割有效长度由O 增到23a 。
导线切割磁感线时的感应电动势精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-第六讲上课时间:2014年9月23日星期二课时:两课时总课时数:12课时教学目标:1.掌握导线切割磁感线时的感应电动势计算方法,2.掌握导体切割磁感线时产生的感应电动势。
3.掌握导体切割磁感线时产生的感应电动势大小的表达式。
会计算B、l、v三者相互垂直的情况下,导体切割磁感线时产生的感应电动势的大小。
教学重点:本节重点是导体切割磁感线时产生的感应电动势大小的计算教学难点:本节重点是导体切割磁感线时产生的感应电动势大小的计算教具:电子白板教学过程:一、组织教学检查学生人数,填写教室日志,组织学生上课秩序。
二、复习导入1.磁场中的几个基本物理量。
2.电磁力的大小计算公式及方向的判定。
三、讲授新课:(一)电磁感应电流和磁场是不可分的,有电流就能产生磁场,同样,变化的磁场也能产生电动势和电流。
通常把利用磁场产生电流的现象称为电磁感应现象。
在电磁感应现象中产生的电动势叫做感应电动势。
用字母e表示,国际单位伏特,简称伏,用符号V表示。
直导体切割磁感线时产生的感应电动势;螺旋线圈中磁感线发生变化时产生的感应电动势。
(二)直导体切割磁感线时产生的感应电动势直导体切割磁感线时产生的感应电动势的大小可用下面公式计算:e=BLvsinθ式中:e---感应电动势,单位伏特,简称伏,用符号V表示。
B――为磁感应强度,单位为特斯拉,简称特,用符号T表示。
L――导体在垂直于磁场方向上的长度,单位为米,用符号m表示。
v----导体切割磁感线速度,单位为米/秒,用符号m/s表示。
θ-----为速度v方向与磁感应强度B方向间的夹角。
上式说明:闭合电路中的一段导线在磁场中作切割磁感线时,导线内所产生的感应电动势与磁场的磁感应强度、导线的有效长度和导线切割磁感线的有效速度的乘积成正比。
由上式可知:当B⊥v时,θ=90o, sin90o=1,感应电动势e最大,最大为BLv;当θ=0o时, sin0o=0,感应电动势e最小为0.感应电动势的方向可用右手定则来判断:平伸右手,大拇指与其余四指垂直,并与手掌在同一平面内,手心对准N极,让磁感线垂直穿入手心,大拇指指向导体运动的方向,则其余四指所指的方向就是感应电动势的方向。
导体棒切割磁感线安培力方向-概述说明以及解释1.引言1.1 概述导体棒切割磁感线是电磁学中一个重要的现象,通过导体棒与磁场的相互作用,产生了一种称为安培力的力量。
这一现象在物理学的研究中被广泛探讨,并且在实际应用中也有着重要的意义。
在导体棒与磁场相互作用的过程中,磁感线被切割,导体内部的自由电子将会受到力的作用,从而产生了电流。
这个现象被称为磁感线切割引起的感应电流,其原理基于法拉第电磁感应定律。
磁感线是磁场的一种表示方式,它用来描述磁场的分布和强度。
而导体棒在磁场中运动时,会与磁感线交叉或相互接触,导致磁感线被切割。
安培力是导体棒切割磁感线所产生的一种力。
根据安培力的方向规则,当导体棒与磁感线垂直时,安培力的方向与磁感线和导体棒的相对运动方向垂直。
这个实验规律是由法国物理学家安培提出的,因此被命名为安培力。
导体棒切割磁感线引起的安培力大小与切割的磁感线数目成正比,与导体棒的速度成正比,与导体的长度成正比。
因此,在实际应用中,我们可以通过改变导体棒的速度或长度,来控制安培力的大小。
导体棒切割磁感线安培力的方向是一个重要的研究内容。
根据安培力的方向规则,当导体棒与磁感线垂直时,安培力的方向与磁感线和导体棒的相对运动方向垂直。
这一规律的理解对于研究导体棒在磁场中的行为和应用具有重要意义。
综上所述,导体棒切割磁感线是一个引人瞩目的现象,通过导体与磁场的相互作用,产生了一种重要的力——安培力。
了解安培力的方向和作用对于理解导体棒在磁场中的行为和实际应用具有重要意义。
接下来的文章将具体探讨导体棒切割磁感线的原理、安培力对其影响以及实际应用和意义。
1.2文章结构文章结构部分的内容可以包括以下几个方面:1.2 文章结构本文主要分为引言、正文和结论部分:- 引言部分将对导体棒切割磁感线安培力方向的研究背景和意义进行概述,介绍本文的主要内容和目的。
- 正文部分将详细阐述导体棒切割磁感线的原理和作用,其中包括介绍磁感线的概念和导体棒切割磁感线的过程,以及导体棒切割磁感线对安培力的影响等内容。
第2讲:导体切割磁感线运动(教师版)1.右手定则(1)内容:伸开右手,使拇指与其余四指垂直,并且都与手掌在同一平面内,让磁感线从手心垂直进入,并使拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向。
(2)适用范围:适用于判断闭合电路中的部分导体切割磁感线产生感应电流的情况。
2.导体在匀强磁场中平动(1)一般情况:运动速度v 和磁感线方向夹角为θ,则E =Blv sin_θ。
(2)常用情况:运动速度v 和磁感线方向垂直,则E =Blv 。
3.导体棒在匀强磁场中转动导体棒以端点为轴,在垂直于磁感线的平面内以角速度ω匀速转动产生感应电动势 E =12Bωl 2(导体棒的长度为l )。
题目类型:导体平动切割磁感线例1.半径为a 的圆形区域内有匀强磁场,磁感应强度为B =0.2 T,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心放置,磁场与环面垂直,其中a =0.4 m,b =0.6 m,金属圆环上分别接有灯L 1、L 2,两灯的电阻均为R 0=2 Ω,一金属棒MN 与金属圆环接触良好,棒与环的电阻均忽略不计。
(1)若棒以v 0=5 m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径OO '的瞬间(如图所示)MN 中的电动势和流过灯L 1的电流。
(2)撤去中间的金属棒MN ,将右面的半圆环O L 2O '以OO '为轴向上翻转90°,若此时磁场随时间均匀变化,其变化率为∆B ∆t =4πT s ⁄ ,求L 1的功率。
解析:(1)棒通过圆环直径时切割磁感线的有效长度l =2a ,棒中产生的感应电动势为 E =Blv =B ·2av 0=0.2×0.8×5 V=0.8 V 。
当不计棒和圆环的电阻时,直径OO '两端的电压U =E =0.8 V,通过灯L 1的电流为I 1=UR 0 =0.4 A 。
(2)右半圆环上翻90°后,穿过回路的磁场有效面积为原来的一半,S '=12πa 2,磁场变化时回路中产生的感应电动势为E ,=∆∅∆t =S ,∆B ∆t =12πa 2x 4π=0.32V由于L 1、L 2两灯相同,圆环电阻不计,所以每个灯的电压均为U '=12E ',L 1的功率为P 1 = U ,2R 0 = 1.28×10-2 W 。