初三数学下册(人教版)第二十七章相似27.3知识点总结含同步练习及答案
- 格式:pdf
- 大小:274.66 KB
- 文档页数:3
九年级数学下册第二十七章【相似】重要知识点总结27.1 图形的相似1、相似的定义如果两个图形形状相同,但大小不一定相等,那么这两个图形相似。
(相似的符号:∽)2、相似的判定如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似。
3、相似比相似多边形的对应边的比叫相似比。
相似比为1时,相似的两个图形全等相似多边形的对应角相等,对应边的比相等。
相似多边形的周长比等于相似比。
相似多边形的面积比等于相似比的平方。
27.2相似三角形1、相似三角形的判定(★重难点)(1).平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似(2)三边对应成比例(3)两边对应成比例,且夹角相等(4)两个三角形的两个角对应相等★常考题型:利用三角形的相似测量塔高、河宽2、相似三角形判定的常用模型A字型、8字型、三等角模型3、相似的性质1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
2.相似三角形周长的比等于相似比。
3.相似三角形面积的比等于相似比的平方4.多边形的面积的比等于相似比的平方,周长比等于相似比。
27.3位似1、定义:如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行,那么这两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。
2、位似的相关性质(1)位似图形的对应点和位似中心在同一直线上,它们到位似中心的距离之比等于相似比。
(2)位似多边形的对应边平行或共线。
(3)位似可以将一个图形放大或缩小。
(4)位似图形的中心可以在任意的一点,不过位似图形也会随着位似中心的位变而位变。
(5)根据一个位似中心可以作两个关于已知图形一定位似比的位似图形,这两个图形分布在位似中心的两侧,并且关于位似中心对称。
★易错点1、位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;2、两个位似图形的位似中心只有一个;3、两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;4、位似比就是相似比.利用位似图形的定义可判断两个图形是否位似;5、平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形位似。
人教版九年级下册数学第二十七章相似含答案一、单选题(共15题,共计45分)1、如图,△ABC中,AD是中线,BC=4,∠B=∠DAC,则线段AC的长为( )A. B.2 C.3 D.2、如图,在平行四边形ABCD中,点E,F线上且,,BE,BF的延长线分别交AD,CD于H,G两点,则()A. B.2 C. D.33、如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF :S△ABF=4:25,则DE:EC=()A.2:5B.2:3C.3:5D.3:24、身高1.8米的人在阳光下的影长是1.2米,同一时刻一根旗杆的影长是6米,则它的高度是()A.10米B.9米C.8米D.10.8米5、已知线段a=4,b=16,线段c是a、b的比例中项,那么c等于()A.10B.8C.﹣8D.±86、若两个相似三角形对应边上的高线之比为3:1,则对应角的平分线之比为()A.9:1B.6:1C.3:1D. :17、如图,△ABC∽△DEF,相似比为1∶2,若BC=1,则EF的长是()A.1B.2C.3D.48、如图所示,一般书本的纸张是原纸张多次对开得到矩形ABCD沿EF对开后,再把矩形EFCD沿MN对开,以此类推,若各种开本的矩形都相似,那么等于()A.0.618B.C.D.29、如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是()A.4.5B.8C.10.5D.1410、如图,在△ABC中,点D,E分别在边AB,AC上,DE//BC,若BD=2AD,则()A. B. C. D.11、如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF =4,则下列结论:①= ;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是()A.①②③④B.①④C.②③④D.①②③12、如图,△ABO与△A′B′O是位似图形,其中AB∥A′B′,那么A′B′的长y与AB的长x之间函数关系的图象大致是()A. B. C. D.13、如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B落在点F处,连接FC,则sin∠ECF=()A. B. C. D.14、如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为()A. B. C. D.15、如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,若EF:AF=2:5,则S△DEF :S四边形EFBC为()A.2:5B.4:25C.4:31D.4:35二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,已知点O(0,0),A(6,0),B(0,8),以某点为位似中心,作出△AOB的位似△CDE,则位似中心的坐标为________.17、已知△ABC∽△DEF,其中AB=5,BC=6,CA=9,DE=3,那么△DEF的周长是________.18、如图,E是▱ABCD的边CD上一点,连接AE并延长交BC的延长线于点F,且AD=4,,则CF的长为________ .19、如图,在中,点E为上的任意一点,连接,将沿BE折叠,使点A落在点D处,连接,若是直角三角形,则的长为________.20、如图,小明同学站在离墙(BC)5米的A处,发现小强同学在离墙(BC)20米远且与墙平行的一条公路l上骑车,已知墙BC长为24米,小强骑车速度10米/秒,则小明看不见小强的时间为________ 秒.21、如图,在等腰直角△ABC中,AB=4,点D在边AC上一点且AD=1,点E是AB边上一点,连接DE,以线段DE为直角边作等腰直角△DEF( D、E、F三点依次呈逆时针方向),当点F恰好落在BC边上时,则AE的长是________.22、如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A,B,C和点D,E,F.如果AB=6,BC=10,那么的值是________.23、如图,四边形是三个正方形、________24、如图,的面积为,,,连接和交于点,连接,则的面积为________.若,,则的面积为________.25、的三边长分别为,,,与它相似的的最小边长为,则的周长为________.三、解答题(共5题,共计25分)26、已知xyz≠0且,求k的值.27、附加题:如图,在中,,,垂足为,、分别为、的中点,,垂足为,求证:.28、如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证:=.29、《铁血红安》在中央一台热播后,吸引了众多游客前往影视基地游玩. 某天小明站在地面上给站在城楼上的小亮照相时发现:他的眼睛、凉亭顶端、小亮头顶三点恰好在一条直线上(如图). 已知小明的眼睛离地面1. 65米,凉亭顶端离地面2米,小明到凉亭的距离为2米,凉亭离城楼底部的距离为40米,小亮身高1. 7米. 请根据以上数据求出城楼的高度..30、已知线段c是线段a,b的比例中项,若,,求线段c的长.参考答案一、单选题(共15题,共计45分)1、A2、C3、B4、B5、B6、C7、B8、C9、B10、B11、D12、C13、D14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、28、29、30、。
27.1 图形的相似一、基础训练1.在比例尺为1:5000的地图上,量得甲、乙两地的距离为25cm,则甲、乙两地的实际距离是()A.1250kmB.125kmC.12.5kmD.1.25km2.下列四个结论:①两个菱形相似;②两个矩形相似;③两个正方形相似;④两个等腰梯形相似.其中正确的结论的个数是()A.1个B.2个C.3个D.4个3.下列说法正确的是()A.相似三角形一定全等B.不相似的三角形不一定全等C.全等三角形不一定是相似三角形D.全等三角形一定是相似三角形4.已知△AB C∽△A1B1C1,顶点A、B、C的对应点分别是A1、B1、C1,∠A=55°,∠B=100°,则∠C1的度数是()A.55°B.100°C.25°D.不能确定5.要做甲、乙两种形状相同(相似)的三角形框架,已知三角形框架甲的三边分别为50cm、60cm、80cm,三角形框架乙的一边长为20cm,那么,符合条件的三角形框架乙共有()A.1种B.2种C.3种D.4种6.把△ABC的各边分别扩大为原来3倍,得到△A1B1C1,下列结论不能成立的是()A.△AB C∽△A1B1C1B.△AB C与△A1B1C1的各对应角相等C.△AB C与△A1B1C1的相似比为3:1D.△AB C与△A1B1C1的相似比为1:37.已知线段3、4、6与x成比例线段,则x=_________________.8.两个三角形相似,其中一个三角形两个内角分别是40°、60°,那么另一个三角1 / 31形的最大角为__________,最小角为______________.二、能力训练.9.如图△ABC与△DEF相似,求未知边x、y的长度10.如图,△ABC中,D、E分别在边AB、AC上,DE∥BC,线段的长度如图所示,求证:△ABC∽△ADE.2 / 313 / 3111.如图,若56DE BC AE AC AD AB ===,且△ABC 与△ADE 周长差为4,求△ABC 与△ADE 的周长.12.一个矩形截去一个边长与宽相等的正方形后,所得的矩形仍与原矩形相似,求原矩形与宽的比.27.2《相似三角形性质与判定》一、选择题1.已知△ABC 与△A 1B 1C 1相似,且相似比为3:2,则△ABC 与△A 1B 1C 1的面积比为( )A.1:1B.3:2C.6:2D.9:42.若△ABC ∽△DEF ,AB=2DE ,△ABC 面积为8,则△DEF 的面积为( )A.1B.2C.4D.83.如图,在△ABC 中,DE ∥AB ,且CD:BD=3:2,则CE:CA 的值为( )A.0.6B.2/3C.0.8D.1.54.一个三角形支架三条边长分别是75cm,100cm,120cm,现要再做一个与其相似的三角形木架,而只有长为60cm,120cm的两根木条,要求以其中一根为一边,从另一根上截下两段作为另两边(允许有余料),则不同的截法有()A.一种B.两种C.三种D.四种5.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,则△DEF的周长为()A.2B.3C.6D.546.已知△ABC∽△DEF,S△ABC:S△DEF=1:9,若BC=1,则EF的长为()A.1B.2C.3D.97.