材料力学性能静拉伸试验报告
- 格式:pdf
- 大小:362.97 KB
- 文档页数:4
材料力学实验拉伸实验报告材料力学实验拉伸实验报告引言:材料力学实验是研究材料在受力作用下的变形和破坏行为的重要手段。
拉伸实验是其中一种常见的实验方法,通过对材料在受力下的延伸行为进行观察和分析,可以获得材料的力学性能参数,如屈服强度、断裂强度等。
本实验旨在探究不同材料在拉伸过程中的力学性能,并通过实验数据分析和计算得出结论。
实验装置与方法:实验所用材料为不同种类的金属样条,包括铜、铝、钢等。
实验装置主要由拉伸试验机、测力计和长度计组成。
首先,将金属样条固定在拉伸试验机上,然后逐渐增加试验机施加的拉伸力,同时记录测力计示数和长度计示数。
在拉伸过程中,要确保样条的应力均匀分布,避免出现局部应力集中导致的破坏。
实验结果与分析:通过实验数据记录和分析,我们得到了不同金属样条在拉伸过程中的力学性能参数。
首先,我们观察到在拉伸实验开始时,材料的应力-应变曲线呈现线性关系,即符合胡克定律。
随着拉伸力的增加,材料开始发生塑性变形,应力-应变曲线开始偏离线性关系,进入非线性阶段。
当拉伸力继续增加时,材料逐渐接近其屈服点,此时应力-应变曲线出现明显的拐点。
在过屈服点后,材料进入了塑性变形阶段。
我们观察到在这个阶段,材料的应力-应变曲线呈现出明显的下降趋势,即应力逐渐减小。
这是因为材料的内部结构发生了变化,晶粒开始滑移和变形,导致材料的强度下降。
在塑性变形过程中,材料的延伸率逐渐增加,直到达到最大延伸率。
然而,当材料的延伸率达到一定程度时,材料开始出现颈缩现象。
这是因为在塑性变形过程中,材料的某些部分发生了局部应力集中,导致材料在这些部分发生断裂。
我们观察到,颈缩现象对于不同材料的发生时间和程度是有差异的。
一般来说,延展性较好的材料在颈缩现象发生前能够承受更大的拉伸力。
结论:通过本次拉伸实验,我们得到了不同金属样条的力学性能参数,并对材料的拉伸行为进行了分析。
根据实验结果,我们可以得出以下结论:1. 不同材料在拉伸过程中的应力-应变曲线呈现出不同的形态,但都符合胡克定律。
材料基本力学性能试验—拉伸和弯曲一、实验原理拉伸实验原理拉伸试验是夹持均匀横截面样品两端,用拉伸力将试样沿轴向拉伸,一般拉至断裂为止,通过记录的力——位移曲线测定材料的基本拉伸力学性能。
对于均匀横截面样品的拉伸过程,如图1所示,图1金属试样拉伸示意图则样品中的应力为其中A为样品横截面的面积。
应变定义为其中△l是试样拉伸变形的长度。
典型的金属拉伸实验曲线见图2所示。
图3金属拉伸的四个阶段典型的金属拉伸曲线分为四个阶段,分别如图3(a)-(d)所示。
直线部分的斜率E就是杨氏模量、σs点是屈服点。
金属拉伸达到屈服点后,开始出现颈缩现象,接着产生强化后最终断裂。
弯曲实验原理可采用三点弯曲或四点弯曲方式对试样施加弯曲力,一般直至断裂,通过实验结果测定材料弯曲力学性能。
为方便分析,样品的横截面一般为圆形或矩形。
三点弯曲的示意图如图4所示。
图4三点弯曲试验示意图据材料力学,弹性范围内三点弯曲情况下C点的总挠度和力F之间的关系是其中I为试样截面的惯性矩,E为杨氏模量。
弯曲弹性模量的测定将一定形状和尺寸的试样放置于弯曲装置上,施加横向力对样品进行弯曲,对于矩形截面的试样,具体符号及弯曲示意如图5所示。
对试样施加相当于σpb0.01。
