中考复习教案方程与不等式(最新整理)
- 格式:pdf
- 大小:205.42 KB
- 文档页数:7
新课标中考复习教案:方程与不等式一、方程 【知识梳理】1、知识结构方程⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎩⎨⎧分式方程的应用分式方程的解法分式方程的概念分式方程的关系根的判别式,根与系数一元二次方程的解法念一元二次方程的有关概一元二次方程二元一次方程组的应用二元一次方程组的解法二元一次方程组一元一次方程的应用一元一次方程的解法一元一次方程整式方程2、知识扫描(1)只含有一个未知数,并且未知数的次数是1的整式方程,叫做一元一次方程。
(2)含有 2 个未知数,并且所含未知数的项的次数都是 1 次,这样的方程叫二元一次方程.(3)含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组. (4)二元一次方程组的解法有 法和 法.(5)只含有 1 个未知数,并且未知数的最高次数是2且系数不为0的整式方程,叫做一元二次方程,其一般形式为 )0(02≠=++a c bx ax 。
(6)解一元二次方程的方法有:① 直接开平方法;②配方法;③ 公式法;④ 因式分解法例:(1)042=-x (2)0342=--x x (3)4722=+x x (4)0232=+-x x (7)一元二次方程的根的判别式:ac b 42-=∆叫做一元二次方程的根的判别式。
对于一元二次方程)0(02≠=++a c bx ax当△>0时,有两个不相等的实数根; 当△=0时,有两个相等的实数根;当△<0时,没有实数根; 反之也成立。
(8)一元二次方程的根与系数的关系:如果)0(02≠=++a c bx ax 的两个根是21,x x 那么a b x x -=+21, ac x x =⋅21(9)一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x(10) 分母 中含有未知数的方程叫分式方程.(11)解分式方程的基本思想是 将分式方程通过去分母转化为整式方程 . ◆ 解分式方程的步骤◆ 1、去分母, 化 分式方程 为 整式方程 ; ◆ 2、解这个 整式方程 ; ◆ 3、验 根。
方程与不等式教案教案标题:解方程与不等式教学目标:1. 理解方程和不等式的概念及其在实际生活中的应用。
2. 能够解一元一次方程和不等式,并应用解题策略解决实际问题。
3. 掌握解二元一次方程组的方法,并能应用于实际问题。
4. 能够解简单的一元二次方程,并理解二次方程的图像特征。
教学准备:1. 教师准备:教材、教具、黑板、彩色粉笔、计算器等。
2. 学生准备:课本、笔、纸。
教学过程:一、导入(5分钟)1. 教师通过提问复习上节课所学的方程和不等式的概念,并与学生一起讨论方程和不等式在日常生活中的应用。
二、讲解一元一次方程(15分钟)1. 教师介绍一元一次方程的定义,并解释方程中的未知数、系数、常数和等号的含义。
2. 教师通过例题演示如何解一元一次方程,并引导学生掌握解题的基本步骤和策略。
3. 学生进行课堂练习,教师巡视指导,及时纠正学生的错误。
三、解不等式(15分钟)1. 教师介绍不等式的定义,并与学生一起探讨不等式与方程的区别。
2. 教师通过例题演示如何解不等式,并引导学生掌握解题的基本步骤和策略。
3. 学生进行课堂练习,教师巡视指导,及时纠正学生的错误。
四、解二元一次方程组(15分钟)1. 教师介绍二元一次方程组的定义,并解释方程组中的未知数、系数、常数和等号的含义。
2. 教师通过例题演示如何解二元一次方程组,并引导学生掌握解题的基本步骤和策略。
3. 学生进行课堂练习,教师巡视指导,及时纠正学生的错误。
五、解一元二次方程(15分钟)1. 教师介绍一元二次方程的定义,并解释方程中的未知数、系数、常数和等号的含义。
2. 教师通过例题演示如何解一元二次方程,并引导学生理解二次方程的图像特征。
3. 学生进行课堂练习,教师巡视指导,及时纠正学生的错误。
六、总结与拓展(10分钟)1. 教师帮助学生总结本节课所学的知识点和解题策略。
2. 教师布置课后作业,并鼓励学生运用所学知识解决实际问题。
3. 教师与学生共同探讨方程与不等式的应用领域,激发学生的学习兴趣。
中考复习教案:方程与不等式一、教学目标1. 回顾一元一次方程的定义、解法及应用,使学生能够熟练掌握解一元一次方程的方法,并能够将其应用于实际问题中。
2. 复习一元一次不等式的定义、解法及应用,帮助学生理解不等式的基本性质,并能够解一元一次不等式。
3. 通过对实际问题的分析,培养学生运用方程与不等式解决实际问题的能力。
