材料力学性能实验(2个)讲解
- 格式:doc
- 大小:2.30 MB
- 文档页数:13
材料基本力学性能试验—拉伸和弯曲一、实验原理拉伸实验原理拉伸试验是夹持均匀横截面样品两端,用拉伸力将试样沿轴向拉伸,一般拉至断裂为止,通过记录的力——位移曲线测定材料的基本拉伸力学性能。
对于均匀横截面样品的拉伸过程,如图1所示,图1金属试样拉伸示意图则样品中的应力为其中A为样品横截面的面积。
应变定义为其中△l是试样拉伸变形的长度。
典型的金属拉伸实验曲线见图2所示。
图3金属拉伸的四个阶段典型的金属拉伸曲线分为四个阶段,分别如图3(a)-(d)所示。
直线部分的斜率E就是杨氏模量、σs点是屈服点。
金属拉伸达到屈服点后,开始出现颈缩现象,接着产生强化后最终断裂。
弯曲实验原理可采用三点弯曲或四点弯曲方式对试样施加弯曲力,一般直至断裂,通过实验结果测定材料弯曲力学性能。
为方便分析,样品的横截面一般为圆形或矩形。
三点弯曲的示意图如图4所示。
图4三点弯曲试验示意图据材料力学,弹性范围内三点弯曲情况下C点的总挠度和力F之间的关系是其中I为试样截面的惯性矩,E为杨氏模量。
弯曲弹性模量的测定将一定形状和尺寸的试样放置于弯曲装置上,施加横向力对样品进行弯曲,对于矩形截面的试样,具体符号及弯曲示意如图5所示。
对试样施加相当于σpb0.01。
(或σrb0.01)的10%以下的预弯应力F。
并记录此力和跨中点处的挠度,然后对试样连续施加弯曲力,直至相应于σpb0.01(或σrb0.01)的50%。
记录弯曲力的增量DF和相应挠度的增量Df,则弯曲弹性模量为对于矩形横截面试样,横截面的惯性矩I为其中b、h分别是试样横截面的宽度和高度。
也可用自动方法连续记录弯曲力——挠度曲线至超过相应的σpb0.01(或σrb0.01)的弯曲力。
宜使曲线弹性直线段与力轴的夹角不小于40o,弹性直线段的高度应超过力轴量程的3/5。
在曲线图上确定最佳弹性直线段,读取该直线段的弯曲力增量和相应的挠度增量,见图6所示。
然后利用式(4)计算弯曲弹性模量。
二、试样要求1.拉伸实验对厚、薄板材,一般采用矩形试样,其宽度根据产品厚度(通常为0.10-25mm),采用10,12.5,15,20,25和30mm六种比例试样,尽可能采用lo =5.65(F)0.5的短比例试样。
实验一材料在轴向拉伸、压缩时的力学性能一、实验目的1.测定低碳钢在拉伸时的屈服极限σs、强度极限σb、延伸率δ和断面收缩率 。
2.测定铸铁在拉伸以及压缩时的强度极限σb。
3.观察拉压过程中的各种现象,并绘制拉伸图。
4.比较低碳钢(塑性材料)与铸铁(脆性材料)机械性质的特点。
二、设备及仪器1.电子万能材料试验机。
2.游标卡尺。
图1-1 CTM-5000电子万能材料试验机电子万能材料试验机是一种把电子技术和机械传动很好结合的新型加力设备。
它具有准确的加载速度和测力范围,能实现恒载荷、恒应变和恒位移自动控制。
由计算机控制,使得试验机的操作自动化、试验程序化,试验结果和试验曲线由计算机屏幕直接显示。
图示国产CTM -5000系列的试验机为门式框架结构,拉伸试验和压缩试验在两个空间进行。
图1-2 试验机的机械原理图试验机主要由机械加载(主机)、基于DSP的数字闭环控制与测量系统和微机操作系统等部分组成。
(1)机械加载部分试验机机械加载部分的工作原理如图1-2所示。
由试验机底座(底座中装有直流伺服电动机和齿轮箱)、滚珠丝杠、移动横梁和上横梁组成。
上横梁、丝杠、底座组成一框架,移动横梁用螺母和丝杠连接。
当电机转动时经齿轮箱的传递使两丝杠同步旋转,移动横梁便可水平向上或相下移动。
移动横梁向下移动时,在它的上部空间由上夹头和下夹头夹持试样进行拉伸试验;在它的下部空间可进行压缩试验。