(或σrb0.01)的10%以下的预弯应力F。
并记录此力和跨中点处的挠度,然后对试样连续施加弯曲力,直至相应于σpb0.01(或σrb0.01)的50%。
记录弯曲力的增量DF和相应挠度的增量Df,则弯曲弹性模量为对于矩形横截面试样,横截面的惯性矩I为其中b、h分别是试样横截面的宽度和高度。
也可用自动方法连续记录弯曲力——挠度曲线至超过相应的σpb0.01(或σrb0.01)的弯曲力。
宜使曲线弹性直线段与力轴的夹角不小于40o,弹性直线段的高度应超过力轴量程的3/5。
在曲线图上确定最佳弹性直线段,读取该直线段的弯曲力增量和相应的挠度增量,见图6所示。
然后利用式(4)计算弯曲弹性模量。
二、试样要求1.拉伸实验对厚、薄板材,一般采用矩形试样,其宽度根据产品厚度(通常为0.10-25mm),采用10,12.5,15,20,25和30mm六种比例试样,尽可能采用lo =5.65(F)0.5的短比例试样。
材料力学性能拉伸试验报告材化08李文迪40860044. . .[试验目的]1. 测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能。
2. 测定低碳钢的应变硬化指数和应变硬化系数。
[试验材料]通过室温拉伸试验完成上述性能测试工作,测试过程执行GB/T228-2002:金属材料室温拉伸试验方法:1.1试验材料:退火低碳钢,正火低碳钢,淬火低碳钢的R4标准试样各一个。
1.2热处理状态及组织性能特点简述:1.2.1退火低碳钢:将钢加热到Ac3或Ac1以上30-50℃,保温一段时间后,缓慢而均匀的冷却称为退火。
特点:退火可以降低硬度,使材料便于切削加工,并使钢的晶粒细化,消除应力。
1.2.2正火低碳钢:将钢加热到Ac3或Accm以上30-50℃,保温后在空气中冷却称为正火。
特点:许多碳素钢和合金钢正火后,各项机械性能均较好,可以细化晶粒。
1.2.3淬火低碳钢:对于亚共析钢,即低碳钢和中碳钢加热到Ac3以上30-50℃,在此温度下保持一段时间,使钢的组织全部变成奥氏体,然后快速冷却(水冷或油冷),使奥氏体来不及分解而形成马氏体组织,称为淬火。
特点:硬度大,适合对硬度有特殊要求的部件。
1.3试样规格尺寸:采用R4试样。
参数如下:1.4公差要求[试验原理].. ..1.原理简介:材料的机械性能指标是由拉伸破坏试验来确定的,由试验可知弹性阶段卸荷后,试样变形立即消失,这种变形是弹性变形。
当负荷增加到一定值时,测力度盘的指针停止转动或来回摆动,拉伸图上出现了锯齿平台,即荷载不增加的情况。
当屈服到一定下,试样继续伸长,材料处在屈服阶段。
此时可记录下屈服强度ReL 程度后,材料又重新具有了抵抗变形的能力,材料处在强化阶段。
此阶段:强化后的材料就产生了残余应变,卸载后再重新加载,具有和原材料不同的性质,材料的强度提高了。
但是断裂后的残余变形比原来降低了。
这种常温下经塑性变形后,材料强度提高,塑性降低的现象称为冷作硬化。
一、实验目的1. 了解材料在拉伸过程中的力学行为,观察材料的弹性、屈服、强化、颈缩和断裂等物理现象。
2. 测定材料的拉伸强度、屈服强度、抗拉强度等力学性能指标。
3. 掌握万能试验机的使用方法及拉伸实验的基本操作。
二、实验原理材料在拉伸过程中,其内部微观结构发生变化,从而表现出不同的力学行为。
根据胡克定律,当材料处于弹性阶段时,应力与应变呈线性关系。