如图,在△ABC中,D,E分别是AB和AC上的点,且DE∥BC,若AE=1,CE=AD=2,则AB的长是()A.6B.5C.4D.28.下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:99.如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S在一条直线上,且直线PS与河垂直,在过点S且与PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R.如果QS=60m,ST=120m,QR=80m,则河的宽度PQ为A.40mB.60mC.120mD.180m4 / 3110.如图,是一种雨伞的轴截面图,伞骨AB=AC,支撑杆OE=OF=40 cm,当点O沿AD滑动( )时,雨伞开闭.若AB=3AE,AD=3AO,此时B,D两点间的距离为A.60 cmB.80 cmC.100 cmD.120 cm11.如图,D、E是AB的三等分点,DF∥EG∥BC,图中三部分的面积分别为S1,S2,S3,则S1:S2:S3=()A.1:2:3B.1:2:4C.1:3:5D.2:3:412.如图,在□ABCD中,AB=5,BC=8,∠ABC,∠BCD的角平分线分别交AD于E和F,BE与CF交于点G,则△EFG与△BCG面积之比是()A.5:8B.25:64C.1:4D.1:16二、填空题.13.如图,△ABC中,D、E分别为AB、AC的中点,则△ADE与△ABC的面积比为是 .5 / 316 /3115.如图,在平行四边形ABCD 中,E 是边AB 的中点,连接DE 交对角线AC 于点F ,若CF=6,则AF 的长为_____.16.如图,在△ABC 中,DE ∥BC ,BF 平分∠ABC ,交DE 的延长线于点F.若AD=1,BD=2,BC=4,则EF=________.17.如图,在平行四边形ABCD 中,点E 在边DC 上,△DEF 的面积与△BAF 的面积之比为9:16,则DE :EC=_____.18.如图,AG ∥BC ,如果AF :FB=3:5,BC :CD=3:2,那么AE :EC=_____.三、解答题19.如图所示,方格纸中每个小正方形的边长为1,△ABC 和△DEF 的顶点都在方格纸的格点上,判断△ABC 和△DEF 是否相似,并说明理由.7 /3120.为了估计河的宽度,勘测人员在河的对岸选定一个目标点A ,在近岸分别取点B 、D 、E 、C ,使点A 、B 、D 在一条直线上,且AD ⊥DE ,点A 、C 、E 也在一条直线上,且DE ∥BC.经测量BC=24米,BD=12米,DE=40米,求河的宽度AB 为多少米?21.如图,一块直角三角板的直角顶点P 放在正方形ABCD 的BC 边上,并且使条直角边经过点D ,另一条直角边与AB 交于点Q.请写出一对相似三角形,并加以证明.(图中不添加字母和线段)22.如图,在△ABC中,AB=AC,点P在BC上.(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC=2∠ABC,求证:PD//AB.23.如图,在△ABC中,AD、BE是中线,它们相交于点F,EG//BC,交AD于点G.(1)求证:△FGE∽△FDB;(2)求AG:DF的值.8 / 3124.如图,在正方形ABCD中,点E是BC的中点,点P在BC的延长线上,AP与DE、CD 分别交于点G、F.DF=2CF,AB=6,求DG的长.25.已知:如图,在△ABC中,点D在边AC上,BD的垂直平分线交CA的延长线于点E,交BD于点F,联结BE,ED2=EA•EC.(1)求证:∠EBA=∠C;(2)如果BD=CD,求证:AB2=AD•AC.9 / 31参考答案1.答案为:D2.答案为:B3.答案为:A4.答案为:B5.答案为:C6.答案为:C7.答案为:A8.答案为:B9.答案为:C.10.答案为:D11.答案为:C12.答案为:D13.答案为:1:4.14.答案为:1:4.15.答案为:316.答案为:2/3.17.答案为:3:118.答案为:3:2;10 / 3119.△ABC和△DEF相似,理由如下:20.解析根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.解:设宽度AB为x米,∵DE∥BC,∴△ABC∽△ADE ,∴=,又∵BC=24,BD=12,DE=40代入得∴=,解得x=18,答:河的宽度为18米.21.△BPQ∽△CDP,证明:∵四边形ABCD是正方形,∴∠B=∠C=90°,∵∠QPD=90°,∴∠QPB+∠BQP=90°,∠QPB+∠DPC=90°,∴∠DPC=∠PQB,∴△BPQ∽△CDP.22.解:(1)∵△PCD∽△ABP,∴∠CPD=∠BAP,故作∠CPD=∠BAP即可,如图,即为所作图形,(2)∵∠APC=∠APD+∠DPC=∠ABC+∠BAP=2∠ABC,∴∠BAP =∠ABC,11 / 31∴∠BAP=∠CPD=∠ABC,即∠CPD =∠ABC,∴PD∥AB.23.解:24.解:在正方形ABCD中,有△PCF∽△PBA∴而DF=2CF,即CF=CD∴=∴=即而AB=BC=6,∴PC=3又∵点E是BC的中点∴DE=3,PE=6∵AD∥EP ∴△PGE∽△AGD∴而PE=AD=6,∴GE=GD=故DG 的长为.25.解:(1)证明:∵ED2=EA•EC,12 / 31∴=,∵∠BEA=∠CEB,∴△BAE∽△CEB,∴∠EBA=∠C.(2)证明:∵EF垂直平分线段BD,∴EB=ED,∴∠EDB=∠EBD,∴∠C+∠DBC=∠EBA+∠ABD,∵∠EBA=∠C,∴∠DBC=∠ABD,∵DB=DC,∴∠C=∠DBC,∴∠ABD=∠C,∵∠BAD=∠CAB,∴△BAD∽△CAB,∴=,∴AB2=AD•AC.27.3位似1.下列说法中,正确的个数是( )①位似图形一定是相似图形;②相似图形一定是位似图形;③两个位似图形若全等,则位似中心在两个图形之间;④若五边形ABCDE与五边形A′B′C′D′E′位似,则其中△ABC与△A′B′C′也是位似的,且位似比相等.A.1B.2C.3D.42.位似图形的中心可能在两个图形__________,也可能在两个图形__________,还可能在两个图形的__________.3.指出下列各组位似图形的位似中点.13 / 3114 / 314.如图,△ACB 与△DFE 是位似图形,则)()()(ABBP AP ==.4题图 互动训练知识点一:位似图形的概念及性质 1.下列说法错误的是( ) A. 相似图形不一定是位似图形 B. 位似图形一定是相似图形 C. 同一底版的两张照片是位似图形D. 放幻灯时,底片上的图形和银幕上的图形是位似图形2.两个位似多边形一对对应顶点到位似中心的距离比为1∶2,且它们面积和为80,则较小的多边形的面积是( )A.16B.32C.48D.643.按如下方法,将△ABC 的三边缩小为原来的21,如图,任取一点O ,连结AO 、BO 、CO ,并取它们的中点D 、E 、F ,得△DEF . 则下列说法中正确的个数是( )①△ABC 与△DEF 是位似图形 ②△ABC 与△DEF 是相似图形 ③△ABC 与△DEF 的周长比为2∶1 ④△ABC 与△DEF 的面积比为4∶1 A.1 B.2 C.3 D.415 /313题图 4题图4.如图,五边形ABCDE 与五边形A′B′C′D′E′位似,对应边CD =2,C′D′=3. 若位似中心P 点到点A 的距离为6,则P 到A′的距离为________________.5.如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,△ADE 和△ABC 是位似图形,DE =1,BC =3,AB =6,求AD 的长.5题图知识点二:利用位似图形进行作图6.画出图中位似图形的位似中心..7.利用位似的方法把下图缩小一倍,要求所作的图形在原图内部8.如图,已知O是四边形ABCD的边AB上的任意一点,且EH∥AD,HG∥DC,GF∥BC.试说明四边形EFGH与四边形ABCD是否位似,并说明你的理由.16 / 3131 8题图9. 如图,在△ABC中,BC=1,AC=2,∠C=90°.9题图(1)在方格纸①中,画△A′B′C′,使△A′B′C′∽△ABC,且相似比为2∶1;(2)若将(1)中△A′B′C′称为“基本图形”,请你利用“基本图形”,借助旋转、平移或轴对称变换,在方格纸②中设计一个以点O为对称中心,并且以直线l为对称轴的图案.17 /知识点三:位似图形的应用10.一般室外放映的电影胶片上,每一个图片的规格为3.5 cm×3.5 cm,放映的银幕的规格是2 m×2 m,若影机的光源距胶片20 cm时,问银幕应拉在离镜头多远的地方,放映的图像刚好布满整个银幕?11.如图,已知矩形ABCD与矩形EFGH是位似图形,OB∶OF=3∶5,求矩形.ABCD与矩形EFGH的面积比12.在直角坐标系中,有一个Rt△AOB,且两直角边长分别为OA=4,OB=3,如图.(1)请直接写出A、B两点的坐标.(2)将△AOB作下列运动,画出相应的图形,指出3个顶点的坐标发生的变化(不必写计算过程).①关于原点对称;18 / 3119 / 31②将△AOB 以O 点为位似中心,缩小1倍.12题图课时达标1.如图,BC ∥ED ,下列说法不正确的是( )A .两个三角形是位似图形B .点A 是两个三角形的位似中心C .B 与D 、C 与E 是对应位似点 D .AE ︰AD 是相似比1题图 2题图2.如图是小孔成像原理的示意图,根据图中所标注的尺寸,这支蜡烛在暗盒中所成的像CD 的长是( ) A. 61 cm B .31 cm C. 21cm D.1 cm3.在图中,①中的两个图形是位似图形,③中的两个图形也是位似图形,②中的两个图形不是位似图形.(1)分别指出图①③各自的位似中心.(2)在图①中任取一对对应点,度量这两个点到位似中心的距离.它们的比与位似比有什么关系?在图③中再试一试,还有类似的规律吗?4.如图,已知△ABC与△A′B′C′是位似图形,则AB∥A′B′,BC∥B′C′吗?说明理.由5.如图中的图案是由A字图案(虚线图案)经过变换后得到的,试问该变换是位似变换吗?为什么?20 / 3131 5题图6.如图,△ABC和△A′B′C′为位似图形,写出六个顶点的坐标,并指出△ABC和△A′B′C′的位似比.6题图7.已知图,作出一个新图形,使新图形与原图形的位似比为2∶1.7题图21 /8.如图,在水平桌面上的两个“E”,当点P1、P2、O在一条直线上时,在点O 处用①号“E”测得的视力与用②号“E”测得的视力相同.(1)图中b1,b2,l1,l2满足怎样的关系式?(2)若b1=3.2 cm,b2=2 cm,①号“E”的测试距离l1=8 m,要使测得的视力相同,?则②号“E”的测试距离l2应为多少9.印刷一张矩形的张贴广告如图所示,它的印刷面积为32 dm2,上下空白各1 dm,两边空白各0.5 dm,设印刷部分从上到下的长为x dm,四周空白处的面积为S dm2.(1)求S与x的关系式;(2)当要求空白处的面积为18 dm2时,求用来印刷这张广告的纸张的长和宽各是多少?.(3)内外两个图形是位似图形吗?如果是,请说明理由22 / 31拓展探究1.