运筹学(第三章)课件
- 格式:ppt
- 大小:1.44 MB
- 文档页数:16
第三章整数规划Integer Programming§1问题的提出[eg.1]用集装箱托运货物问:甲乙货物托运多少箱,使总利润最大?货物m3/箱百斤/箱百元/箱甲5220乙4510限制2413分析:设x1为甲货物托运箱数,x2为乙货物托运箱数。
则max z= 20x1+10x25x1+4x2≤242x1+5x2≤13x 1,x2≥0x 1,x2取整数图解法:x 1x 24321012 4.8①2.6②(4,1)∴x 1*= 4 x 2*= 1 z I *= 90一般,整数规划的最优解不会优于相应线性规划的最优解。
对于max 问题,z I * ≤z l *对于min 问题,z I *≥ z l *数学模型:取整数j j nj iijij nj jj x nj x m i b xa x c z ,,10,,1max 11 =≥=≤=∑∑==§2 分枝定界法用单纯形法,去掉整数约束IP LP xl*判别是否整数解x I *= xl*Yes去掉非整数域No多个LP……§3 0-1规划(xi= 0或1的规划)[eg.2]选择投资场所A i 投资Bi元,总投资≤B,收益Ci元.问:如何选择Ai ,使收益最大?A6A7A4A5A3A2A1最多选2个最少选1个最少选1个分析:引入xi= 1 A i选中0 Ai落选max z= C1x1+C2x2+… +C7x7x 1+x2+x3≤2x 4+x5≥1x 6+x7≥1B 1x1+B2x2+… +B7x7≤Bx i = 0或1南区西区东区[eg.3]求解如下0-1规划max z= 3x1-2x2+5x3x1+2x2-x3≤2 ①x 1+4x2+x3≤4 ②x 1+x2≤3 ③4x2+x3≤6 ④x 1,x2,x3= 0或1解:(1)观察一个可行解x1= 1 x2= x3= 0此时,z= 3(2)增加一个过滤条件3x1-2x2+5x3≥3 *(3)列表计算x x x *可行?z0015√51003110√3123①②③④0000×-1115010-2×01131×110180211√81101×111626×∴ 最优解:x 1*= 1 x 2*= 0 x 3*= 1 此时,z *= 8第四章。