当应力达到某一值时,材料开始发生屈服,此时应力不再增加,应变迅速增大。
随着应力的进一步增大,材料进入强化阶段,应力逐渐增加,应变增长速度减慢。
当应力达到最大值时,材料发生颈缩现象,此时材料横截面积迅速减小,应变增长速度加快。
最终,材料在某一应力下发生断裂。
三、实验仪器与设备1. 万能试验机:用于对材料进行拉伸试验,可自动记录应力与应变数据。
2. 拉伸试样:采用低碳钢圆棒,规格为直径10mm,长度100mm。
3. 游标卡尺:用于测量拉伸试样的尺寸。
4. 电子天平:用于测量拉伸试样的质量。
四、实验步骤1. 将拉伸试样清洗干净,用游标卡尺测量其直径和长度,并记录数据。
2. 将拉伸试样安装在万能试验机的夹具中,调整夹具间距,确保试样在拉伸过程中均匀受力。
3. 打开万能试验机电源,设置拉伸速度和最大载荷,启动试验机。
4. 观察拉伸过程中试样的变形和破坏现象,记录试样断裂时的载荷。
5. 关闭试验机电源,取出试样,用游标卡尺测量试样断裂后的长度,计算伸长率。
五、实验数据与结果1. 拉伸试样直径:10.00mm2. 拉伸试样长度:100.00mm3. 拉伸试样质量:20.00g4. 拉伸试样断裂载荷:1000N5. 拉伸试样断裂后长度:95.00mm根据实验数据,计算材料力学性能指标如下:1. 抗拉强度(σt):1000N / (π × (10mm)^2 / 4) = 784.62MPa2. 屈服强度(σs):600N / (π × (10mm)^2 / 4) = 471.40MPa3. 伸长率(δ):(95.00mm - 100.00mm) / 100.00m m × 100% = -5%六、实验分析1. 本实验中,低碳钢试样在拉伸过程中表现出明显的弹性、屈服、强化、颈缩和断裂等物理现象,符合材料力学理论。
拉伸实验报告结论拉伸实验报告结论引言:拉伸实验是材料力学中常用的一种实验方法,通过施加外力对材料进行拉伸,以研究材料的力学性能和变形行为。
本文旨在总结拉伸实验的结果,并得出结论,以便更好地理解材料的力学特性。
实验方法:本次实验选取了不同材料的标准试样进行拉伸实验,通过在试样上施加均匀的拉力,并记录下拉力与试样伸长量之间的关系。
实验过程中,我们使用了万能试验机,通过控制试样的伸长速度和记录拉力数据,得出实验结果。
实验结果:通过对各种材料进行拉伸实验,我们得到了以下结果:1. 材料的强度:拉伸实验可以反映材料的强度,即材料在受力下的抗拉能力。
实验结果显示,不同材料的强度存在明显的差异。
例如,金属材料通常具有较高的强度,而塑料材料则具有较低的强度。
这是由于金属材料内部的结晶结构和金属键的特性决定的。
因此,在工程设计中,需要根据材料的强度选择合适的材料。
2. 材料的延展性:拉伸实验还可以反映材料的延展性,即材料在受力下的变形能力。
实验结果显示,不同材料的延展性也存在明显的差异。
金属材料通常具有较好的延展性,可以在受力下发生塑性变形,而塑料材料则具有较差的延展性,容易发生断裂。
这是由于金属材料内部的晶粒滑移机制和塑料材料的分子结构决定的。
因此,在工程设计中,需要根据材料的延展性选择合适的材料。
3. 材料的断裂模式:拉伸实验还可以观察材料的断裂模式。
实验结果显示,不同材料在拉伸过程中会出现不同的断裂形态。
金属材料通常呈现出韧性断裂,即在拉伸过程中会出现颈缩现象,并最终发生断裂。