(2)基于DSP的数字闭环控制与测量系统是由DSP平台;基于神经元自适应PID算法的全数字、三闭环(力、变形、位移)控制系统;8路高精准24Bit 数据采集系统;USB1.1通讯;专用的多版本应用软件系统等。
(3) 微机操作系统试验机由微机控制全试验过程,采用POWERTEST 软件实时动态显示负荷值、位移值、变形值、试验速度和试验曲线;进行数据处理分析,试验结果可自动保存;试验结束后可重新调出试验曲线,进行曲线比较和放大。
可即时打印出完整的试验报告和试验曲线。
材料力学性能测试及其结果解读材料力学性能测试是一种用来评估材料力学特性的有效方法。
通过测试不同材料的强度、硬度、韧性、延展性等性能参数,可以了解材料的力学性能,为材料的选用和设计提供重要依据。
本文将介绍材料力学性能测试的基本原理和常用方法,并对测试结果进行解读。
一、材料力学性能测试的基本原理材料力学性能测试主要依靠实验方法来获取材料的物理性质和力学性能。
其基本原理是通过施加一定的外力或载荷到材料上,测量材料在这种外力或载荷作用下的响应,以确定材料的力学特性。
常见的材料力学性能参数包括强度、硬度、韧性和延展性等。
强度是指材料在外力作用下所能承受的最大应力值,常用参数有抗拉强度、屈服强度和抗压强度等。
硬度是指材料抵抗外界物体穿透、切割、碾压的能力,常用参数有布氏硬度、洛氏硬度和维氏硬度等。
韧性是指材料能够吸收外力并进行塑性变形的能力,常用参数有断裂韧性和冲击韧性等。
延展性是指材料在外力作用下能够产生永久塑性变形的能力,常用参数有伸长率和断面收缩率等。
二、常用的材料力学性能测试方法1. 拉伸测试:拉伸测试是评估材料抗拉强度和延展性能的常用方法。
该方法将材料制成规定形状的试样,在拉伸机上施加外力,测量试样在拉伸过程中的应力和应变,进而得到材料的力学性能参数。
2. 压缩测试:压缩测试用于评估材料的抗压强度和韧性。
该方法将材料制成规定形状的试样,在压力机上施加外力,测量试样在压缩过程中的应力和应变,从而确定材料的力学性能。
3. 硬度测试:硬度测试是评估材料抵抗外界物体穿透、切割、碾压的能力的常用方法。
常见的硬度测试方法有布氏硬度、洛氏硬度和维氏硬度等,利用不同的硬度计测量试样在受载后的硬度值,以评估材料的硬度特性。
三、对材料力学性能测试结果的解读1. 强度解读:强度是评估材料在外力作用下的抵抗能力,通常以抗拉强度和屈服强度为指标。
抗拉强度是材料在拉伸过程中能够承受的最大应力值,屈服强度是材料开始产生塑性变形的临界点。
材料学性能实院系:材料学院姓名:王丽朦学号:200767027验报力告实验目的:通过拉伸试验掌握测量屈服强度,断裂强度,试样伸长率,界面收缩率的方法;通过缺口拉伸试验来测试缺口对工件性能的相关影响;通过冲击试验来测量材料的冲击韧性;综合各项试验结果,来分析工件的各项性能;通过本实验来验证材料力学性能课程中的相关结论,同时巩固知识点,进一步深刻理解相关知识;实验原理:1)屈服强度金属材料拉伸试验时产生的屈服现象是其开始产生宏观的塑性变形的一种标志。
弹性变形阶段向塑性变形阶段的过渡,表现在试验过程中的现象为,外力不增加即保持恒定试样仍能继续伸长,或外力增加到某一数值是突然下降,随后,在外力不增加或上下波动情况下,试样继续伸长变形,这便是屈服现象。
呈现屈服现象的金属材料拉伸时,试样在外力不增加仍能继续伸长时的应力称为屈服点,记作(T S 屈服现象与三个因素有关:(1)材料变形前可动位错密度很小或虽有大量位错但被钉扎住,如钢中的位错为杂质原子或第二相质点所钉扎;(2)随塑性变形发生,位错快速增殖;(3)位错运动速率与外加应力有强烈的依存关系。
影响屈服强度的因素有很多,大致可分为内因和外因。
内因包括:金属本性及晶格类型的影响;晶界大小和亚结构的影响;还有溶质元素和第二相的影响等等。