二、教学内容1. 一元一次方程的定义、解法及应用。
2. 一元一次不等式的定义、解法及应用。
3. 方程与不等式的实际问题应用。
三、教学重点与难点1. 教学重点:一元一次方程的解法、一元一次不等式的解法。
2. 教学难点:方程与不等式在实际问题中的应用。
四、教学方法1. 采用讲解、示例、练习、讨论等多种教学方法,引导学生复习和巩固方程与不等式的知识。
2. 通过实际问题的引入,激发学生的学习兴趣,培养学生运用方程与不等式解决实际问题的能力。
五、教学过程1. 复习导入:回顾一元一次方程的定义、解法及应用,引导学生复习相关知识。
2. 知识讲解:讲解一元一次不等式的定义、解法及应用,与方程进行对比,帮助学生理解不等式的基本性质。
3. 示例讲解:给出一些实际问题,引导学生运用方程与不等式进行解决,示例讲解解题思路和方法。
4. 练习巩固:布置一些练习题,让学生独立完成,巩固所学知识。
5. 讨论交流:组织学生进行小组讨论,分享解题心得和经验,互相学习。
6. 总结归纳:对本节课的内容进行总结归纳,强调方程与不等式在实际问题中的应用。
7. 作业布置:布置一些相关的作业题,让学生课后巩固复习。
六、教学评估1. 课堂练习:通过课堂练习,检测学生对一元一次方程和不等式的理解和掌握程度。
2. 课后作业:布置相关的作业题,要求学生在课后完成,以巩固所学知识。
3. 单元测试:进行一次方程与不等式的单元测试,全面评估学生对本单元知识的掌握情况。
七、教学资源1. 教学PPT:制作详细的PPT,展示一元一次方程和不等式的定义、解法及应用。
方程和不等式的解法复习课教案一、教学目标1. 回顾和巩固方程和不等式的解法,提高学生解决实际问题的能力。
2. 培养学生运用数学知识分析和解决问题的能力。
3. 激发学生的学习兴趣,培养合作意识和创新精神。
二、教学内容1. 回顾一元一次方程、一元二次方程、不等式的解法。
2. 分析实际问题,运用方程和不等式解决生活中的问题。
三、教学重点与难点1. 重点:方程和不等式的解法及其应用。
2. 难点:如何将实际问题转化为方程和不等式,并灵活运用解法求解。
四、教学方法与手段1. 采用问题驱动法,引导学生主动探究方程和不等式的解法。
2. 利用多媒体课件,展示实际问题,帮助学生理解和运用方程和不等式。
3. 组织小组讨论,培养学生的合作意识和沟通能力。
五、教学过程1. 导入:回顾方程和不等式的基本概念,引导学生思考实际问题与方程不等式之间的关系。
2. 自主学习:学生通过阅读教材,回顾一元一次方程、一元二次方程、不等式的解法。
3. 课堂讲解:讲解方程和不等式的解法,结合实例进行分析,引导学生理解解法的原理和步骤。
4. 案例分析:出示实际问题,让学生运用方程和不等式进行解答,培养学生的应用能力。
5. 小组讨论:组织学生进行小组讨论,分享解题心得,互相学习,提高解题能力。
6. 课堂练习:布置练习题,让学生巩固所学知识,及时发现并解决学习中存在的问题。
7. 总结与反思:对本节课的内容进行总结,引导学生反思自己在解题过程中的优点和不足,提出改进措施。
8. 课后作业:布置适量作业,让学生进一步巩固方程和不等式的解法。
六、教学评价1. 评价学生对方程和不等式解法的掌握程度。
2. 评价学生在解决实际问题中的应用能力和创新精神。
3. 采用课堂练习、小组讨论、课后作业等多种形式进行评价。
七、教学资源1. 教材:提供相关章节,方便学生复习和自学。
2. 多媒体课件:展示实际问题,辅助教学。
3. 练习题:供学生课堂练习和课后巩固。
4. 小组讨论材料:提供案例,促进学生交流和合作。
中考复习教案:方程与不等式一、教学目标1. 回顾一元一次方程的定义、解法及应用,提高学生解一元一次方程的能力。
2. 掌握一元一次不等式的定义、解法及应用,提高学生解一元一次不等式的能力。
3. 理解方程与不等式的联系与区别,能够灵活运用方程与不等式解决实际问题。
二、教学内容1. 一元一次方程的定义、解法及应用。
2. 一元一次不等式的定义、解法及应用。
3. 方程与不等式的联系与区别。
三、教学重点与难点1. 教学重点:一元一次方程和一元一次不等式的定义、解法及应用。
2. 教学难点:方程与不等式的联系与区别。
四、教学方法1. 采用案例分析法,通过具体例题讲解一元一次方程和一元一次不等式的解法。
2. 采用对比教学法,引导学生发现方程与不等式的联系与区别。
3. 采用实践练习法,让学生在练习中巩固所学知识。
五、教学过程1. 导入新课:通过复习已学知识,引导学生回顾一元一次方程和一元一次不等式的定义及解法。
2. 讲解与示范:讲解一元一次方程和一元一次不等式的解法,并通过具体例题展示解题过程。
3. 对比分析:分析方程与不等式的联系与区别,引导学生理解两者之间的关系。