如图,8×8方格纸上的两条对称轴EF、MN相交于中心点O,对△ABC分别作下列变换:①先以点A为中心顺时针方向旋转90°,再向右平移4格、向上平移4格;②先以点O为中心作中心对称图形,再以点A的对应点为中心逆时针方向旋转90°;③先以直线MN为轴作轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90°.其中,能将△ABC变换成△PQR的是( )A.①②B.①③C.②③D.①②③1题图2题图2.如图,在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(-4,2)、(-2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是__________.3.正方形网格中,每个小正方形的边长为1个单位,以O为原点建立平面直角坐标系,圆心为A(3,0)的⊙A被y轴截得的弦长BC=8,如图所示,23 / 3124 /313题图解答下列问题:(1)⊙A 的半径为__________;(2)请在图中将⊙A 先向上平移6个单位,再向左平移8个单位得到⊙D ,观察你所画的图形知⊙D 的圆心D 点的坐标是__________;⊙D 与x 轴的位置关系是__________;⊙D 与y 轴的位置关系是__________;⊙D 与⊙A 的位置关系是__________.(3)画出以点E(-8,0)为位似中心,将⊙D 缩小为原来的21的⊙F.27.3位似(第1课时)答案自主预习1. C. 解析:位似图形是相似图形,但相似图形不一定是位似图形,因而①对,②错.若两个位似图形全等,则其对应线段的比为1,因而位似中心到任意一对对应25 / 31点的距离之比等于1,即位似中心在两个图形之间,因而③对.相似多边形中的对应三角形相似,因而△ABC ∽△A′B′C′.又因为过这两个相似三角形对应点的直线都经过位似中心,所以△ABC 与△A′B′C′也是位似的,且位似比为B A AB '',即为原多边形的位似比.因而④对.答案:C2. 之间,同侧,内部. 解析:根据位似图形的意义.3. (1) P 点;(2) P 点. 解析:由位似图形意义.4. DP 、EP 、DE . 解析:对应点到位似中心的距离的比等于相似比. 互动训练1. C. 解析:位似是相似的特例,选项A 、B 都正确;选项C 不能确定两张照片的位置,它们不一定位似;选项D 是正确的.答案:C2. A. 解析:位似形必定相似,具备相似形的性质,其相似比等于一对对应顶点到位似中心的距离比. 相似比为1∶2,则面积比为1∶4,由面积和为80,得到它们的面积分别为16,64.答案:A3. D. 解析:此题缩小图形的根据是位似图形的性质.这样作出的图形与原图形位似,位似比为OB OE =21,即△ABC ∽△DEF,且相似比为12=OE OB .因而周长为2∶1,面积比为4∶1. 答案:D4. 9. 解析:由位似中心到两图形对应点的比等于相似比可求得答案.5.解:∵△ADE 与△ABC 是位似图形,∴△ADE ∽△ABC .所以BCDE AB AD =. ∵DE =1, BC =3, AB =6, ∴316=AD . ∴AD =2,即AD 的长为2. 6.如图所示26 /317. 解:(1)在五边形ABCDE 内部任取一点O .(2)以点O 为端点作射线OA 、OB 、OC 、OD 、OE .(3)分别在射线OA 、OB 、OC 、OD 、OE 上取点A′、B′、C′、D′,使OA ∶OA′=OB ∶OB′=OC ∶OC′=OD ∶OD′=OE ∶OE′=2.(4)连接A′B′、B′C′、C′D′、D′E′、E′A′.得到所要画的多边形A′B′C′D′E′(如图).7题图8. 解:四边形EFGH ∽四边形ABCD .理由:∵EH ∥AD ,∴△OEH ∽△OAD .∴∠1=∠A ,∠2=∠3,OD OH AD EH OA OE ==. 同理∠4=∠5,∠6=∠7,OCOG DC HG OD OH ==,27 / 31∠8=∠9,∠10=∠B,OB OF BC FG OC OG ==. ∴∠2+∠4=∠3+∠5,即∠EHG =∠ADC .∴∠6十∠8=∠7+∠9,即∠HGF =∠DCB .∴k ADEH OB OF OA OE ===. ∴OE =k·OA ,OF =k·OB .∴k OB OA OB OA k OB OA OF OE =++=++)(,即k ABEF =. ∴∠1=∠A ,∠EHG =∠ADC ,∠HGF =∠DCB ,∠10=∠B ,BCFG DC HG AD EH AB EF ===. ∴四边形EFGH ∽四边形ABCD .∵两个四边形各对应顶点的连线交于同一点O ,不经过点O 的其它三边平行,∴四边形EFGH 与四边形ABCD 是位似形.9. 如图,9题图10. 解:位似比为k=74005.3200=,设出银幕应拉在离镜头x m 的地方,则由位似图形的性质得740020=x,所以x=780m,故银幕应拉在离镜头780m的地方.11. 解:由位似可得,两个矩形相似,∴S矩形ABCD∶S矩形EFGH=(OB∶OF)2.∴S矩形ABCD∶S矩形EFGH=9∶2512. 解:(1) A (4, 0), B(0,3).(2) ①A1(-4,0), B1(0,-3), O(0,0). 如图:②如图, A2(2,0), B2(0,23), O(0,0).课时达标1. D.2. D. 解析:易得△ABO∽△CDO, 所以212=CDAB. 所以CD=1(cm).答案:D 3. (1)①③的位似中心分别为O、P点.(2)经过测量计算可推测得到对应点到位似中心的距离等于相似比.4. 解:AB∥A′B′,BC∥B′C′.理由如下:因为△ABC和△A′B′C′是位似图形,所以△ABC∽△A′B′C′.所以OAAO'=ABBAOBBO''='. 所以△OA′B′∽△OAB.所以∠OA′B′=∠OAB.所以A′B′∥AB.同理可得BC∥B′C′.28 / 315. 解:不是位似变换,原因一是看形状不同,二是4∶8≠4∶4,所以对应边不成比例.所以不是位似变换.6.解:六个顶点坐标为A(-1,4),A′(-0.5,2),B(6,2),B′(3,1),C(2,1),C′(1,0.5),位似比为2∶1.7. 解法一:(1)取关键点A、B、C、D,在图外取点P,作射线AP、BP、CP、DP;(2)在它们上面分别取A′、B′、C′、D′,使得P A′=2P A,PB′=2PB,PC′=2PC,PD′=2PD.(3)顺次连结A′、B′、C′、D′,四边形A′B′C′D′即为所求.如图(1),(1) (2) (3)解法二:(1)如图(2),在原图上取关键点A、B、C、D,在图形外取一点P,作出射线P A、PB、PC、PD;(2)在这些射线上依次取点A′,B′,C′,D′,使P A′=2P A,PB′=2PB,PC′=2PC,PD′=2PD;(3)顺次连结A′,B′,C′,D′,则四边形A′B′C′D′即为所求作的新图形.解法三:(1)如图(3),在原图上取关键点A,B,C,D,在图内取一点P,作射线P A,PB,PC,PD;(2)在这些射线上依次取点A′,B′,C′,D′,使P A=AA′,PB=BB′,PC=CC′,PD=DD′;(3)顺次连结A′,B′,C′,D′,则四边形A′B′C′D′即为所求作的新图形.8. 解:(1)∵△OD2P2∽△OD1P1, ∴b1∶b2=l1∶l2.29 / 3130 / 31 (2)由b 1∶b 2=l 1∶l 2, 得l 2=5 m.9. 解:(1)根据题意,得S=2×x×0.5+2×x 32×1+4×1×0.5=x+x 64+2, 即S=x+x64+2. (2)根据题意,得x+x64+2=18,整理,得x 2-16x+64=0.所以(x-8)2=0. 所以x=8.所以x+2=10.所以这张广告纸的长为10(dm),宽为832+2×0.5=5(dm). (3)内外两矩形是位似图形,理由如下:因为内,外两矩形的长,宽的比都为2, 所以45=''=''=''=''A D DA D C CD C B BC B A AB . 因为矩形的各角都为90°,所以矩形ABCD ∽矩形A′B′C′D′.因为AC 和BD ,A′C′和B′D′都相交于O 点,所以矩形ABCD 与矩形A′B′C′D′是位似图形.拓展探究1. D. 解析:本题考查图形变换的各种特征. 答案:D2. (5,4).3. (1)5. (2)如图,(-5,6),相离,相切,外切.(3)连接DE ,取DE 的中点F ,以F 为圆心,2.5为半径作圆.解析:本题用到圆的性质和在坐标系中图形变换的坐标变化.(1)连接AC ,根据垂径定理,有勾股定理可以计算;(2)⊙A 的平移实质是圆心的平移,因此点D 的坐标为(-5,6),由点D 的坐标看,⊙D 与x 轴相离,与y 轴相切,与⊙A 外切;(3)圆都可以看作是位似图形,位似中心在两圆圆心的连线上.31 /31。
九年级下册数学第27章知识点汇总(人教
版)
27.1图形的相似
gt;gt;gt;gt;图形的相似知识点
27.2相似三角形
相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
相似三角形判定定理1:两角对应相等,两三角形相似(ASA)
gt;gt;gt;gt;相似三角形知识点
27.3位似
位似图形(Homothetic figures)的任意一对对应点与位似中心在同一直线上,它们到位似中心的距离之比等于相似比。
把幻灯片上的图形放大到屏幕上,形成的新图形和原图形就是典型的位似图形。
两个多边形不仅相似,而且对应顶点的连线相交于一点,像这样的两个图形叫做位似图形(homothetic figures),这个交点叫做位似中心,这时的相似比又称为位似比。
gt;gt;gt;gt;位似图形知识点
九年级下册数学第27章知识点整理的很及时吧,提高学习成绩离不开知识点和练习的结合,因此大家想要取得更好的成绩一定要注重从平时中发现问题查缺补漏~请关注数学知识点。