而塑料材料则通常呈现出脆性断裂,即在拉伸过程中会突然发生断裂,没有明显的颈缩现象。
这是由于金属材料内部的位错运动和塑料材料的分子排列方式决定的。
结论:通过拉伸实验,我们可以得出以下结论:1. 不同材料具有不同的强度和延展性,需要根据具体应用选择合适的材料。
2. 金属材料通常具有较高的强度和较好的延展性,适用于要求高强度和耐磨性的场合。
拉伸试验报告一、实验目的。
本实验旨在通过拉伸试验,对材料的力学性能进行评估,探究材料在受力作用下的变形和破坏规律,为材料的工程应用提供依据。
二、实验原理。
拉伸试验是通过施加轴向拉力,使试样产生拉伸变形,从而研究材料的拉伸性能。
在试验过程中,可以得到应力-应变曲线,通过分析曲线的特征值,可以获得材料的力学性能参数,如屈服强度、抗拉强度、断裂伸长率等。
三、实验设备与试样。
本次实验使用了万能试验机,试样选用了标准的拉伸试验试样。
试样的几何尺寸符合标准要求,以保证实验结果的准确性和可比性。
四、实验步骤。
1. 将试样安装到万能试验机的夹具上,并调整好试样的初始长度。
2. 开始施加拉力,以一定的速度对试样进行拉伸,同时记录拉力和试样的变形情况。
3. 当试样发生破坏时,停止施加拉力,并记录破坏时的拉力和变形情况。
五、实验数据处理与分析。
通过实验得到的拉力-变形曲线,可以得到试样的屈服强度、抗拉强度、断裂伸长率等力学性能参数。
同时,还可以观察试样的破坏形态,分析材料的脆性或韧性特征。
六、实验结果与讨论。
根据实验数据处理与分析的结果,可以得到材料的力学性能参数,并对材料的性能进行评价和讨论。
同时,结合试样的破坏形态,可以对材料的断裂特征进行分析和讨论。
七、结论。
通过本次拉伸试验,得到了材料的力学性能参数,并对材料的性能进行了评价和讨论。
本次实验结果为材料的工程应用提供了重要参考。
八、实验总结。
拉伸试验是材料力学性能评价的重要手段,通过本次实验,对材料的拉伸性能有了更深入的了解。
在今后的工程应用中,将更加准确地选择和使用材料,以确保工程质量和安全。
以上为本次拉伸试验的报告内容,希望对相关人员的工作和研究有所帮助。
金属材料的拉伸、压缩实验承受轴向拉伸和压缩是工程构件最常见的受力方式之一,材料在拉伸和压缩时的力学性能也是材料最重要的力学性能之一。
常温、静载下金属材料的单向拉伸和压缩实验也是测定材料力学性能的最基本、应用最广泛、方法最成熟的试验方法。
通过拉伸实验所测定的材料的弹性指标E、μ,强度指标σs、σb,塑性指标δ、ψ,是工程中评价材质和进行强度、刚度计算的重要依据。
下面以典型的塑性材料——低碳钢和典型的脆性材料——铸铁为例介绍实验的详细过程和数据处理方法。
一、预习要求1、电子万能材料试验机在实验前需进行哪些调整?如何操作?2、简述测定低碳钢弹性模量E的方法和步骤。
3、实验时如何观察低碳钢拉伸和压缩时的屈服极限?二、材料拉伸时的力学性能测定拉伸时的力学性能实验所用材料包括塑性材料低碳钢和脆性材料铸铁。
(一)实验目的1、在弹性范围内验证虎克定律,测定低碳钢的弹性模量E。
2、测定低碳钢的屈服极限σs、强度极限σb、延伸率δ和断面收缩率ψ;测定铸铁拉伸时的强度极限σb。
3、观察低碳钢和铸铁拉伸时的变形规律和破坏现象。
4、了解万能材料试验机的结构工作原理和操作。
(二)设备及试样1、电子万能材料试验机。
2、杠杆式引伸仪或电子引伸仪。
3、游标卡尺。
4、拉伸试样。
