电和磁知识点
- 格式:doc
- 大小:47.50 KB
- 文档页数:4
高三物理电和磁知识点电和磁是物理学中非常重要的知识点,对于高三学生来说尤为关键。
电和磁不仅在我们的日常生活中起着重要作用,而且在科学研究和工程应用中也具有广泛的用途。
在这篇文章中,我将为大家详细介绍高三物理电和磁的知识点。
一、电知识点1. 电荷和电场电荷是物质的一种基本属性,分为正电荷和负电荷。
同种电荷相互排斥,异种电荷相互吸引。
电场是电荷周围存在的物理场,具有方向和大小。
电荷在电场中会受到电场力的作用。
2. 电流和电阻电流是电荷在单位时间内通过导线横截面的数量,单位是安培(A)。
电阻是材料对电流运动的阻碍程度,单位是欧姆(Ω)。
电流和电阻之间的关系由欧姆定律给出:I = U/R,其中I为电流,U为电压,R为电阻。
3. 电路和电路图电路是由电源、导线、电器等组成的路径,可以实现电流的流动。
电路图是用符号表示电路中各个元件的排列和连接方式的图示。
4. 串联和并联串联是指将电器依次连接在同一条电路上,电流依次通过各个电器,电压分配给各个电器。
并联是指将电器并列连接在电路中,各个电器之间的电压相同,电流分配给各个电器。
二、磁知识点1. 磁场和磁力线磁场是指磁铁或电流在周围所创造的特殊物理场,具有方向和大小。
磁力线是用来表示磁场分布的线条,符合磁力线的物理规律。
2. 磁铁和电磁铁磁铁具有磁性,在磁场中会受到磁力的作用。
磁铁分为自然磁铁和人工磁铁,后者可以通过通电产生磁力。
电磁铁是利用通电线圈产生磁场的一种装置,具有可控性。
3. 安培力和洛伦兹力安培力是指带电粒子在磁场中受到的力,其大小和速度、电荷量以及磁感应强度有关。
洛伦兹力是指带电粒子在磁场中同时受到电场力和磁场力的合力。
4. 电动感应和电磁感应电动感应是指导体中的自由电子在磁场中受到电磁力作用而产生电流。
电磁感应是指导体中的电流在磁场中受到力的作用而产生感应电动势。
总结:通过了解高三物理中的电和磁知识点,我们可以更好地理解并应用这些概念。
电和磁的研究和应用广泛存在于我们的日常生活中,例如电灯、电脑、手机等电器设备,以及各种电动机、电磁炉等。
初中电与磁知识点归纳电与磁是物理学的重要内容,涉及到电荷、电流、电场、电磁感应等概念和原理。
下面将初中电与磁的知识点进行归纳总结。
一、电荷和静电1.原子是由带正电荷的质子和带负电荷的电子组成的。
2.电子带负电荷,质子带正电荷,中性原子的电荷数相等。
3.不同电荷之间相互吸引,相同电荷之间相互排斥。
4.静电引力是电荷间的引力作用,符合库伦定律,与电荷间的距离和电荷大小有关。
二、电流和电路1.电流是电荷在单位时间内通过导体横截面的数量,单位是安培(A)。
2.导体中的电荷移动形成电流,电子在导体中的移动方向与电流方向相反。
3.电阻是阻碍电流通过的因素,单位是欧姆(Ω)。
4.电路是由电源、导线和用电器组成的,可分为串联电路和并联电路。
5.串联电路中,电流在各个元件之间是相同的;并联电路中,总电流等于各支路电流之和。
三、电压和电阻1.电压是电势差,表示单位电荷在电场中获得的能量,单位是伏特(V)。
2.电源提供电势差使电荷移动形成电流。
3.电阻对电流产生阻碍作用,通过电阻的电流与电压成正比,与电阻成反比,符合欧姆定律。