课时作业(十四)[27.3 第1课时位似图形的概念及画法]一、选择题1.图K-14-1中是位似图形的是( )图K-14-12.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意两点到位似中心的距离之比等于相似比.其中正确的序号是( )A.②③ B.①②C.③④ D.②③④3.如图K-14-2,已知BC∥ED,下列说法不正确的是( )图K-14-2A.△ABC与△ADE是位似图形B.点A是△ABC与△ADE的位似中心C.B与D,C与E是对应点D.AE∶AD是相似比4.如图K-14-3,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB∶FG=2∶3,则下列结论正确的是( )图K -14-3A .2DE =3MNB .3DE =2MNC .3∠A =2∠FD .2∠A =3∠F5.2017·绥化如图K -14-4所示,△A ′B ′C ′是△ABC 以点O 为位似中心经过位似变换得到的,若△A ′B ′C ′的面积与△ABC 的面积比是4∶9,则OB ′∶OB 为( )图K -14-4A .2∶3B .3∶2C .4∶5D .4∶96.如图K -14-5,已知△ABC ,任取一点O ,连接AO ,BO ,CO ,并取它们的中点D ,E ,F ,得△DEF ,则下列说法正确的个数是( )①△ABC 与△DEF 是位似图形; ②△ABC 与△DEF 是相似图形;③△ABC 与△DEF 的周长比为1∶2; ④△ABC 与△DEF 的面积比为4∶1.图K -14-5A .1B .2C .3D .4 二、填空题7.2017·兰州如图K -14-6,四边形ABCD 与四边形EFGH 位似,位似中心是点O ,OE OA =35,则FGBC=________.图K -14-68.如图K -14-7所示,△ABC 与△A ′B ′C ′是位似图形,点O 是位似中心.若OA =2AA ′,S △ABC =8,则S △A ′B ′C ′=________.图K -14-7三、解答题9.如图K -14-8,用直尺画出下列位似图形的位似中心.图K -14-810.如图K -14-9,已知△ABC 和点O ,以点O 为位似中心,求作△ABC 的位似图形,使它与△ABC 的相似比为12.链接听课例4归纳总结图K -14-911.如图K -14-10,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A 1B 1C 1和△A 2B 2C 2.(1)将△ABC 先向右平移4个单位长度,再向上平移1个单位长度,得到△A 1B 1C 1;(2)以图中的点O 为位似中心,将△A 1B 1C 1作位似变换且放大到原来的两倍,得到△A 2B 2C 2.图K -14-1012.如图K -14-11,矩形ABCD 与矩形AB ′C ′D ′是位似图形,点A 为位似中心,已知矩形ABCD 的周长为24,BB ′=4,DD ′=2,求AB ,AD 的长.图K -14-1113.如图K-14-12,图中的小方格都是边长为1的正方形.△ABC与△A1B1C1是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心O;(2)求出△ABC与△A1B1C1的相似比;(3)以点O为位似中心,再画一个△A′B′C′,使它与△ABC的相似比等于3∶2.链接听课例4归纳总结图K-14-12探究题数学课上,老师要求同学们在扇形纸片OAB上画出一个正方形,使得正方形的四个顶点分别落在扇形半径OA,OB和弧AB上.有一部分同学是这样画的:如图K-14-13,先在扇形OAB内画出正方形CDEF,使点C,D在OA上,点F在OB上,连接OE并延长交弧AB于点G,过点G作GJ⊥OA 于点J,作GH⊥GJ交OB于点H,再作HI⊥OA于点I.(1)请问他们画出的四边形GHIJ是正方形吗?如果是,请给出你的证明;如果不是,请说明理由.(2)还有一部分同学是用另外一种不同于图①的方法画出的,请你参照图①的画法,在图②上画出这个正方形(保留画图痕迹,不要求证明).图K-14-13详解详析[课堂达标]1.[解析] D 根据位似图形的定义判断:①两个图形是相似图形;②对应顶点的连线相交于一点.[点评] 判定位似图形时,一定要从定义的两个要素逐一排查. 2.[解析] A ①相似图形不一定是位似图形,位似图形一定是相似图形,故此选项错误.②位似图形一定有位似中心,此选项正确.③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形,此选项正确.④位似图形上任意一对对应点到位似中心的距离之比等于相似比,故此选项错误.正确的为②③.故选A.3.D4.[解析] B 根据位似变换的性质可得DE MN =AB FG =23,∴3DE =2MN.5.[解析] A 由位似变换的性质可知,A′B′∥AB ,A′C′∥AC ,∴△A′B′C′∽△ABC. ∵△A′B′C′与△ABC 的面积比是4∶9, ∴△A′B′C′与△ABC 的相似比为2∶3, ∴OB′∶OB =2∶3. 6.[解析] C 根据位似的性质得出:①△ABC 与△DEF 是位似图形,②△ABC 与△DEF 是相似图形.∵D ,E ,F 分别是OA ,OB ,OC 的中点,∴△ABC 与△DEF 的相似比为2∶1,∴△ABC 与△DEF 的周长比为2∶1,故③错误.根据面积比等于相似比的平方,知△ABC 与△DEF 的面积比为4∶1,故④正确.故选C.7.[答案] 35[解析] ∵四边形ABCD 与四边形EFGH 位似, ∴△OEF ∽△OAB ,△OFG ∽△OBC , ∴OF OB =OE OA =35,∴FG BC =OF OB =35. 8.[答案] 18[解析] 因为OA =2AA′,所以OA ∶OA′=2∶3,则S △ABC S △A′B′C′=⎝ ⎛⎭⎪⎫232=49.又因为S △ABC =8,所以8S △A ′B′C′=49,所以S △A′B′C′=18.9.解:如图所示:10.解:情况1,OC 的中点A′,B′,C′,顺次连接点A′,B′,C′,则△A′B′C′即为所要求作的图形.情况2:如图所示,分别连接AO ,BO ,CO ,在线段AO ,BO ,CO 的延长线上分别截取线段OA 1,OB 1,OC 1,使OA 1=12OA ,OB 1=12OB ,OC 1=12OC ,顺次连接点A 1,B 1,C 1,则△A 1B 1C 1即为所要求作的图形.11.解:(1)(2)如图所示.12.解:∵矩形ABCD 的周长为24,∴AB +AD =12.设AB =x ,则AD =12-x ,AB′=x +4,AD′=14-x. ∵矩形ABCD 与矩形AB′C′D′是位似图形, ∴AB AB′=AD AD′, 即x x +4=12-x 14-x , 解得x =8,∴AB =8,AD =12-8=4. 13.解:(1)如图所示.(2)△ABC 与△A 1B 1C 1的相似比为1∶2. (3)如图所示.[素养提升]解:(1)四边形GHIJ 是正方形.证明:如图①,∵GJ ⊥OA ,GH ⊥GJ ,HI ⊥OA , ∴∠GJO =∠JIH =∠JGH =90°, ∴四边形GHIJ 是矩形.∵四边形CDEF 是正方形,CD 边与矩形GHIJ 的IJ 边在同一条直线上, ∴FC ∥HI ,EF ∥GH ,∴△FOC ∽△HOI ,△EFO ∽△GHO , ∴OF OH =FC HI ,OF OH =EF GH ,∴FC HI =EF GH . 又∵FC =EF ,∴HI =GH , ∴四边形GHIJ 是正方形.(2)如图②,正方形MNGH 即为所作.。
九年级数学下册第二十七章相似知识点汇总单选题1、某校开展“展青春风采,树强国信念”科普大阅读活动.小明看到黄金分割比是一种数学上的比例关系,它具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值,应用时一般取0.618.特别奇妙的是在正五边形中,如图所示,连接AB,AC,∠ACB的角平分线交边AB于点D,则点D就是线段AB的一个黄金分割点,且AD>BD,已知AC=10cm,那么该正五边形的周长为()A.19.1cmB.25cmC.30.9cmD.40cm答案:C分析:证明BC=CD=AD=6.18(cm),可得结论.解:由题意,点D是线段AB的黄金分割点,∴AD=0.618,AB∵AB=AC=10cm,∴AD=6.18(cm),∵∠ABC=∠ACB=72°,CD平分∠ACB,∴∠ACD=∠BCD=∠CAD=36°,∠CDB=∠CBD=72°,∴BC=CD=AD=6.18(cm),∴五边形的周长为6.18×5=30.90(cm),故选:C.小提示:本题考查正多边形的性质,黄金分割等知识,解题的关键是灵活应用所学知识解决问题.2、如图,在△ABC中,AC=6,AB=4,点D与点A在直线BC的同侧,且∠ACD=∠ABC,CD=2,点E是线段BC 延长线上的动点,当△DCE 和△ABC 相似时线段CE 的长为( )A .3B .43C .3或43D .4或34 答案:C分析:根据∠ACD =∠ABC ,可得∠A =∠DCE ,然后分两种情况讨论,即可求解.解:∵∠ACD =∠ABC ,∠ACD +∠DCE =∠A +∠ABC ,∴∠A =∠DCE ,当 △CDE ∼△ABC 时,∴CD AB =CE AC ,∵AC =6,AB =4,CD =2,∴24=CE 6 ,解得:CE =3 ;当△CED ∼△ABC 时,∴CE AB =CD AC ,∵AC =6,AB =4,CD =2,∴CE 4=26 ,解得:CE =43∴线段CE 的长为3或43.故选:C小提示:本题主要考查了相似三角形的性质,熟练掌握相似三角形的性质定理是解题的关键.3、如图,△ABC 和△A 1B 1C 1中,A 1B 1∥AB ,A 1C 1∥AC ,C 1为OC 的中点,△A 1B 1C 1面积是5,则△ABC 的面积为( )A.10B.20C.25D.50 答案:B分析:利用位似图形的性质得出SΔA1B1C1SΔABC =14,进而求出即可.解:∵A1B1∥AB,A1C1∥AC,∴△ABC和△A1B1C1是以点O为位似中心的位似三角形,∵C1为OC的中点,△A1B1C1面积是5,∴OC1OC =12,∴SΔA1B1C1SΔABC =14,∴5SΔABC =14,解得:S△ABC=20.故选:B.【小提示】此题主要考查了三角形的面积、位似变换,得出位似比是解题关键.4、如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,以下说法正确的有()个①S△ABC:S△A′B′C′=1:2②AB:A′B′=1:2③点A,O,A′三点在同一条直线上④BC∥B′C′A.1B.2C.3D.4答案:C分析:根据位似图形的概念和相似三角形的性质判断即可.解:以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,则△ABC∽△A′B′C′,且相似比为1:2,∴S△ABC:S△A′B′C′=1:4,故①选项说法错误;∴AB:A′B′=1:2,点A,O,A′三点在同一条直线上,BC∥B′C′,②③④说法正确;故选C.小提示:本题考查的是位似变换的概念和性质、相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.5、如图,△ABC与△DEF是位似图形,且顶点都在格点上,则位似中心的坐标是()A.(8,2)B.(9,1)C.(9,0)D.(10,0)答案:C分析:延长EB、DA交于点P,根据位似图形的对应点的连线相交于一点解答即可.解:延长EB、DA交于点P,则点P 即为位似中心,位似中心的坐标为(9,0),故选:C .小提示:本题考查的是位似变换的定义,如果两个图形不仅是相似图形,而且对应点的连线相交于一点,对应边互相平行(或共线),那么这样的两个图形叫做位似图形,这个点叫做位似中心.6、已知b a =5,则a−b a+b 的值是( )A .−23B .﹣13C .23D .13答案:A分析:由b a =5,可得b =5a ,然后代入a−b a+b ,即可求出其值.解:∵b a =5 ,∴b =5a ,且 a ≠0 ,则 a−b a+b =a−5a a+5a =−4a 6a =−23 , 故选:A .小提示:本题考查了比例的性质,解题的关键是正确运用基本性质.本题中要先确定a 与b 的关系,再确定a -b 与a +b 的关系.7、《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )A.五丈B.四丈五尺C.一丈D.五尺答案:B分析:根据同一时刻物高与影长成正比可得出结论.设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴x15=1.50.5,解得x=45(尺),即竹竿的长为四丈五尺.