4. 实践练习:布置练习题,让学生独立解答,巩固所学知识。
5. 总结与反思:对本节课的内容进行总结,强调方程与不等式在实际问题中的应用。
教学评价:通过课堂讲解、练习题解答和课后作业,评估学生对一元一次方程和一元一次不等式的掌握程度。
六、教学内容1. 一元二次方程的定义、解法及应用。
2. 不等式的基本性质,包括不等式的加减乘除法、乘方等。
七、教学重点与难点1. 教学重点:一元二次方程的定义、解法及应用,不等式的基本性质。
2. 教学难点:一元二次方程的解法和不等式乘方运算。
八、教学方法1. 采用案例分析法,通过具体例题讲解一元二次方程的解法。
2. 采用归纳教学法,引导学生总结不等式的基本性质。
3. 采用实践练习法,让学生在练习中巩固所学知识。
九、教学过程1. 导入新课:通过复习已学知识,引导学生回顾一元二次方程和不等式的基本性质。
中学不等式复习教案目标本教案的目标是帮助中学生复和掌握不等式的基本概念、性质以及解不等式的方法。
教学内容1. 不等式的概念和表示法- 介绍不等式的基本概念,即不等式是比较两个数大小的关系。
- 引导学生研究不等式的表示法,包括使用不等号和等号的意义。
2. 不等式的性质- 解释不等式的性质,如传递性、对称性、加法性质和乘法性质。
- 通过例题演示这些性质的应用。
3. 解一元一次不等式- 教授解一元一次不等式的方法,包括应用加法和乘法性质进行变形和移项。
- 提供一些简单的例题让学生练解一元一次不等式的步骤。
4. 解一元一次不等式组- 引导学生理解不等式组的概念,即多个不等式同时存在的关系。
- 教授解一元一次不等式组的方法,包括联立和代入法。
- 给予学生一些不等式组的实际问题,让他们通过解不等式组来解决问题。
教学步骤1. 引入不等式的概念和表示法,通过简单的比较让学生理解不等式的意义。
2. 介绍不等式的性质,通过例题演示性质的运用。
3. 教授解一元一次不等式的方法,引导学生进行练。
4. 介绍不等式组的概念和解决方法,让学生掌握解不等式组的技巧。
5. 综合不等式和不等式组的知识,给予学生一些实际问题进行解答。
6. 总结本节课的内容,回顾重要的概念和方法。
教学资源- PowerPoint幻灯片:提供不等式的概念、性质和解题方法的示意图和例题。
- 练题:提供不同难度的练题,供学生进行巩固练。
- 教材:建议使用教材中的相关章节作为教学参考。
评估为了评估学生对不等式的掌握程度,可以进行以下评估方式:1. 小组讨论:让学生分组讨论解决实际问题的不等式或不等式组。
2. 个人作业:布置一些练题,让学生单独完成。
3. 课堂测验:出一些简答题或选择题,考察学生对不等式的理解和应用能力。
参考资料- 算数与代数. 人民教育出版社,2017.- 数学. 人民教育出版社,2016.以上是中学不等式复习教案的内容和建议。
希望能帮助学生们复习和掌握不等式的基础知识和解题方法。
新课标中考复习教案:方程与不等式一、方程 【知识梳理】1、知识结构方程⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎩⎨⎧分式方程的应用分式方程的解法分式方程的概念分式方程的关系根的判别式,根与系数一元二次方程的解法念一元二次方程的有关概一元二次方程二元一次方程组的应用二元一次方程组的解法二元一次方程组一元一次方程的应用一元一次方程的解法一元一次方程整式方程 2、知识扫描(1)只含有一个未知数,并且未知数的次数是1的整式方程,叫做一元一次方程。
(2)含有 2 个未知数,并且所含未知数的项的次数都是 1 次,这样的方程叫二元一次方程.(3)含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.(4)二元一次方程组的解法有 法和 法.(5)只含有 1 个未知数,并且未知数的最高次数是2且系数不为0的整式方程,叫做一元二次方程,其一般形式为 )0(02≠=++a c bx ax 。
(6)解一元二次方程的方法有:① 直接开平方法;②配方法;③ 公式法;④ 因式分解法例:(1)042=-x (2)0342=--x x (3)4722=+x x (4)0232=+-x x(7)一元二次方程的根的判别式: ac b 42-=∆叫做一元二次方程的根的判别式。
对于一元二次方程)0(02≠=++a c bx ax 当△>0时,有两个不相等的实数根; 当△=0时,有两个相等的实数根; 当△<0时,没有实数根; 反之也成立。