通过对内因的分析可表征,金属微量塑性变形抗力的屈服强度是一个对成分、组织极为敏感的力学性能指标,受许多内在因素的影响,改变合金成分或热处理工艺都可使屈服强度产生明显变化。
外因包括:温度、应变速率和应力状态等等。
总之,金属材料的屈服强度即受各种内在因素的影响,又因外在条件不同而变化,因而可以根据人们的要求予以改变,这在机件设计、选材、拟订加工工艺和使用时都必须考虑到。
2)缺口效应由于缺口的存在,在静载荷作用下,缺口截面上的应力状态将发生变化,产生所谓的缺口效应”从而影响金属材料的力学性能。
缺口的第一个效应是引起应力集中,并改变了缺口前方的应力状态,使缺口试样或机件所受的应力由原来的单向应力状态改变为两向或三向应力状态,也就是出现了CX (平面应力状态)或cy与CZ (平面应变状态),这要视板厚或直径而定。
材料力学性能实验报告姓名: 班级: 学号: 成绩:
K的测定
实验名称实验六断裂韧性
1C
实验目的了解金属材料平面应变断裂韧性测试的一般原理和方法。
实验设备 1.CSS-88100万能材料试验机;
2.工具读数显微镜一台;
3.位移测量器;
4.千分尺一把;
5.三点弯曲试样40Cr和20#钢试样各两个。
试样示意图
图1 三点弯曲试样
由于三向应力的存在,使得裂纹扩展区域的位错运动困难,受到更大的摩擦力,从而塑性变差,更易发生脆断。
附录一:
断裂韧性试验中断口照片:
附录二:
%根据试验的数据画P-V 曲线的matlab 程序
%在运行程序之前, 需要将数据导入到matlab 中: “File ”|“Import Data ” (a)试样01的断口图 (b)试样02的断口图
图7 40Cr800℃淬火+100℃回火断口图
(a)试样412的断口图 (b)试样415的断口图
图8 20#退火态试样的断口图
图3 40Cr800℃+100℃回火试样01的P-V 曲线
0.5
1.5
2.5
4
变形/mm
力/N
图4 40Cr800℃+100℃回火试样02的P-V 曲线
4
变形/mm
力/N
变形/mm
力/N
图5 20#钢退火态试样412的P-V 曲线
变形/mm 力/N
图6 20#钢退火态试样415的P-V 曲线。
实验15材料力学性能及热性能测试实验15-1聚合物拉伸性能测试——电子拉力机测定聚合物材料的应力-应变曲线聚合物在拉力下的应力-应变测试是一种广泛使用的最基础的力学试验。
聚合物的应力-应变曲线提供力学行为的许多重要线索,从而得到有用的表征参数(杨氏模量、屈服应力、屈服伸长率、破坏应力、极限伸长率、断裂能)以评价材料抵抗载荷、抵抗变形和吸收能量的性质优劣;从宽广的试验温度和试验速度范围内测得的应力-应变曲线,有助于判断聚合物材料的强弱、硬软、韧脆和粗略估计聚合物所处的状态与拉伸取向过程,以及为设计和应用部门选取最佳材料提供科学依据。
电子拉力试验机是将聚合物材料的刺激(载荷)和响应(变形)由换能装置转变为电信号传入计算机,经计算处理可得应力-应变曲线。
电子拉力机除了应用于力学试验中最常用的拉伸试验外,还可进行压缩、弯曲、剪切、撕裂、剥离以及疲劳、应力松弛等各种力学试验,是测定和研究聚合物材料力学行为和机械性能的有效手段。
一、实验目的1.熟悉电子拉力机的使用方法;2.测定聚合物的载荷-时间曲线,判断不同聚合物的拉伸性能特征,了解测试条件对测试结果的影响;3.绘制应力-应变曲线,测定其屈服强度、拉伸强度、断裂强度和断裂伸长率。
二、实验原理拉伸性能是聚合物力学性能中最重要、最基本的性能之一。
拉伸性能的好坏,可以通过拉伸实验来检测。
拉伸实验是在规定的试验温度、湿度和速度条件下,对标准试样沿纵轴方向施加静态拉伸负荷,直到试样被拉断为止。