故选B小提示:本题考查了相似三角形的应用举例,熟知同一时刻物高与影长成正比是解答此题的关键.8、如图,点A,B的坐标分别为A(√2,0)、B(0,√2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,当OM最大时,M点的坐标为()A.(√22,1+√22)B.(√22,√22)C.(3√24,3√24)D.(1+√24,1+√24)答案:C分析:根据同圆的半径相等可知,点C在半径为1的⊙B上运动,取OD=OA,根据三角形的中位线定理知,点C在BD与⊙B的交点时,OM最小,在DB的延长线与⊙B的交点时,OM最大,根据平行线分线段成比例定理求得C的坐标,进而确定中点M的坐标即可.解:∵点C在坐标平面内,BC=1,∴C在半径为1的⊙B上,如图所示,取OD=OA=√2,连接CD,∵AM=CM,OD=OA,∴OM为△ACD的中位线,∴OM=12CD,当OM最大时,即CD最大,此时D,B,C三点共线,∵OB=OD=√2,∠BOD=90°,∴BD=2,∴CD=2+1=3,作CE⊥x轴于E点,∵CE∥OB,∴OBCE =ODDE=BDCD,即:√2CE=√2DE=23,∴CE=DE=3√22,∴OE=DE−OD=√22,∴C(√22,3√22),∵M是AC的中点,∴M(3√24,3√24),故选:C.小提示:本题考查了坐标与图形的性质,三角形的中位线定理等,确定OM最大时动点C的位置关系是解题关键.9、如图,某零件的外径为10cm,用一个交叉卡钳(两条尺长AC和BD相等)可测量零件的内孔直径AB.如果OA:OC=OB:OD=3,且量得CD=3cm,则零件的厚度x为()A.0.3cm B.0.5cm C.0.7cm D.1cm答案:B分析:求出△AOB和△COD相似,利用相似三角形对应边成比例列式计算求出AB,再根据外径的长度解答.解:∵OA:OC=OB:OD=3,∠AOB=∠COD,∴△AOB∽△COD,∴AB:CD=3,∴AB:3=3,∴AB=9(cm),∵外径为10cm,∴9+2x=10,∴x=0.5(cm).故选:B.小提示:本题考查相似三角形的应用,解题的关键是利用相似三角形的性质求出AB的长.10、已知ab =23,那么下列等式中成立的是()A.2a=3b B.a+1b+1=34C.a+bb=53D.a−bb=13.答案:C分析:比例的性质为两内项之积等于两外项之积,据此可进行解答.解:∵a:b=2:3的两内项是b、2,两外项是a、3,∴3a=2b,A:由以上解释易知A选项错误,不符题意;B:(a+1)×3=(b+1)×4,即3a=4b+1,故错误,不符题意;C:3×(a+b)=5b,即3a=2b,故正确,符合题意;D:3(a−b)=b,即3a=4b,故错误,不符题意;故选C.小提示:本题考查了比例的基本性质,掌握基本性质是解题关键.填空题11、《九章算术》中记载了一种测量井深的方法.如图所示,在井口B处立一根垂直于井口的木杆BD,从木杆的顶端D观察水岸C,视线DC与井口的直径AB交于点E,如果测得AB=1.6米,BD=1米,BE=0.2米,那么井深AC为______米.答案:7分析:由题意易得△ACE∽△BDE,则有ACBD =AEBE,然后问题可求解.解:∵AC//BD,∴△ACE∽△BDE,∴ACBD =AEBE,∵AB=1.6米,BD=1米,BE=0.2米,∴AC1=1.6−0.20.2,解得AC=7米,故答案为7.小提示:本题主要考查相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.12、如图,在△ABC中,AB=6,BC=12,点P是AB边的中点,点Q是BC边上一个动点,当BQ=___________时,△BPQ与△BAC相似.答案:1.5或6分析:直接利用△BPQ∽△BAC或△BPQ∽△BCA,分别得出答案.解:∵AB=6,BC=12,点P是AB边的中点,∴BP=3.当△BPQ∽△BAC时,则BPAB =BQBC故36=BQ12解得:BQ=6;当△BPQ∽△BCA时,则BPBC =BQAB,故312=BQ6,解得BQ=1.5.所以答案是:1.5或6.小提示:本题主要考查了相似三角形的判定,正确分类讨论是解题关键.13、已知a6=b5=c4,且a+b−2c=6,则a的值为__________.答案:12分析:直接利用已知比例式假设出a,b,c的值,进而利用a+b-2c=6,得出答案.解:∵a6=b5=c4,∴设a=6x,b=5x,c=4x,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=12.故答案为12.小提示:此题主要考查了比例的性质,正确表示出各数是解题关键.14、在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE⋅AB.已知AB为2米,则线段BE的长为______米.答案:(√5−1)##(−1+√5)分析:根据点E是AB的黄金分割点,可得AEBE =BEAB=√5−12,代入数值得出答案.∵点E是AB的黄金分割点,∴AEBE =BEAB=√5−12.∵AB=2米,∴BE=(√5−1)米.所以答案是:(√5−1).小提示:本题主要考查了黄金分割的应用,掌握黄金比是解题的关键.15、如图,已知△ABC和△EDC是以点C为位似中心的位似图形,且点C与点D在直线AB同侧△ABC和△EDC的周长之比为1:2,点C的坐标为(-2,0),若点A的坐标为(-4,3),则点E的坐标为______.答案:(2,−6)分析:先利用位似的性质得到△ABC和△EDC的位似比为1:2,然后利用平移的方法把位似中心平移到原点解决问题.解:∵△ABC和△EDC是以点C为位似中心的位似图形,而△ABC和△EDC的周长之比为1:2,∴△ABC和△EDC的位似比为1:2,把C点向右平移2个单位到原点,则A点向右平移2个单位的对应点的坐标为(-2,3),点(-2,3)以原点为位似中心的对应点的坐标为(4,-6),把点(4,-6)向左平移2个单位得到(2,-6),∴E点坐标为(2,-6).故填:(2,−6).小提示:本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.也考查了转化的思想.解答题16、如图,在△ABC与△A′B′C′中,点D、D′分别在边BC、B′C′上,且△ACD∽△A′C′D′,若___________,则△ABD∽△A′B′D′.请从①BDCD =B′D′C′D′;②ABCD=A′B′C′D′;③∠BAD=∠B′A′D′这三个选项中选择一个作为条件(写序号),并加以证明.答案:见解析.分析:根据相似三角形的判定定理证明即可.解:若选①BDCD =B′D′C′D′,证明:∵△ACD∽△A′C′D′,∴∠ADC=∠A′D′C′,ADA′D′=CDC′D′,∴∠ADB=∠A′D′B′,∵BDCD =B′D′C′D′,∴BDB′D′=CDC′D′,∴ADA′D′=BDB′D′,又∠ADB=∠A′D′B′,∴△ABD∽△A′B′D′.选择②BACD =B′A′C′D′,不能证明△ABD∽△A′B′D′.若选③∠BAD=∠B′A′D′,证明:∵△ACD∽△A′C′D′,∴∠ADC=A′D′C′,∴∠ADB=∠A′D′B′,又∵∠BAD=∠B′A′D′,∴△ABD∽△A′B′D′.小提示:本题考查相似三角形的判定定理,解题的关键是掌握相似三角形的判定方法.17、如图所示,AB是⊙O的直径,CB,CE分别切⊙O于点B、点D,CE与BA的延长线交于点E,连接OC,OD.已知DE=a,AE=b,BC=c,请选用以上适当的数据,设计出计算⊙O的半径r的一种方案.(1)你选用的已知数据是__________.(2)写出求解过程(结果用字母表示).答案:(1)a,b;(2)r=a2−b22b,其他情况见解析;分析:方案一:选用的已知数据是a,b,根据题意,△EDO是直角三角形,所以在Rt△EDO中,利用勾股定理得到:EO2=DE2+OD2,就可以求出半径的长度;方案二:选用的已知数据是a,b,c,利用△DEO~△BEC,得到ODBC =EDEB,由此可得到半径的长度;方案三:选用的已知数是a,b,c,在Rt△EBC种,利用勾股定理得到:EC2=EB2+BC2,就可以求出半径的长度;方案四:选用的已知数是a,b,c,根据角的关系,得到∠COB=∠DAO,所以AD//OC,由此推出DECD =EAAO,即可求出半径的长度.解:方案一(1)选用的已知数据是a,b.(2)求解过程:∵CE分别切⊙O于点D,∴OD⊥EC.在Rt△EDO中,DE=a,OD=r,EO=b+r,且EO2=DE2+OD2,即(b+r)2=a2+r2,解得r=a2−b22b(舍负值).方案二(1)选用的已知数据是a,b,c.(2)求解过程:∵CB,CE分别切⊙O于点B、点D,∴OD⊥EC,OB⊥BC,∴∠EDO=∠EBC.又∵∠DEO=∠BEC,∴△DEO~△BEC,∴ODBC =EDEB,即rc =ab+2r,解得r=−b+√b2+8ac4(舍负值).说明:在Rt△DEO和Rt△BEC中,分别表示tanE,也可得到上述方程(或等价形式).方案三(1)选用的已知数是a,b,c.(2)求解过程:∵CB,CE分别切⊙O于点B、点D,∴CB=CD=c,OB⊥BC.在Rt△EBC中,EC=ED+CD=a+c,EB=EA+AB=b+2r,BC=C,且EC2=EB2+BC2,即(a+c)2=(b+2r)2+c2,解得r=√a2+2ac−b2(含负值).方案四(1)选用的已知数是a,b,c.(2)求解过程:如图,连接AD.∵CB,CE分别切⊙O于点B、点D,∴CB=CD=c,OB⊥BC,∠DCO=∠BCO.∴∠COB=∠COD=90°−∠BCO,∠DOA=180°−∠DOB=180°−2∠COB=2∠BCO.∵OD=OA,∴∠DAO=90°−12∠DOA=90°−∠BCO.∴∠COB=∠DAO,∴AD//OC,∴DECD =EAAO,即ac=br,∴r=bca.18、如图,a//b//c,直线m,n交于点O,且分别与直线a,b,c交于点A,B,C和点D,E,F,已知OA=1,OB=2,BC=4,EF=5,求DE的长度.答案:154分析:由平行线分线段成比例定理得出比例式,即可得出结果.解:∵b∥c,OB=2,BC=4,∴OEEF =OBBC=24=12.∵EF=5,∴OE=12EF=52.∵a∥c,OA=1∴ODOF =OAOC=12+4=16.∴OD=16OF=16×(52+5)=54.∴DE=OD+OE=54+52=154.小提示:本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解决问题的关键.。