4.串联电阻的总阻力等于各个电阻之和;并联电阻的总阻力等于各个电阻的倒数之和的倒数。
四、电功和功率1.电功是描述电路中电能转化的物理量,单位是焦耳(J)。
2.电能转化的速率称为功率,单位是瓦特(W)。
3.电功等于电压乘以电流乘以时间,功率等于电流乘以电压。
五、电磁感应1.磁场是物质中产生磁力的区域,可以由磁铁或电流产生。
2.电流在磁场中会受到力的作用,称为洛仑兹力。
3.当导体切割磁力线时,会在导体上产生感应电动势。
4.电磁感应的原理可以应用于发电机、电磁铁、电动机等设备。
5.法拉第电磁感应定律:导体中感应电动势的大小与导线切割磁力线的速率成正比。
6.电磁感应的方向遵循楞次定律:感应电流产生的磁场方向与初始磁场方向相反,以保持磁通量不变。
总结:。
第八章《电与磁》复习提纲一、磁现象:1、磁性:磁铁能吸引铁、钴、镍等物质的性质(吸铁性)2、磁体:定义:具有磁性的物质分类:永磁体分为天然磁体、人造磁体3、磁极:定义:磁体上磁性最强的部分叫磁极。
(磁体两端最强中间最弱)种类:水平面自由转动的磁体,指南的磁极叫南极(S),指北的磁极叫北极(N)作用规律:同名磁极相互排斥,异名磁极相互吸引。
说明:最早的指南针叫司南。
一个永磁体分成多部分后,每一部分仍存在两个磁极。
4、磁化:①定义:使原来没有磁性的物体获得磁性的过程。
磁铁之所以吸引铁钉是因为铁钉被磁化后,铁钉与磁铁的接触部分间形成异名磁极,异名磁极相互吸引的结果。
②钢和软铁的磁化:软铁被磁化后,磁性容易消失,称为软磁材料。
钢被磁化后,磁性能长期保持,称为硬磁性材料。
所以制造永磁体使用钢,制造电磁铁的铁芯使用软铁。
5、物体是否具有磁性的判断方法:①根据磁体的吸铁性判断。
②根据磁体的指向性判断。
③根据磁体相互作用规律判断。
④根据磁极的磁性最强判断。
练习:☆磁性材料在现代生活中已经得到广泛应用,音像磁带、计算机软盘上的磁性材料就具有硬磁性。
(填“软”和“硬”)☆磁悬浮列车底部装有用超导体线圈饶制的电磁体,利用磁体之间的相互作用,使列车悬浮在轨道的上方以提高运行速度,这种相互作用是指:同名磁极的相互排斥作用。
☆放在条形磁铁南极附近的一根铁棒被磁化后,靠近磁铁南极的一端是磁北极。
☆用磁铁的N极在钢针上沿同一方向摩擦几次钢针被磁化如图那么钢针的右端被磁化成S极。
二、磁场:1、定义:磁体周围存在着的物质,它是一种看不见、摸不着的特殊物质。
磁场看不见、摸不着我们可以根据它所产生的作用来认识它。
这里使用的是转换法。
通过电流的效应认识电流也运用了这种方法。
2、基本性质:磁场对放入其中的磁体产生力的作用。
磁极间的相互作用是通过磁场而发生的。
3、方向规定:在磁场中的某一点,小磁针北极静止时所指的方向(小磁针北极所受磁力的方向)就是该点磁场的方向。
引言概述:电与磁是物理学的基本知识,广泛应用于科学、工程和日常生活中。
本文将对电与磁的知识点进行总结,包括电荷、电场、电流、磁场和电磁感应等主要内容。
通过深入理解这些知识点,我们能够更好地理解电子设备的工作原理,以及电和磁在各种应用中的作用。