用于聚合物应力-应变曲线测定的电子拉力试验机是将试样上施加的载荷、形变通过压力传感器和形变测量装置转变成电信号记录下来,经计算机处理后,测绘出试样在拉伸形变过程中的拉伸应力-应变曲线。
从应力-应变曲线上可得到材料的各项拉伸性能指标值:如拉伸强度、拉伸断裂应力、拉伸屈服应力、偏置屈服应力、拉伸弹性模量、断裂伸长率等。
通过拉伸试验提供的数据,可对高分子材料的拉伸性能做出评价,从而为质量控制,按技术要求验收或拒绝验收产品,研究、开发与工程设计及其他项目提供参考。
《材料力学性能》实验教学指导书实验总学时:4实验项目:1.准静态拉伸2. 不同材料的冲击韧性材料科学与工程学院实验中心工程材料及机制基础实验室实验一 准静态拉伸一、实验目的1.观察低碳钢(塑性材料)与铸铁(脆性材料)在准静态拉伸过程中的各种现象(包括屈服、强化和颈缩等现象),并绘制拉伸图。
2.测定低碳钢的屈服极限σs ,强度极限σb ,断后延伸率δ和断面收缩率ψ。
3.测定铸铁的强度极限σb 。
4.比较低碳钢和铸铁的力学性能的特点及断口形貌。
二、概述静载拉伸试验是最基本的、应用最广的材料力学性能试验。
一方面,由静载拉伸试验测定的力学性能指标,可以作为工程设计、评定材料和优选工艺的依据,具有重要的工程实际意义。
另一方面,静载拉伸试验可以揭示材料的基本力学行为规律,也是研究材料力学性能的基本试验方法。
静载拉伸试验,通常是在室温和轴向加载条件下进行的,其特点是试验机加载轴线与试样轴线重合,载荷缓慢施加。
在材料试验机上进行静拉伸试验,试样在负荷平稳增加下发生变形直至断裂,可得出一系列的强度指标(屈服强度s σ和抗拉强度b σ)和塑性指标(伸长率δ和断面收缩率ψ)。
通过试验机自动绘出试样在拉伸过程中的伸长和负荷之间的关系曲线,即P —Δl 曲线,习惯上称此曲线为试样的拉伸图。
图1即为低碳钢的拉伸图。
试样拉伸过程中,开始试样伸长随载荷成比例地增加,保持直线关系。
当载荷增加到一定值时,拉伸图上出现平台或锯齿状。
这种在载荷不增加或减小的情况下,试样还继续伸长的现象叫屈服,屈服阶段的最小载荷是屈服点载荷s P ,s P 除以试样原始横截面面积Ao 即得到屈服极限s σ:ss A P =σ 试样屈服后,要使其继续发生变形,则要克服不断增长的抗力,这是由于金属材料在塑性变形过程中不断发生的强化。
这种随着塑性变形增大,变形抗力不断增加的现象叫做形变强化或加工硬化。
由于形变强化的作用,这一阶段的变形主要是均匀塑性变形和弹性变形。
当载荷达到最大值b P 后,试样的某一部位截面积开始急剧缩小,出现“缩颈”现象,此后的变形主要集中在缩颈附近,直至达到P b 试样拉断。
P b 除以试样原始横截面面积A 0即得到强度极限(抗拉强度)b σ:b b A P =σ拉伸试验还可得到塑性指标,即伸长率δ和断面收缩率ψ伸长率δ——拉断后的试样标距部分所增加的长度与原始标距长度的百分比,即%10001⨯-=l l l δ 式中 0l —试件原始标距,为100㎜,1l —试件拉断后标距长度。
断面收缩率ψ——为了测定低碳钢的断面收缩率,试件拉断后,在断口处两端沿互相垂直的方向各测一次直径,取平均值1d 计算断口处横截面面积,再按下式计算面积收缩率:%100010⨯-=A A A ψ 式中 A 0—试件原始横截面面积 A 1—试件拉断后断口处最小面积。
试件开始受力时,由于头部在夹头内滑动较大,故绘出的拉伸图最初一段是曲线。
分析时应将直线段延长与横坐标相交于0点,作为坐标原点。
OA 段为弹性阶段载荷与变形成正比,B 'C 段为屈服阶段,CD 段为强化阶段,DE 段为颈缩阶段,至E 点试件被拉断。
铸铁的拉伸图如图2所示。
铸铁试件在承受拉力变形极小时,就达到最大载荷而突然发生断裂。
它没有屈服和颈缩现象,故在拉伸时,一般只能测定其强度极限b σ,试件沿横截面断裂。