GB6397—86规定,标准拉伸试样如图1所示。
截面有圆形(图1a)和矩形(图1b)两种,标距l0与原始横截面积A0比值为11.3的试样称为长试样,标距l0与原始横截面积A0比值为5.56的试样称为短试样。
对于直径为d0的长试样,l0=10d0;对于直径为d0的短试样,l0=5d0。
实验前要用划线机在试样上画出标距线。
(三)低碳钢拉伸实验1、实验原理与方法常温下的拉伸实验是测定材料力学性能的基本实验,可用以测定弹性模量E、屈服极限σs、强度极限σb、延伸率δ和断面收缩率ψ等力学性能指标。
这些指标都是工程设计中常用的力学性能参数。
现以液压式万能材料试验机为例说明其测量原理和方法。
材料力学拉伸实验报告【篇一:材料力学拉伸试验】1-1 轴向拉伸实验一、实验目的1、测定低碳钢的屈服强度rel(?s)、抗拉强度rm(?b)、断后伸长率a11.3(?10)和断面收缩率z(?)。
2、测定铸铁的抗拉强度rm(?b)。
3、比较低碳钢?5(塑性材料)和铸铁?5(脆性材料)在拉伸时的力学性能和断口特征。
注:括号内为gb/t228-2002《金属材料室温拉伸试验方法》发布前的旧标准引用符号。
二、设备及试样1、电液伺服万能试验机(自行改造)。
2、 0.02mm游标卡尺。
3、低碳钢圆形横截面比例长试样一根。
把原始标距段l0十等分,并刻画出圆周等分线。
4、铸铁圆形横截面非比例试样一根。
注:gb/t228-2002规定,拉伸试样分比例试样和非比例试样两种。
比例试样的原始标距l0和原始横截面积s0的关系满足l0?ks0。
比例系数k取5.65时称为短比例试样,k取11.3时称为长比例试样,国际上使用的比例系数k取5.65。
非比例试样l0和s0无关。
三、实验原理及方法低碳钢是指含碳量在0.3%以下的碳素钢。
这类钢材在工程中使用较广,在拉伸时表现出的力学性能也最为典型。
(工程应变)(2)屈服阶段ab:在超过弹性阶段后出现明显的屈服过程,即曲线沿一水平段上下波动,即应力增加很少,变形快速增加。
这表明材料在此载荷作用下,宏观上表现为暂时丧失抵抗继续变形的能力,微观上表现为材料内部结构发生急剧变化。
从微观结构解释这一现象,是由于构成金属晶体材料结构晶格间的位错,在外力作用下发生有规律的移动造成的。
如果试样表面足够光滑、材料杂质含量少,可以清楚地看出试样表面有450方向的滑移线。
根据gb/t228-2002标准规定,试样发生屈服而力首次下降前的最大应力称为上屈服强度,记为“reh”;在屈服期间,不计初始瞬时效应时的最低应力称为下屈服强度,记为“rel”,若试样发生屈服而力首次下降的最小应力是屈服期间的最小应力时,该最小应力称为初始瞬时效应,不作为下屈服强度。
《材料力学性能》实验教学指导书实验项目:1. 实验总学时:4 准静态拉伸2. 不同材料的冲击韧性材料科学与工程学院实验中心工程材料及机制基础实验室实验一准静态拉伸一、实验目的1.观察低碳钢(塑性材料)与铸铁(脆性材料)在准静态拉伸过程中的各种现象(包括屈服、强化和颈缩等现象),并绘制拉伸图。
2.测定低碳钢的屈服极限σs,强度极限σb,断后延伸率δ和断面收缩率ψ。
3.测定铸铁的强度极限σb。
4.比较低碳钢和铸铁的力学性能的特点及断口形貌。
二、概述静载拉伸试验是最基本的、应用最广的材料力学性能试验。
一方面,由静载拉伸试验测定的力学性能指标,可以作为工程设计、评定材料和优选工艺的依据,具有重要的工程实际意义。