正文内容:1.电荷:1.1原子结构中的电子与质子1.2电子的带电性质和电荷的量子化1.3电荷守恒定律和库仑定律1.4电磁力和静电场2.电场:2.1电场的概念和性质2.2电场强度和电场线2.3电势和电势差2.4高斯定律和电场能2.5电容和电场中的电介质3.电流:3.1电流的概念和电流密度3.2电阻和欧姆定律3.3环路定律和基尔霍夫定律3.4电源和电动势3.5电功和功率4.磁场:4.1磁场的概念和性质4.2磁感应强度和磁场线4.3洛伦兹力和磁场能4.4磁场中的电流和安培定律4.5磁介质和磁感应强度的量子化5.电磁感应:5.1法拉第电磁感应定律和互感器5.2感生电动势和感应电流5.3洛伦兹力和电磁铁5.4电磁感应中的自感和互感5.5麦克斯韦方程组和电磁波总结:电与磁是物理学中非常重要的知识点,本文总结了电荷、电场、电流、磁场和电磁感应等方面的内容。
通过深入了解这些知识,我们能够更好地理解电子设备的工作原理,如电路中的电流流动和元器件中的电荷分布;同时,我们还能够理解电和磁在医学成像、通信技术和能源转换等领域中的应用。
电与磁的研究也为我们提供了深刻的物理现象和规律,推动了科学技术的发展。
因此,对于电与磁的研究和理解是非常有价值的。
希望通过本文的总结,读者能够加深对电与磁的认识,提高对这一领域的兴趣,并将这些知识应用于实际生活和工作中。
九年级电和磁知识点电和磁是我们生活中常见且重要的物理现象,我们每天都会接触到与之相关的事物。
在九年级的物理课程中,电和磁也是非常重要的知识点。
本文将整理和介绍一些九年级电和磁的知识点,帮助大家更好地理解和掌握这一领域的知识。
一、电的基本知识1. 电的起源:电是一种带有电荷的粒子运动形成的现象。
电荷又分正电荷和负电荷,相同时互斥,不同时吸引。
2. 电的传导:电荷通过导体传导,导体是能将电荷自由传递的物质,如金属。
3. 电的绝缘:不同于导体,绝缘体对电荷的传导非常差,不产生导电的效果。
常见的绝缘体有塑料、橡胶等。
4. 电的电流:电荷的流动形成电流,通常用电子的流动方向表示。
电流的单位是安培(A)。
5. 电压和电势差:电压是电能转化为其他形式能量的驱动力,也是电荷在电路中流动所遇到的阻力。
电势差是指电场中单位正电荷由A点移动到B点所做的功。
6. 电阻和电阻率:电阻是材料对电流流动的阻碍程度,标志着电流通过的难易程度。
电阻率是材料本身所具有的阻碍电流流动的能力,不同材料具有不同的电阻率。
二、磁的基本知识1. 磁铁的特性:磁铁具有吸引铁、镍、钴等物质的特性。
磁铁的两个极分别是南极和北极,互相吸引,相同的极互相排斥。
2. 磁场的形成:磁场是由带电粒子的运动形成的,如电流、电荷等。
磁场是一种物质周围存在的物理量,它会对磁铁、导体、磁体等物体产生作用力。
3. 磁感应强度:磁感应强度是磁场对单位长度内的导体或磁体所施加的力的大小,单位是特斯拉(T)。
4. 磁通量和磁感应线:磁通量表示磁力线的数量,磁感应线刻画了磁场的分布情况。
5. 法拉第电磁感应定律:法拉第电磁感应定律原理是指当导体中的磁通量改变时,导体两端会产生感应电动势,导致电流的产生。
这一定律与电磁铁感应现象密切相关。
三、电和磁的应用1. 电和磁的应用十分广泛,如电磁铁、电动机、变压器、发电机、电磁波等。
2. 电磁铁:电磁铁的原理就是利用通过线圈流过电流时所产生的磁场吸引铁质物体,这在各类机械装置中广泛应用。
电和磁知识点电和磁是我们生活中经常接触到的物理现象,它们在科学和技术领域中起着重要的作用。
在本文中,我们将探讨一些与电和磁相关的知识点,帮助读者更好地理解它们的本质和应用。