bb A F =σ图1 图2三、实验设备与材料1.实验设备:(1)SHT4605型微机控制万能材料试验机。
(2)游标卡尺。
2.实验材料:l分别为5d和10d。
本实验采用圆截直径为d的圆截面试件,短试件和长试件的标距l=100mm)。
面的长试件(d=10mm,0 Array四、实验内容与方法1.实验内容:(1)了解材料试验机的构造、原理及操作;(2)列表记录低碳钢、铸铁的原始尺寸及实验后尺寸,计算出δ、ψ(低碳钢);(3)画出P—ΔL曲线,并计算出低碳钢试样的σs、σb及铸铁试样的σb;(4)比较两种材料的力学性能的特点、断口形貌及断裂方式。
2.实验方法及步骤:(1).试件准备用游标卡尺测量标距两端及中间这三个横截面处的直径,在每一横截面内沿互相垂直的两个直径方向各测量一次取其平均值。
用所测得的三个平均值中最小的值计算试件的横截面面积A0。
将测量的试件横截面处的直径及计算出的横截面面积A0填入表中。
(2).试验机准备打开计算机, 进入试验机控制系统主界面,在用户参数输入区内输入试验参数,如试样标距、试样直径、试样种类等。
然后点击【试验】按钮进入试验。
(3).安装试件调整下横梁使上下夹头的距离小于试件的长度。
先将试件安装在试验机的上夹头内,再调整下横梁使其达到适当位置,把力值清零,然后把试件下端夹紧,位移值清零。
(4).进行试验点击屏幕右边的【运行】按钮加载。
注意观察测力窗口、位移窗口的情况和相应的试验现象。
若出现力和位移值为负值或其它异常情况,请立即按下右边立柱旁的“急停”按钮,或【速度栏】内的停止按钮。
试验结束后取下试件。
将低碳钢试件的屈服载荷P s 和最大载荷P b 记入表中。
然后将 断裂试件的两段对齐并尽量靠紧,用游标卡尺测量断裂后标距段的长度l 1;测量两段断口(颈缩)处的直径d 1,应在每一断口处沿两个互相垂直方向各测量一次,计算其平均值,取其中最小值计算断口处最小横截面面积A 1。
把测量值和计算值填入表中。
将铸铁试件的最大载荷P b 记入表中。
五、试验结果的处理1.根据屈服载荷P s 及最大载荷P b 计算低碳钢试件的屈服极限σs 及低碳钢试件和铸铁试件的强度极限σb 。
0A P s s =σ 0A Pbb =σ2.根据试件前、后的标距段长度及横截面面积计算低碳钢试件的延伸率δ及断面收缩率ψ%10001⨯-=l l l δ %100010⨯-=A A A ψ六、实验要求:1. 学生进入实验室前必须做好实验预习,认真阅读实验指导书,明确实验目的、任务、 有关原理、操作的主要步骤、注意事项。
2. 实验过程中必须严格遵守操作规程及注意事项,自觉遵守实验室的各项规章制度。
3. 独立完成实验。
4. 认真观察和分析实验现象,做好实验数据记录。
5. 按照格式要求认真撰写实验报告,不得抄袭。
七、注意事项1.未经指导教师同意不得开动机器。
2.操作者不得擅自离开操纵台。
3.试件安装必须正确、防止偏斜和夹入部分过短的现象。
4.试验时听见异常声音或发生任何故障,按下急停按钮立即停车。
实验二 不同材料的冲击韧性一、实验目的1.了解冲击试验方法。
2.测定低碳钢与铸铁的冲击韧性a k 值。
二、概述(1) 冲击实验是研究材料对于动荷抗力的一种实验,和静载荷作用不同,由于加载速度快,使材料内的应力骤然提高,变形速度影响了材料的力学性质,所以材料对动载荷作用表现出另一种反应。
(2) 此外在金属材料的冲击实集中验中,还可以揭示在静载荷时不易发现的某些结构特点和工作条件对机械性能的影响(如应力,材料内部缺陷,化学成分和加荷时温度,受力状态以及热处理情况等),因它在工艺分析比较和科学研究中都具有一定的意义,在工程上常采用“冲击韧性”来表示材料抵抗冲击的能力。
