高等数学 隐函数共26页
- 格式:ppt
- 大小:1.93 MB
- 文档页数:1
第十八章 隐函数定理及其应用§1 隐函数一 、 隐函数概念(P144)在这之前我们所接触的函数,其表达式大多是自变量的某个算式,如 12+=x y ,).sin sin (sin zx yz xy eu xyz++=这种形式的函数称为显函数。
但在不少场合常会遇到另一种形式的函数,其自变量与因变量之间的对应法则是由一个方程式或方程组所确定。
这种形式的函数我们称为隐函数。
☆ 本节将介绍由一个方程0),,(=z y x F 所确定的隐函数求导法;☆ 下一节将介绍由方程组⎩⎨⎧==0),,,,(0),,,,(v u z y x G v u z y x F 所确定的隐函数求导法。
设R X ⊂,R Y ⊂,函数.:R Y X F →⨯注.:1)定义中的)(x f y = ,,J y I x ∈∈仅表示定义域为I,值域为J 的函数,而y 未必能 用x 的显式表示2)隐函数是表达函数的又一种方法. 是用隐形关系式表示函数关系的一种。
结论..:若由..0),(=y x F 确定..的隐函数为.....)(x f y = .,J y I x ∈∈则成立恒等式.......,0))(,(I x x F x F ∈≡例: 方程 01=-+y xy ,当x 定义在),1()1,(+∞---∞ 上时,可得隐函数)(x f y =。
其显函数形式为:.11xy +=例: 圆方程122=+y x 能确定一个定义在[]1,1+-上,函数值不小于0的隐函数21x y -=;又能确定另一个定义在[]1,1+-上,函数值不大于0的隐函数21x y --=。
注.:1)隐函数必须在指出确定它的方程以及y x ,的取值范围后才有意义。
2)当然在不至于产生误解的情况下,其取值范围也可不必一一指明。
3)并不是任一方程都能确定出隐函数,如方程.022=++c y x当0>c 时,就不能确定任何函数()x f ,使得[].0)(22≡++c x f x而只有当0≤c 时,才能确定隐函数。