第二十七章、相似知识点一:比例线段1. 比例线段 在四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a cb d=,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.2.比例的基本性质(1)基本性质:a cb d=⇔ ad =bc ;(b 、d ≠0)(2)合比性质:a c b d =⇔a b b ±=c dd±;(b 、d ≠0) (3)等比性质:a cb d ==…=mn =k (b +d +…+n ≠0)⇔ ......a c mb d n++++++=k .(b 、d 、···、n ≠0)3.平行线分线段成比例定理(1)两条直线被一组平行线所截,所得的对应线 段成比例.即如图所示,若l 3∥l 4∥l 5,则AB DEBC EF=. (2)平行于三角形一边的直线截其他两边(或两边的延长 线),所得的对应线段成比例. 即如图所示,若AB ∥CD ,则OA OBOD OC=. (3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.如图所示,若DE ∥BC ,则△ADE ∽△ABC.4.黄金分割 点C 把线段AB 分成两条线段AC 和BC ,如果AC AB ==5-12≈0.618,那么线段AB 被点C 黄金分割.其中点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.例:把长为10cm 的线段进行黄金分割,那么较长线段长为5(5-1)cm知识点二 :相似三角形的性质与判定5.相似三角形的判定(1) 两角对应相等的两个三角形相似(AAA). 如图,若∠A =∠D ,∠B =∠E ,则△ABC ∽△DEF.(2) 两边对应成比例,且夹角相等的两个三角形相似. 如图,若∠A =∠D ,AC ABDF DE=,则△ABC ∽△DEF. (3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC ∽△DEF. F E D CB A l 5l 4l 3l 2l 1ODCBAEDCBAFE DC BAFE DC B AFE DC B A6.相似三角形的性质(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方.(3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例:(1)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为2,则△ABC与△DEF的面积之比为9:4.(2) 如图,DE∥BC, AF⊥BC,已知S△ADE:S△ABC=1:4,则AF:AG=1:2.。
九年级数学下册第二十七章相似知识点归纳总结(精华版)单选题1、如图,在四边形ABDC中,不等长的两对角线AD、BC相交于O点,且将四边形ABDC分成甲、乙、丙、丁四个三角形.若OA:OB=OC:OD=2:3,则此四个三角形的关系,下列叙述正确的是()A.甲与丙相似,乙与丁相似B.甲与丙相似,乙与丁不相似C.甲与丙不相似,乙与丁相似D.甲与丙不相似,乙与丁不相似答案:A分析:利用已知条件得到即OAOC =OBOD,加上对顶角相等,则可判断△AOB∽△COD;再利用比例性质得到AOOB=OCOD,而∠AOC=∠BOD,所以△AOC∽△BOD.解:∵OA:OB=OC:OD=2:3,即OAOC =OBOD,而∠AOB=∠COD,∴△AOB∽△COD,∵OAOC =OBOD,∴AOOB =OCOD,∵∠AOC=∠BOD,∴△AOC∽△BOD.故选:A.小提示:本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.2、两个相似六边形,若对应边之比为3:2,则这两个六边形的周长比为()A.9:4B.9:2C.3:1D.3:2答案:D分析:根据相似图形的性质求解即可.解:因为这两个六边形相似,所以这两个六边形的周长比=对应边之比=3:2,故选:D.小提示:本题考查相似多边形的性质,熟练掌握相似多边形的周长比等于相似比,即相似多边形的周长比等于对应边的比是解题的关键.3、若ab =cd=−2,则a−cb−d=()A.−2B.2C.−12D.12答案:A分析:根据ab =cd=−2,可知a=﹣2b,c=﹣2d,将a和c的值代入求值的代数式化简即可.解:∵ab =cd=−2,∴a=﹣2b,c=﹣2d,∴a−cb−d =−2b+2db−d=−2(b−d)(b−d)=−2.故选:A.小提示:本题考查了比例的性质,解题的关键是根据已知将a和c用b和d正确表示.4、在比例尺为1:50的图纸上,长度为10cm的线段实际长为()A.50cmB.500cmC.150cm D.1500cm答案:B分析:根据成比例线段的性质求解即可.解:∵1:50=10:500,∴长度为10cm 的线段实际长为500cm , 故选B .小提示:本题考查了成比例线段,掌握比例的性质是解题的关键.5、线段AB 的长为2,点C 是线段AB 的黄金分割点,则线段AC 的长可能是( ) A .√5+1B .2﹣√5C .3﹣√5D .√5﹣2 答案:C分析:根据黄金分割点的定义,知AC 可能是较长线段,也可能是较短线段,分别求出即可. 解:分两种情况讨论 (1)如图,∵点C 是线段AB 的黄金分割点,AB =2, ∴AC =√5−12AB =√5−12×2=√5﹣1, 或如图,AC =2﹣(√5﹣1)=3﹣√5,故选:C .小提示:本题主要考查了黄金分割的定义,熟记黄金分割的比值是解题的关键.6、如图,在△ABC 中,∠ABC =90°,以点A 为圆心,以AB 的长为半径作弧交AC 于点D ,连接BD ,再分别以点B ,D 为圆心,大于12BD 的长为半径作弧,两弧交于点P ,作射线AP 交BC 于点E ,连接DE ,则下列结论正确的是( )A.DE垂直平分AC B.△ABE∽△CBAC.BD2=BC⋅BE D.CE⋅AB=BE⋅CA答案:D分析:根据作图可知AP是∠BAC的角平分线,AB=AD,根据SAS证明△ABE≌△ADE,可得EB=ED,∠ADE=∠ABE=90°,根据面积法可得S△ABES△AEC =12AB⋅BE12AC⋅DE=12AB⋅BE12AB⋅EC,可得ABAC=BEEC即可判断D选项正确,其他选项无法证明.解:根据作图可知AP是∠BAC的角平分线,AB=AD,∴∠EAB=∠EAD,在△ABE与△ADE中,{AE=AE∠EAB=∠EADAB=AD,∴△ABE≌△ADE,∴EB=ED,∵∠ABC=90°,∴∠ADE=∠ABE=90°,∴BE⊥AB,ED⊥C,∵S△ABES△AEC =12AB⋅BE12AC⋅DE=12AB⋅BE12AB⋅EC,∴ABAC =BEEC,即CE⋅AB=BE⋅CA.A,B,C选项无法证明.故选:D.小提示:本题考查了作角平分线,全等三角形的性质与判定,三角形面积公式,证明两三角形相似,垂直平分线的性质,理解基本作图是解题的关键.7、如图,AG:GD=3:1,BD:DC=2:3,则AE:EC的值是()A.8:7B.6:5C.3:2D.8:5答案:B分析:过点作DF∥BE交AC于点F,根据平行线分线段成比例定理分别求出CFFE =CDDB=32,AEFE=AGGD=3,进而得到答案.解:如图,过点作DF∥BE交AC于点F,由平行线分线段成比例定理得,则CFEF =CDDB=32,AEEF=AGGD=3,∴CF=32EF,AE=3EF∴EC=CF+EF=52EF∴AE∶EC=3EF∶52EF=6:5,故选:B小提示:本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.8、如图,l1∥l2∥l3,若ABBC =23,DF=15,则EF=()A.5B.6C.7D.9答案:D分析:根据平行线分线段成比例定理可得ABBC =DEEF,根据题意,DE=DF−EF,进而求解.∵l1∥l2∥l3,∴ABBC =DEEF.∵ABBC =23,∴DEEF =23,∵DE=DF−EF,DF=15,∴15−EFEF =23,∴EF=9.故选:D.小提示:本题考查的是平行线分线段成比例定理的应用,灵活运用平行线分线段成比例定理是解本题的关键.9、如图,C为线段AB的黄金分割点(AC<BC),且BC=2,则AB的长为()A.2√5+2B.2√5﹣2C.√5+1D.√5﹣3答案:C分析:黄金分割比定理:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,它们的比值为√5−12,叫黄金分割比,由此进行求解即可.解:C为线段AB的黄金分割点,BC=2 ,AC<BC∴ACBC =BCAB=√5−12∴AC=2×√5−12=√5−1∴AB=AC+BC=√5−1+2=√5+1故选:C小提示:本题考查黄金分割定理,理解黄金分割定理的概念,熟悉比值是解题的关键.10、如图,点D、E分别在△ABC的边AB、BC上,下列条件中一定能判定DE∥AC的是()A.ADDB =BECEB.BDAD=BEECC.ADAB=CEBED.BDBA=DEAC答案:B分析:如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.根据平行线分线段成比例定理对各个选项进行判断即可.A.由ADDB =BECE,不能得到DE∥BC,故本选项不合题意;B.由BDAD =BEEC,能得到DE∥BC,故本选项符合题意;C.由ADAB =CEBE,不能得到DE∥BC,故本选项不合题意;D.由BDBA =DEAC,不能得到DE∥BC,故本选项不符合题意;故选B.小提示:本题考查了平行线分线段成比例定理的应用,如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.填空题11、如图,在△ABC中,点E在BC上,且BE=3EC.D是AC的中点,AE、BD交于点F,则AFEF的值为______.答案:43分析:过E点作EH∥AC交BD于点H,根据平行线分线段成比例定理,由EH∥CD得到EHCD =34,由于AD=CD,则EH AD =34,然后利用平行线分线段成比例定理得到AFEF的值.过E点作EH∥AC交BD于点H,如图:∵EH∥AC,∴EHCD =BEBC,∵BE=3EC,∴EHCD =3CE4CE=34,∵D为AC的中点,∴AD=CD,∴EHCD =EHAD=34,∵EH∥AD,∴AFEF =ADEH=43.故答案为43.小提示:本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.12、如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.答案:100分析:由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴ABEC =BDCD,即AB=BD×ECCD,解得:AB=120×5060=100(米).故答案为100.小提示:本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.13、如图,矩形ABCD中,AB=6,BC=8,对角线BD的垂直平分线EF交AD于点E、交BC于点F,则线段EF的长为 __.答案:152##7.5分析:根据矩形的性质和勾股定理求出BD,证明△BOF∽△BCD,根据相似三角形的性质得到比例式,求出EF即可.解:如图:∵四边形ABCD是矩形,∴∠A=90°,又AB=6,AD=BC=8,∴BD=√AB2+AD2=10,∵EF是BD的垂直平分线,∴OB=OD=5,∠BOF=90°,又∠C=90°,∴ΔBOF∽ΔBCD,∴OFCD =BOBC,∴OF6=58,解得,OF=154,∵四边形ABCD是矩形,∴AD//BC,∠A=90°,∴∠EDO=∠FBO,∵EF是BD的垂直平分线,∴BO=DO,EF⊥BD,在ΔDEO和ΔBFO中,{∠EDO=∠FBOBO=DO∠EOD=∠FOB,∴ΔDEO≅ΔBFO(ASA),∴OE=OF,∴EF=2OF=15.2.