把金属材料制成标准试件(金属夏比(V 型缺口)试件)(图1.1),安置在冲击试验机的机座上(图1.2),使它受冲击而折断。
记录试件折断所消耗的能量A k ,将A k 用缺口处的横截面面积A 去除,所得的数值定义为材料的冲击韧性a k 。
a k =AA k(J/cm 2)a k 对材料品质、内部缺陷和晶粒大小等比较敏感。
再加上冲击试验简便易行,所以常用来检验材料质量、内部缺陷、脆性程度等。
在试件上制作缺口是为了使试件由该处折断。
分析表明,,在缺口根部附近材料处于三向拉应力状态。
某些金属在静力拉伸下表现出良好的塑性,但处于三向拉应力作用下却有增加其脆性的倾向。
所以塑性材料的缺口试件在冲击作用下,一般都呈现脆性破坏方式(断裂)。
试验表明,缺口的形状,试件的绝对尺寸及材料的性质等因素都会影响断口附近参与塑性变形的体积,因此,冲击试验必须在规定的标准下进行。
同时,缺口的加工也十分重要,一般应当铣削或磨削,以保证尺寸准确。
图1.1图1.2图1.3冲击试验机的构造原理如图1.3所示。
将摆锤向上摆起(如图所示的α角),于是摆锤便具有一定的位能。
试验时,令摆锤突然下落,冲击安装在机座上的试件,将试件冲断。
试件折断所消耗的能量等于摆锤原来的位能(在α角处)与其冲断试件后在扬起位置(β角处)时的位能之差。
三、实验设备与材料1.实验设备:(1)示波冲击试验机;(2)游标卡尺2.实验材料:低碳钢(V型缺口)试件和铸铁试件各一件四、实验内容与方法1. 实验内容:(1)测量试件尺寸。
(2)打开电源开关,使摆杆扬起;(3)安装冲击试样,令缺口背对摆锤刃口,并使缺口中心线与跨距中心线重合;(4)给冲击指令,使摆杆自由下落,冲断试样;(5)记录试样在冲击过程中吸收的能量A k值。
(6)观察低碳钢和铸铁的断口形貌。
2. 实验方法与步骤(1)打开冲击试验机的电源,观察指示灯是否亮。
(2)点击【扬摆】按钮,使摆锤扬到位。
(3)点击【冲击】按钮,进行冲击测试。
(4)记录试件的吸收能量A k值。
(5)实验完毕后按住【放摆】按钮,执行放摆操作。
五、试验结果的处理1.根据试件折断所消耗的能量A k值,计算低碳钢与铸铁的a k,2.观察两种材料断口的差异,并画出两种材料的破坏断口草图。
六、实验要求1.学生在进入实验室前必须做好实验预习,认真阅读实验指导书,明确实验目的、任务、有关原理、操作的主要步骤、注意事项。
2.实验过程中必须严格遵守操作规程及注意事项,自觉遵守实验室的各项规章制度。
3.独立完成实验。
4.认真观察和分析实验现象,做好实验数据记录。
5.按照格式要求认真撰写实验报告,不得抄袭。
七.注意事项本实验属动荷实验,而且实验机为自动控制,故需严格按操作规程进行实验,特别要注意安全。
点击“冲击”前必须将安全门关闭。
安放试件时,绝对不许点击【冲击】按钮。
实验结束后一定将摆锤放下。
实验一:准静态拉伸实验报告一、实验目的:二、实验设备及仪器三、试件1)试件材料:试件1:低碳钢;试件2:铸铁2)试件形状和尺寸:四、 实验数据及计算结果附:计算公式:屈服极限:0SS A F =σ 延伸率: %100001⨯-=L L L δ 强度极限:0bb A F =σ 断面收缩率: %10001⨯-=A A A ψ 五、 拉伸曲线示意图低碳钢 铸铁六、回答问题1)参考低碳钢拉伸图,分段回答力与变形的关系以及在实验中反映出的现象。
2)由低碳钢、铸铁的拉伸图和试件断口形状及其测试结果,回答二者机械性能有什么不同。
实验二不同材料的冲击韧性实验报告一、实验目的:二、实验设备及仪器:三、试件1试件材料:试件1:低碳钢,试件2:铸铁2试件形状和尺寸:四、实验数据及计算结果附:计算公式:冲击韧性:a k=A A k(J/cm2)五、回答问题1)冲击韧性值a k为什么不能用于定量换算.只能用于相对比较。