一、电的概念和特性电是指带有电荷的粒子的运动现象。
电荷分为正电荷和负电荷,相同电荷互相排斥,不同电荷互相吸引。
从宏观的角度来看,电现象可以表现为电流;从微观的角度来看,电是由带电粒子的运动而引起的。
电的特性包括电势、电压、电流和电阻等。
电势指的是物体带有的电荷所具有的能力;电压是电势的差别,可以驱动电流的流动;电流则是电荷在导体中的流动;电阻是材料对电流流动的阻碍程度。
这些特性在电路设计和电器使用中起着至关重要的作用。
二、磁的概念和特性磁是指具有磁性的物质产生的力和现象。
磁性分为强磁性和弱磁性,其中铁、镍和钴是最常见的强磁性物质。
磁性是由物质内部的微小磁偶极子引起的。
当物体被磁化后,它就具有了磁性。
磁的特性包括磁场、磁力和磁感应强度等。
磁场是物体周围空间产生的磁力作用的区域;磁力是磁场对于其他物体施加的力;磁感应强度是衡量磁场强弱的物理量。
磁性可以用来制造磁铁、实现电磁感应等。
三、电磁感应电和磁之间存在着紧密的联系,电流可以产生磁场,而磁场也可以产生电流。
这种相互转换的现象被称为电磁感应。
当导体在磁场中运动时,磁感应强度会发生变化,从而在导体中产生感应电动势。
这种现象称为电磁感应。
电磁感应是电动机、发电机和变压器等设备的基础原理。
四、电磁波电和磁还有一种更加深入的相互作用,那就是电磁波。
电磁波是一种横波,由电场和磁场交替变化而形成。
电磁波具有许多重要的特性,如频率、波长和速度等。
不同频率的电磁波对应不同的光谱,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。
这些电磁波在通信、医疗和科学研究等领域具有广泛的应用。
总结:电和磁是自然界的基本物理现象,对于我们的生活和科技发展起着重要的作用。
学习电和磁的知识点,有助于我们更好地理解和应用它们。
第一节磁现象1.磁性:物体能够吸引钢铁、钴、镍一类物质的性质叫磁性。
2.磁体:具有磁性的物体,叫做磁体。
磁体具有吸铁性和指向性。
3.磁体的指向性:可以在水平面内自由转动的条形磁体或磁针,静止后总是一个磁极指南(叫南极,用S表示),另一个磁极指北(叫北极,用N表示)。
4.磁极:磁体上磁性最强的部分叫磁极。
磁体两端的磁性最强,中间的磁性最弱。
无论磁体被摔碎成几块,每一块都有两个磁极。
5.磁极间的相互作用:异名磁极互相吸引,同名磁极互相排斥。
6.磁化:磁性材料在磁体或电流的作用下会获得磁性,这种现象叫做磁化。
高温和剧烈震动可以使这些物体的磁性消失。
钢和软铁的磁化:软铁被磁化后,磁性容易消失,称为软磁材料。
钢被磁化后,磁性能长期保持,称为硬磁性材料。
所以制造永磁体使用钢,制造电磁铁的铁芯使用软铁。
7.物体是否具有磁性的判断方法:①根据磁体的吸铁性判断。
②根据磁体的指向性判断。
③根据磁体相互作用规律判断。
④根据磁极的磁性最强判断。
第二节磁场1.磁场:磁体周围的空间存在着磁场。
磁场看不见、摸不着,我们可以根据它所产生的作用来认识它,这里使用的就是转换法。
2.磁场的基本性质:磁场对放入其中的磁体产生磁力的作用。
磁体间的相互作用就是通过磁场而发生的。
3.磁场的方向:把小磁针静止时北极所指的方向定位那点磁场的方向。
4.磁感线:在磁场中画一些有方向的曲线,任何一点的曲线方向都跟放在该店的磁针北极所指的方向一致。