另一方面,静载拉伸试验可以揭示材料的基本力学行为规律,也是研究材料力学性能的基本试验方法。
静载拉伸试验,通常是在室温和轴向加载条件下进行的,其特点是试验机加载轴线与试样轴线重合,载荷缓慢施加。
在材料试验机上进行静拉伸试验,试样在负荷平稳增加下发生变形直至断裂,可得出一系列的强度指标(屈服强度σs和抗拉强度σb)和塑性指标(伸长率δ和断面收缩率ψ)。
通过试验机自动绘出试样在拉伸过程中的伸长和负荷之间的关系曲线,即P—Δl曲线,习惯上称此曲线为试样的拉伸图。
图1即为低碳钢的拉伸图。
试样拉伸过程中,开始试样伸长随载荷成比例地增加,保持直线关系。
当载荷增加到一定值时,拉伸图上出现平台或锯齿状。
这种在载荷不增加或减小的情况下,试样还继续伸长的现象叫屈服,屈服阶段的最小载荷是屈服点载荷Ps,Ps除以试样原始横截面面积Ao即得到屈服极限σs:σs=Ps A0试样屈服后,要使其继续发生变形,则要克服不断增长的抗力,这是由于金属材料在塑性变形过程中不断发生的强化。
这种随着塑性变形增大,变形抗力不断增加的现象叫做形变强化或加工硬化。
由于形变强化的作用,这一阶段的变形主要是均匀塑性变形和弹性变形。
当载荷达到最大值Pb后,试样的某一部位截面积开始急剧缩小,出现“缩颈”现象,此后的变形主要集中在缩颈附近,直至达到Pb 试样拉断。
材料的拉伸试验实验报告实验报告:材料的拉伸试验摘要:本实验通过拉伸试验研究了不同材料在受力时的力学性能。
选择了几种常见的材料样本进行试验,包括金属、塑料和橡胶。
实验结果显示,不同材料的拉伸力学性能不同,金属材料表现出较高的强度和可塑性,而塑料和橡胶材料则表现出较高的延展性。
引言:拉伸试验是一种常见的力学试验方法,它用于研究材料在受力时的性能和行为。
通过对材料施加拉伸力并测量其应力和应变,可以获得材料的力学性能参数,如弹性模量、屈服强度、断裂强度等。
另外,拉伸试验还可以评估材料的可靠性和使用范围。
实验方法:1.实验材料选择:选取了铁、聚乙烯和天然橡胶作为实验材料。
2.样品制备:根据实验要求,将材料切割成尺寸相同的长条样品。
4.数据处理:根据实验数据计算得出应力和应变的数值,进行数据分析。
实验结果:经过实验,得到了三种材料在拉伸过程中的应力-应变曲线,并据此计算出了相应的力学性能参数。
1.铁材料:铁材料在拉伸过程中表现出较高的强度和可塑性。
其应力-应变曲线呈现出明显的弹性阶段、屈服点和硬化段。
弹性阶段的斜率表示了材料的弹性模量,屈服点表示了材料开始塑性变形的临界点。
在达到最大荷载后,材料开始发生断裂。
2.聚乙烯材料:聚乙烯材料在拉伸过程中具有较高的延展性。
其应力-应变曲线呈现出较低的强度和较大的延展性。
相比于铁材料,聚乙烯材料的弹性阶段较短,而屈服点不明显。
在达到最大拉伸荷载后,聚乙烯样品发生断裂。
3.天然橡胶材料:天然橡胶材料也具有较高的延展性,但相对于聚乙烯材料,其强度较高。
应力-应变曲线显示,橡胶材料具有较长的弹性阶段,并在后期逐渐增加应力。
在断裂时,橡胶样品呈现出较大的拉伸变形。
讨论:根据实验结果可以看出,不同材料在受力时表现出不同的力学性能。
金属材料具有较高的强度和可塑性,适用于要求较高强度和刚性的工程领域。
塑料材料具有较高的延展性和韧性,适用于需要柔性和可塑性的应用。
橡胶材料则融合了延展性和较高的强度,适用于需要弹性和抗撕裂性的应用。