所以答案是:152小提示:本题考查的是矩形的性质、线段垂直平分线的性质以及勾股定理的应用,掌握矩形的四个角是直角、对边相等以及线段垂直平分线的定义是解题的关键.14、如图,在▱ABCD中,点E在AB上,CE,BD交于点F,若AE:BE=4:3,且BF=2,则DF=_________.答案:143分析:由四边形ABCD是平行四边形,可得AB∥CD,AB=CD,继而可判定△BEF∽△DCF,根据相似三角形的对应边成比例,即可得BF:DF=BE:CD问题得解.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE:BE=4:3,∴BE:AB=3:7,∴BE:CD=3:7.∵AB∥CD,∴△BEF∽△DCF,∴BF:DF=BE:CD=3:7,即2:DF=3:7,∴DF=14.3故答案为14.3小提示:此题考查了相似三角形的判定与性质与平行四边形的性质.此题比较简单,解题的关键是根据题意判定△BEF∽△DCF,再利用相似三角形的对应边成比例的性质求解.15、如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,则EF的长为_______.答案:34分析:易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形的性质可得EFAB =DFDB,EFCD=BFBD,从而可得EFAB+EFCD=BF BD +DFBD=1,然后把AB=1,CD=3代入即可求出EF的值.解:∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴EFAB =DFDB,EFCD=BFBD,∴EFAB +EFCD=BFBD+DFBD=1,∵AB=1,CD=3,∴EF1+EF3=1,∴EF=34,所以答案是:34.小提示:本题考查相似三角形的判定与性质,解决本题的关键是掌握相似三角形对应边成比例.解答题16、如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上、已知纸板的两条边DF=0.5m,EF=0.3m,测得边DF离地面的高度AC =1.5m,CD=10m,求树高AB.答案:树高AB是9米分析:先证得△DEF∽△DCB,可得BCEF =DCDE,再由勾股定理可得DE=0.4m,可得BC=7.5m,即可求解.解:∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴BCEF =DCDE,∵DF=0.5 m,EF=0.3 m,AC=1.5m,CD=10 m,由勾股定理得DE=√DF2−EF2=0.4 m,∴BC0.3=100.4,∴BC=7.5m,∴AB=AC+BC=1.5+7.5=9(m),答:树高AB是9m.小提示:本题主要考查了相似三角形的应用,熟练掌握相似三角形的判定和性质是解题的关键.17、如图,ΔABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.(1)求证:PG与⊙O相切:(2)若EFAC =58,求BEOC的值;(3)在(2)的条件下,若⊙O的半径为4,PD=OD,求EC的长.答案:(1)见解析;(2)54;(3)6−√13.分析:(1)要证PG与⊙O相切只需证明∠OBG=90°,由∠BAC与∠BDC是同弧所对圆周角且∠BDC=∠DBO可得∠CBG=∠DBC,结合∠DBC+∠OBC=90°即可得证;(2)求BEOC需将BE与OC或OC相等线段放入两三角形中,通过相似求解可得,作OM⊥AC、连接OA,证△BEF∽△OAM得EFAM =BEOA,由AM=12AC、OA=OC知EF12AC=BEOC,结合EFAC=58即可得;(3)Rt△DBC中求得BC=4√3、∠DCB=30°,在Rt△EFC中设EF=x,知EC=2x、FC=√3x、BF=4√3﹣√3x,继而在Rt△BEF中利用勾股定理求出x的,从而得出答案.(1)证明:如图,连接OB,∵OB=OD,∴∠BDC=∠DBO,∵∠BAC=∠GBC、∠BDC=∠BAC,∴∠GBC=∠BDC,∵CD是⊙O的直径,∴∠DBC=90°,∴∠DBO+∠OBC=90°,∴∠GBC+∠OBC=90°,∴∠GBO=90°,∴PG与⊙O相切;(2)解:过点O 作OM ⊥AC 于点M ,连接OA ,∵OC =OA ,OM ⊥AC ,∴∠AOM =∠COM =12∠AOC ,∵ AC ⌢=AC ⌢,∴∠ABC =12∠AOC ,∴∠EBF =∠AOM ,又∵∠EFB =∠OMA =90°,∴ΔBEF ∽ΔOAM ,∴ EF AM =BE OA ,∵AM =12AC ,OA =OC ,∴ EF 12AC =BE OC ,又∵ EF AC =58,∴ BE OC =2×EF AC =2×58=54;(3)解:∵PD =OD ,∠PBO =90°,∴BD =OD =4,在RtΔDBC中,BC=√CD2−BD2=√82−42=4√3,又∵OD=OB,∴ΔDOB是等边三角形,∴∠DOB=60°,∵∠DOB=∠OBC+∠OCB,OB=OC,∴∠OCB=12∠DOB=30°,∴EC=2EF,由勾股定理FC=√EC2−EF2=√4EF2−EF2=√3EF ∴设EF=x,则EC=2x、FC=√3x,∴BF=4√3−√3x,∵BEOC =54,且OC=4,∴BE=5,在RtΔBEF中,BE2=EF2+BF2,∴25=x2+(4√3−√3x)2,整理得4x2−24x+23=0△=242-16×23=208>0解得:x=24±4√132×4=6±√132,∵6+√132>4,舍去,∴x=6−√132,∴EC=6−√13.小提示:本题主要考查圆的综合问题,涉及圆周角定理、圆心角定理、相似三角形的判定与性质、直角三角形的性质,一元二次方程的解法等知识,熟练掌握和运用相关的性质与定理进行解题是关键.18、如图,矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O.BE与AC相交于点F.(1)若BE平分∠CBD,求证:BF⊥AC;(2)找出图中与△OBF相似的三角形,并说明理由;(3)若OF=3,EF=2,求DE的长度.答案:(1)证明见解析(2)△ECF,△BAF与△OBF相似,理由见解析(3)3+√19分析:(1)根据矩形的性质和角平分线的定义即可得出结论;(2)根据判定两个三角形相似的判定定理,找到相应的角度相等即可得出;(3)根据△OBF∽△ECF得出3OA=2BF+9,根据△OBF∽△BAF得出BF2=3(OA+3),联立方程组求解即可.(1)证明:如图所示:∵四边形ABCD为矩形,∴∠2=∠3=∠4,∵DE=BE,∴∠1=∠2,∴∠1=∠3,又∵BE平分∠DBC,∴∠1=∠6,∴∠3=∠6,又∵∠3与∠5互余,∴∠6与∠5互余,∴BF⊥AC;(2)解:△ECF,△BAF与△OBF相似.理由如下:∵∠1=∠2,∠2=∠4,∴∠1=∠4,又∵∠OFB=∠BFO,∴△OBF∽△BAF,∵∠1=∠3,∠OFB=∠EFC,∴△OBF∽△ECF;(3)解:∵△OBF∽△ECF,∴EFOF =CFBF,∴23=CFBF,∴3CF=2BF,∵在矩形ABCD中对角线相互平分,图中OA=OC=OF+FC=3+FC,∴3OA=2BF+9①,∵△OBF∽△BAF,∴OFBF =BFAF,∴BF2=OF⋅AF,∵在矩形ABCD中AF=OA+OF=OA+3,∴BF2=3(OA+3)②,由①②,得BF=1±√19(负值舍去),∴DE=BE=2+1+√19=3+√19.小提示:本题考查矩形综合问题,涉及到矩形的性质、角平分线的性质、角度的互余关系、两个三角形相似的判定与性质等知识点,熟练掌握两个三角形相似的判定与性质是解决问题的关键.。
九年级数学下册第二十七章相似知识点总结归纳单选题1、如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是( )A.17.5m B.17m C.16.5m D.18m答案:A分析:先求得AC,再说明△ABE∽△ACD,最后根据相似三角形的性质列方程解答即可.解:∵AB=1.2m,BC=12.8m∴AC=1.2m+12.8m=14m∵标杆BE和建筑物CD均垂直于地面∴BE//CD∴△ABE∽△ACD∴ABBE =ACCD,即1.21.5=14CD,解得CD=17.5m.故答案为A.小提示:本题考查了相似三角形的应用,正确判定相似三角形并利用相似三角形的性质列方程计算是解答本题的关键.2、如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ADE与△ABC相似的是()A.B=∠D B.∠C=∠AED C.ABAD =DEBCD.ABAD=ACAE答案:C分析:△ADE≌△ABC根据题意可得∠EAD=∠CAB,然后根据相似三角形的判定定理逐项判断,即可求解.解:∵∠BAD=∠CAE,∴∠EAD=∠CAB,A.若添加∠B=∠D,可用两角对应相等的两个三角形相似,证明△ADE≌△ABC,故本选项不符合题意;B.若添加∠C=∠AED,可用两角对应相等的两个三角形相似,证明△ADE≌△ABC,故本选项不符合题意;C.若添加ABAD =DEBC,不能证明△ADE≌△ABC,故本选项符合题意;D.若添加ABAD =ACAE,可用两边对应成比例,且夹角相等的两个三角形相似,证明△ADE≌△ABC,故本选项不符合题意;故选:C.小提示:本题主要考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.3、如图,将ΔABC沿BC边上的中线AD平移到ΔA′B′C′的位置.已知ΔABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于()A.2B.3C.4D.32答案:B分析:由S△ABC=16、S△A′EF=9且AD为BC边的中线知SΔA′DE=12SΔA′EF=92,SΔABD=12SΔABC=8,根据△DA′E∽△DAB知(A′DAD )2=SΔA′DESΔABD,据此求解可得.∵SΔABC=16、SΔA′EF=9,且AD为BC边的中线,∴SΔA′DE=12SΔA′EF=92,SΔABD=12SΔABC=8,∵将ΔABC沿BC边上的中线AD平移得到ΔA′B′C′,∴A′E//AB,∴ΔDA′E∼ΔDAB,则(A′DAD )2=SΔA′DESΔABD,即(A′DA′D+1)2=298=916,解得A′D=3或A′D=−37(舍),故选B.小提示:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.4、如图,在等腰△ABC中,∠ABC=∠ACB=α,BC=12,点D是边AB上一点,且BD=4,点P是边BC上一动点,作∠DPE=α,射线PE交边AC于点E,当CE=9时,则满足条件的P点的个数是()A.1B.2C.3D.以上都有可能答案:A分析:由已知得∠ABC=∠ACB=α,再证明∠EPC=∠PDB,则可判断△PDB∽△EPC,利用相似比得到BD:PC =PB:CE,设PB=x,则PC=10﹣x,CE=9时,所以x2﹣12x+36=0,根据判别式的意义得到Δ=0,即原方程只有一个实数根即可选出答案.