这样的曲线叫做磁感线。
磁感线上某点的切线方向,就是该点的磁场方向。
5.对磁感线的认识:●在磁体外部,磁感线都是从磁体的N极出发,回到S极。
在磁体内部正好相反。
●磁感线布满磁体周围整个空间,磁感线的疏密表示磁性强弱。
●磁感线是假想的闭合曲线,磁感线不是真实存在的(磁场是真实存在的),磁感线不交叉、不重合,磁感线要画成虚线。
●用磁感线描述磁场、用光线描述光的传播的方法是模型法。
●磁感线立体分布在磁体周围。
6.磁极受力:在磁场中的某点,北极所受磁力的方向跟该点的磁场方向一致,南极所受磁力的方向跟该点的磁场方向相反。
小学科学知识点归纳电和磁电和磁是小学科学中的重要知识点。
本文将对电和磁的基本概念、性质和应用进行归纳,帮助学生更好地理解电和磁的关系和作用。
一、电的基本概念和性质电是一种物质的属性,可通过现象和实验来了解。
1. 静电现象静电是指物体之间由于摩擦或分离而导致的电荷积聚现象。
例如,当我们梳头发后用梳子梳理时,头发会受到梳子带来的电荷影响而自动向梳子吸附。
2. 电流电流是指电荷在导体中移动形成的现象。
电流的强弱可以通过电流表进行测量,单位是安培(A)。
3. 电路电路是电流在导体中流动形成的路径。
电路由电源、导线和电器元件组成,可以是串联电路或并联电路。
4. 导体和绝缘体导体是能够传导电流的物质,如铜、铁等金属物质。
绝缘体是不能传导电流的物质,如橡胶、塑料等。
电线通常由金属导体包裹在绝缘体中。
二、磁的基本概念和性质磁是一种物质的属性,能够吸引铁和铁合金。
1. 磁现象磁现象是指物体之间由于磁性而产生的吸引或排斥现象。
磁力是指物体之间由于磁性产生的相互作用力。
2. 磁铁磁铁是具有磁性的物体。
磁铁有两个极,北极和南极,北极互相排斥,南极互相排斥,不同极则相互吸引。
3. 磁场磁场是指磁铁或电流所产生的一种力场。
磁铁的磁场可以通过铁屑实验或磁力线实验来观察。
4. 磁的应用磁性在生活中有很多应用,如磁铁可以用来捡起铁钉、磁性物质可以用来制作电动机等。
三、电和磁的关系与应用电和磁之间有密切的联系,经常在实际中共同应用。
1. 电生磁电流可以产生磁场,当电流通过螺线管时,可以产生磁场。
这种现象被应用在电磁铁、扬声器等设备中。
2. 磁生电磁场变化可以产生电流,当磁铁靠近线圈时,线圈中会产生电流。
这种现象被应用在电磁感应器、发电机等设备中。
3. 电磁波电和磁的关系还表现在电磁波中。
电磁波是一种通过电磁场传播的波动现象,包括无线电波、微波、可见光等。
这些波动从无线电通信到光纤通讯都扮演着重要的角色。
总结:电和磁是小学科学中的重要知识点,通过对电和磁的基本概念、性质和应用的归纳,可以让学生更好地理解电和磁的关系和作用。
六年级电与磁知识点一、电的基本知识电是一种重要的能量形式,它在我们的日常生活中扮演着重要的角色。
了解电的基本知识可以帮助我们更好地应对与电有关的问题。
1. 电的形成:电是由带电粒子运动形成的。
当电子在物体中流动时,产生的电流就是电。
2. 电路:电路是指能够允许电流流动的路径。
一个典型的电路通常由能源、导体和负载组成。
电流从能源中流动,经过导体传输,然后驱动负载工作。
3. 电的导体和绝缘体:导体是允许电流自由流动的物质,如金属。
绝缘体则是阻止电流流动的物质,如橡胶、木材等。