(8)一元二次方程的根与系数的关系:如果)0(02≠=++a c bx ax 的两个根是21,x x 那么a b x x -=+21, ac x x =⋅21(9)一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b a ac b b x(10) 分母 中含有未知数的方程叫分式方程.(11)解分式方程的基本思想是 将分式方程通过去分母转化为整式方程 .◆ 解分式方程的步骤◆ 1、去分母, 化 分式方程 为 整式方程 ;◆ 2、解这个 整式方程 ;◆ 3、验 根。
中考复习教案:方程与不等式一、教学目标1. 知识与技能:(1)理解方程和不等式的概念及其性质;(2)掌握一元一次方程、一元二次方程、不等式的解法;(3)能够运用方程和不等式解决实际问题。
2. 过程与方法:(1)通过复习方程和不等式的基本概念,巩固基础知识;(2)运用解方程和不等式的方法,提高解题能力;(3)培养学生的逻辑思维能力和解决问题的能力。
3. 情感态度与价值观:(2)培养学生勇于探索、积极思考的精神;(3)培养学生运用数学知识解决实际问题的能力。
二、教学内容1. 方程与不等式的概念及其性质;2. 一元一次方程的解法;3. 一元二次方程的解法;4. 不等式的解法;5. 方程和不等式在实际问题中的应用。
三、教学重点与难点1. 教学重点:(1)方程和不等式的概念及其性质;(2)一元一次方程、一元二次方程、不等式的解法;(3)方程和不等式在实际问题中的应用。
2. 教学难点:(1)一元二次方程的解法;(2)不等式的解法;(3)方程和不等式在实际问题中的应用。
四、教学过程1. 复习导入:(1)复习方程和不等式的概念及其性质;(2)引导学生回顾一元一次方程、一元二次方程、不等式的解法。
2. 知识梳理:(1)讲解一元一次方程的解法,如加减法、乘除法等;(2)讲解一元二次方程的解法,如因式分解、公式法等;(3)讲解不等式的解法,如同号不等式、异号不等式等。
3. 例题解析:(1)选取典型例题,讲解解题思路和方法;(2)引导学生运用方程和不等式解决实际问题。
4. 课堂练习:(1)布置练习题,巩固所学知识;(2)鼓励学生相互讨论,共同解决问题。
5. 总结与反思:(1)回顾本节课所学内容,总结解题方法;(2)引导学生思考方程和不等式在实际生活中的应用。
五、课后作业1. 完成练习册的相关题目;2. 选取一道实际问题,运用方程和不等式解决;3. 预习下一节课的内容。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况、合作交流能力等,了解学生的学习状态。
教案:初中不等式复习教学目标:1. 复习并巩固不等式的概念、性质和一元一次不等式的解法。
2. 提高学生解决实际问题的能力,培养学生的逻辑思维和转化思想。
3. 培养学生全面系统的总结概括能力,提高学生的数学素养。
教学内容:1. 不等式的概念和性质2. 一元一次不等式的解法3. 不等式在实际问题中的应用教学过程:一、复习导入(5分钟)1. 复习不等式的概念:不等式是表示两个数之间大小关系的式子。
2. 复习不等式的性质:a. 不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
b. 不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
c. 不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
3. 复习一元一次不等式的概念:只含有一个未知数,并且未知数的最高次数是1的不等式。
4. 复习一元一次不等式的解法:a. 去分母b. 去括号c. 移项d. 合并同类项e. 化简系数二、实例讲解(15分钟)1. 举例讲解不等式的性质,让学生通过具体例子理解不等式的性质。
2. 给出一个一元一次不等式,让学生演示解题过程,讲解每一步的原理。
三、练习与讨论(15分钟)1. 让学生独立解决一些简单的不等式问题,加深对不等式的理解和应用。
2. 讨论学生在解题过程中遇到的问题,引导学生运用转化思想解决问题。
四、不等式在实际问题中的应用(15分钟)1. 给出一个实际问题,让学生运用不等式来解决问题。
2. 讨论解题思路和方法,引导学生将实际问题转化为不等式问题。
五、总结与反思(5分钟)1. 让学生总结本节课所学的知识点,巩固不等式的概念、性质和一元一次不等式的解法。
2. 引导学生反思在解题过程中运用转化思想的重要性,提高学生的解题能力。
教学评价:1. 通过课堂讲解、实例讲解、练习和讨论,评价学生对不等式的理解和应用能力。
2. 观察学生在解决实际问题时的思维过程,评价学生的转化思想和解决问题的能力。
教学反思:本节课通过复习导入、实例讲解、练习与讨论、不等式在实际问题中的应用和总结与反思等环节,旨在巩固学生对不等式的概念、性质和一元一次不等式的解法的掌握。