二、电的特性和应用电的特性决定了它的广泛应用,下面介绍一些常见的电特性和应用。
1. 电阻和电流:电阻是电流流经导体时遇到的阻碍。
电流大小取决于电压和电阻的关系。
2. 电灯和电磁炉:电灯和电磁炉是我们日常生活中常见的电器。
电灯利用电能转化为光能,而电磁炉则将电能转化为热能。
3. 电动机和发电机:电动机将电能转化为机械能,而发电机则将机械能转化为电能。
它们在工业、交通等领域有着广泛的应用。
三、磁的基本知识磁是另一种重要的能量形式,了解磁的基本知识对于我们理解磁场和磁力的作用非常重要。
1. 磁场和磁力线:磁场是指磁力作用的区域,而磁力线则是表示磁力分布的线条。
磁力线由南极指向北极。
2. 磁性物质:磁性物质是指能够被磁铁吸引的物质,如铁、钢等。
这些物质可以被磁力所控制。
3. 磁的应用:磁的应用非常广泛,例如磁铁可以用于吸附物体,磁卡可以存储信息,磁感应是实现电能转换的重要原理。
四、电与磁的关系电和磁有着紧密的联系,它们之间有许多相互作用的现象。
1. 电磁感应:当导体在磁场中运动或磁场发生变化时,会在导体中产生感应电流。
这就是电磁感应现象。
2. 电磁铁和电磁波:电磁铁是把线圈电流所产生的磁场转化为磁力的装置。
而电磁波是由电和磁相互作用产生的无线电波。
3. 电磁谱和电磁辐射:电磁谱是描述电磁辐射不同频率和波长的图谱。
电磁辐射包括可见光、无线电波、X射线等。
第八章《电与磁》复习提纲
一、磁现象:
1、磁性:磁铁能吸引铁、钴、镍等物质的性质(吸铁性)
2、磁体:定义:具有磁性的物质
分类:永磁体分为天然磁体、人造磁体
3、磁极:定义:磁体上磁性最强的部分叫磁极。
(磁体两端最强中间最弱)
种类:水平面自由转动的磁体,指南的磁极叫南极(S),指北的磁极叫北极(N)
作用规律:同名磁极相互排斥,异名磁极相互吸引。
说明:最早的指南针叫司南。
一个永磁体分成多部分后,每一部分仍存在两个磁极。
4、磁化:①定义:使原来没有磁性的物体获得磁性的过程。
磁铁之所以吸引铁钉是因为铁钉被磁化后,铁钉与磁铁的接触部分间形成异名磁极,异名磁极相互吸引的结果。
②钢和软铁的磁化:软铁被磁化后,磁性容易消失,称为软磁材料。
钢被磁化后,磁
性能长期保持,称为硬磁性材料。
所以制造永磁体使用钢,制造电磁铁的铁芯使用软铁。
5、物体是否具有磁性的判断方法:①根据磁体的吸铁性判断。
②根据磁体的指向性判断。
③根据磁体相互作用规律判断。
④根据磁极的磁性最强判断。
练习:☆磁性材料在现代生活中已经得到广泛应用,音像磁带、计算机软盘上的磁性材料就具有硬磁性。
(填“软”和“硬”)
☆磁悬浮列车底部装有用超导体线圈饶制的电磁体,利用磁体之间的相互作用,使列车悬浮在轨道的上方以提高运行速度,这种相互作用是指:同名磁极的相互排斥作用。
☆放在条形磁铁南极附近的一根铁棒被磁化后,靠近磁铁南极的一端是磁北极。
☆用磁铁的N极在钢针上沿同一方向摩擦几次
钢针被磁化如图那么钢针的右端被磁化成S极。
二、磁场:
1、定义:磁体周围存在着的物质,它是一种看不见、摸不着的特殊物质。
磁场看不见、摸不着我们可以根据它所产生的作用来认识它。
这里使用的是转换法。
通过电流的效应认识电流也运用了这种方法。
2、基本性质:磁场对放入其中的磁体产生力的作用。
磁极间的相互作用是通过磁场而发生的。
3、方向规定:在磁场中的某一点,小磁针北极静止时所指的方向(小磁针北极所受磁力的方向)就是该点磁场的方向。
4、磁感应线:
①定义:在磁场中画一些有方向的曲线。
任何一点的曲线方向都跟放在该点的磁针北极所指的方向一致。
②方向:磁体周围的磁感线都是从磁体的北极出来,回到磁体的南极。
③典型磁感线:
④说明:A、
形象地描述磁场而引入的带方向的曲线,不是客观存在的。
但磁场客观存在。
B、用磁感线描述磁场的方法叫建立理想模型法。
C、磁感线是封闭的曲线。
D、磁感线立体的分布在磁体周围,而不是平面的。
E、磁感线不相交。
F、磁感线的疏密程度表示磁场的强弱。
5、磁极受力:在磁场中的某点,北极所受磁力的方向跟该点的磁场方向一致,南极所受磁
力的方向跟该点的磁场方向相反。
6、分类:
Ι、地磁场:
①定义:在地球周围的空间里存在的磁场,磁针指南北是因为受到地磁场的作用。
②磁极:地磁场的北极在地理的南极附近,地磁场的南极在地理的北极附近。
③磁偏角:首先由我国宋代的沈括发现。
N S
Ⅱ、电流的磁场:
①奥斯特实验:通电导线的周围存在磁场,称为电流的磁效应。
该现象在1820年被丹麦的
物理学家奥斯特发现。
该现象说明:通电导线的周围存在磁场,且磁场与电流的方向有关。
②通电螺线管的磁场:通电螺线管的磁场和条形磁铁的磁场一样。
其两端的极性跟电流方向
有关,电流方向与磁极间的关系可由安培定则来判断。
练习:
1、标出N 、S 极。
2、标出电流方向或电源的正负极。
3、绕导线:
③应用:电磁铁
A 、定义:内部插入铁芯的通电螺线管。
B 、工作原理:电流的磁效应,通电螺线管插入铁芯后磁场大大增强。
C
、优点:磁性有无由通断电来控制,磁极由电流方向来控制,磁性强弱由电流大小、线圈匝数、线圈形状来控制。
D 、应用:电磁继电器、电话
电磁继电器:实质由电磁铁控制的开关。
应用:用低电压弱电流控制高电压强电流,进行远距离操作和自动控制。
电话:组成:话筒、听筒。
基本工作原理:振动、变化的电流、振动。
三、电磁感应:
1、学史:该现象年被国物理学家发现。
2、定义:这种现象叫做电磁感应现象
3、感应电流:
①定义:
②产生的条件:、部分导体、。
③导体中感应电流的方向,跟和有关三者的关系可用定则判定。
4、应用——交流发电机
①构造:
②工作原理:。
工作过程中,能转化为。
③工作过程:交流发电机和直流发电机在内电路线圈中产生的都是交流电。
交流发电机通
过向外电路输出交流电。
直流发电机通过向外输出直流电。
④交流发电机主要由和两部分组成。
不动旋转的发电机
叫做旋转磁极式发电机。
5、交流电和直流电:
①交流电:
定义:
我国家庭电路使用的是电。
电压是周期是频率是电流方向1s改变次。
②直流电:
定义:
四、磁场对电流的作用:
1、通电导体在磁场里。
通电导体在磁场里受力的方向,跟和有关。
三者关系可用定则判断。
2、应用——直流电动机
①定义:
②构造:
③工作原理:
④工作过程:A平衡位置:特点:
受力特点:
线圈开始处于该位置时通电后不动。
换向器作用:
⑤优点:
五、电能的优越性
1、优点:
2、输送
电流通过导线要发热,从焦耳定律知道:减小输电电流是减小电能损失的有效方法,为了不减小输送功率只能提高输电电压。
计算输电线损失功率用公式:
计算输电线发热:。