解:∵△ABC为等腰三角形,∴∠ABC=∠ACB=α,∵∠DPC=∠B+∠PDB,即∠DPE+∠EPC=∠B+∠PDB,而∠DPE=α,∴∠EPC=∠PDB,而∠ABC=∠ACB,∴△PDB∽△EPC,∴BDPC =PBCE,设PB=x,则PC=12﹣x,当CE=9时,∴412−x =x9,∴x2﹣12x+36=0,∵Δ=(﹣12)2﹣4×36=0,原方程只有一个实数根,∴点P有且只有一个,故选A.小提示:本题主要考查了三角形外角的性质,等腰三角形的性质,相似三角形的性质与判定,一元二次方程根的判别式,解题的关键在于能够熟练掌握相关知识进行求解.5、如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论:①DEBC =12;②SΔDOESΔCOB=12;③ADAB=OEOB;④SΔODESΔADC =13,其中正确的个数有()A.1个B.2个C.3个D.4个答案:C分析:由BE、CD是△ABC的中线,可得DE=12BC,即DEBC=12,从而可判断①;由DE是△ABC的中位线,可得△DOE∽△COB,从而可判断②;由△ADE∽△ABC与△DOE∽△COB,利用相似三角形的性质可判断③;由△ABC的中线BE与CD交于点O.可得点O是△ABC的重心,根据重心性质,BO=2OE,△ABC中BC上的高=△BOC中BC上的高的3倍,且△ABC与△BOC同底(BC),可得S△ABC=3S△BOC,由②和③知,S△ODE=1 4S△COB,S△ADE=34S△BOC,从而可判断④.解:①∵BE、CD是△ABC的中线,即D、E是AB和AC的中点,∴DE是△ABC的中位线,∴DE=12BC,即DEBC=12,故①正确;②∵DE是△ABC的中位线,∴DE∥BC,∴△DOE∽△COB,∴S△DOES△COB =(DEBC)2=(12)2=14,故②错误;③∵DE∥BC,∴△ADE∽△ABC,∴ADAB =DEBC,∵△DOE∽△COB,∴OEOB =DEBC,∴ADAB =OEOB,故③正确;④∵△ABC的中线BE与CD交于点O,∴点O是△ABC的重心,根据重心性质,BO=2OE,△ABC中BC上的高=3△BOC中BC上的高,且△ABC与△BOC同底(BC),∴S△ABC=3S△BOC,由②和③知,S△ODE=14S△COB,ADAB=DEBC=12,∴S△DAES△BAC =(ADAB)2=(12)2=14,∴S△ADE=34S△BOC,∴S△ODES△ADE =13,∵E是AC的中点,∴S△ADC=2S△ADE∴SΔODESΔADC =16.故④错误.综上,①③正确.故选B.小提示:本题考查的三角形的中线与三角形的中位线的性质,三角形的重心的性质,相似三角形的判定与性质,掌握利用以上知识解决三角形的面积问题是解题的关键.6、神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的()A.平移B.旋转C.轴对称D.黄金分割答案:D分析:根据黄金分割的定义即可求解.解:动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的黄金分割.故选:D小提示:本题考查了黄金分割的定义,黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为√5−12,约等于0.618,这个比例被公认为是最能引起美感的比例,因此被称为黄金分割.熟知黄金分割的定义是解题关键.7、若ab =cd=−2,则a−cb−d=()A.−2B.2C.−12D.12答案:A分析:根据ab =cd=−2,可知a=﹣2b,c=﹣2d,将a和c的值代入求值的代数式化简即可.解:∵ab =cd=−2,∴a=﹣2b,c=﹣2d,∴a−cb−d =−2b+2db−d=−2(b−d)(b−d)=−2.故选:A.小提示:本题考查了比例的性质,解题的关键是根据已知将a和c用b和d正确表示.8、在比例尺为1:50的图纸上,长度为10cm的线段实际长为()A.50cmB.500cmC.150cm D.1500cm答案:B分析:根据成比例线段的性质求解即可.解:∵1:50=10:500,∴长度为10cm的线段实际长为500cm,故选B.小提示:本题考查了成比例线段,掌握比例的性质是解题的关键.9、如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.ABAE =AGADB.DFCF=DGADC.FGAC=EGBDD.AEBE=CFDF答案:D分析:根据EG∥BD,可得△AEG∽△ABD,根据FG∥AC,可得△DGF∽△DAC,再根据相似三角形的性质即可求解.解:∵GE∥BD,∴AEBE =AGDG,△AEG∽△ABD,∴ABAE =ADAG,故选项A错误;∵GF∥AC,∴DFCF =DGAG,△DGF∽△DAC,故选项B错误;∵DFCF =DGAG∴AGDG =CFDF∴AEBE =CFDF故选项D正确;∵△AEG∽△ABD,△DGF∽△DAC,∴FGAC =DGDA,EGBD=AGAD故选项C错误;故选:D.小提示:本题考查了平行线分线段成比例定理及相似三角形的性质及判定,利用平行线分线段成比例,找出比例式是解题的关键.10、如图,在△ABC中,P、Q分别为AB、AC边上的点,且满足APAC =AQAB.根据以上信息,嘉嘉和淇淇给出了下列结论:嘉嘉说:连接PQ,则PQ//BC.淇淇说:△AQP∽△ABC.对于嘉嘉和淇淇的结论,下列判断正确的是()A.嘉嘉正确,淇淇错误B.嘉嘉错误,淇淇正确C.两人都正确D.两人都错误答案:B分析:根据APAC =AQAB,∠PAQ=∠CAB可以判定△AQP∽△ABC,APAB与AQAC不一定相等,不能判定PQ//BC.解:∵APAC =AQAB,∠PAQ=∠CAB,∴△AQP∽△ABC,即淇淇的结论正确;∴∠AQP=∠ABC,∠APQ=∠ACB,∵不能得出∠AQP=∠ACB或∠APQ=∠ABC,∴不能得出PQ//BC,即嘉嘉的结论不正确.故选B.小提示:本题考查相似三角形和平行线的判定,熟练掌握相似三角形和平行线的判定方法是解题的关键.填空题11、已知a2=b3=c5,则a+bc的值为_____.答案:1分析:由比例的性质,设a2=b3=c5=k,则a=2k,b=3k,c=5k,然后代入计算,即可得到答案.解:根据题意,设a2=b3=c5=k,∴a=2k,b=3k,c=5k,∴a+bc =2k+3k5k=1,所以答案是:1.小提示:本题考查了比例的性质,解题的关键是掌握比例的性质进行解题.12、如图,在△ABC中,点D,E分别在边AB,AC上,且ADDB =32,AEEC=12,射线ED和CB的延长线交于点F,则FBFC的值为________.答案:13分析:过B作BG∥AC交EF于G,得到△DBG∽△ADE,由相似三角形的性质得到BGAE =BDAD=23,推出BG:CE=13,根据相似三角形的性质即可得到结论.解:过B作BG∥AC交EF于G,∴△DBG∽△DAE,∴BGAE =BDAD=23,∵AEEC =12,∴BGCE =13,∵BG∥AC,∴△BFG∽△CFE,∴BFFC =BGCE=13.故答案是:13.小提示:本题考查了平行线分线段成比例定理,相似三角形的判定和性质,正确的作出辅助线构造相似三角形是解题的关键.13、如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则AG∶GF的值是_______.答案:6:5分析:作FN∥AD,交AB与N,设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可.作FN∥AD,交AB与N,∵四边形ABCD是正方形,∴AB∥CD,∴FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形.设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=32a,∴FM=52a,∵AE∥FM,∴AGGF =AEFM=3a52a=65.故答案为6∶5.小提示:本题考查了正方形的性质、平行线分线段成比例定理、三角形中位线等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题.14、如图,D是ΔABC边AB延长线上一点,请添加一个条件_______,使ΔACD∽ΔABC.答案:AC=AB•AD(答案不唯一)分析:根据相似三角形的判定添加适当的条件即可.解:添加:AC=AB•AD∵AC=AB•AD∴ACAB =ADAC∵∠A=∠A∴ΔACD∽ΔABC.所以答案是:AC=AB•AD(答案不唯一).小提示:本题考查相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.15、如图,在平面直角坐标系xOy 中,直线y =√33x +2√33与⊙O 相交于A ,B 两点,且点A 在x 轴上,则弦AB的长为_________.答案:2√3.分析:过O 作OE ⊥AB 于C ,根据垂径定理可得AC =BC =12AB ,可求OA =2,OD =2√33,在Rt △AOD 中,由勾股定理AD =4√33,可证△OAC ∽△DAO ,由相似三角形性质可求AC =√3即可.解:过O 作OE ⊥AB 于C ,∵AB 为弦,∴AC =BC =12AB ,∵直线y =√33x +2√33与⊙O 相交于A ,B 两点, ∴当y =0时,√33x +2√33=0,解得x =-2, ∴OA =2,∴当x =0时,y =2√33, ∴OD =2√33, 在Rt △AOD 中,由勾股定理AD =√AO 2+OD 2=√22+(2√33)2=4√33, ∵∠ACO =∠AOD =90°,∠CAO =∠OAD ,∴△OAC ∽△DAO ,AC AO =AO AD 即AC =AO 2AD =4√33=√3, ∴AB =2AC =2√3,故答案为2√3.小提示:本题考查直线与圆的位置关系,垂径定理,直线与两轴交点,勾股定理,三角形相似判定与性质,掌握以上知识、正确添加辅助线是解题关键.解答题16、问题背景:如图1,在矩形ABCD 中,AB =2√3,∠ABD =30°,点E 是边AB 的中点,过点E 作EF ⊥AB 交BD 于点F .实验探究:(1)在一次数学活动中,小王同学将图1中的△BEF 绕点B 按逆时针方向旋转90°,如图2所示,得到结论:①AE DF =_____;②直线AE 与DF 所夹锐角的度数为______.(2)小王同学继续将△BEF 绕点B 按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.拓展延伸:在以上探究中,当△BEF 旋转至D 、E 、F 三点共线时,则△ADE 的面积为______.答案:(1)√32,30°;(2)成立,理由见解析;拓展延伸:13√3+√398或13√3−√398 分析:(1)通过证明ΔFBD ∽ΔEBA ,可得AE DF =BE BF =√32,∠BDF =∠BAE ,即可求解; (2)通过证明ΔABE ∽ΔDBF ,可得AE DF =BE BF =√32,∠BDF =∠BAE ,即可求解;拓展延伸:分两种情况讨论,先求出AE ,DG 的长,即可求解.解:(1)如图1,∵∠ABD=30°,∠DAB=90°,EF⊥BA,∴cos∠ABD=BEBF =ABDB=√32,如图2,设AB与DF交于点O,AE与DF交于点H,∵ΔBEF绕点B按逆时针方向旋转90°,∴∠DBF=∠ABE=90°,∴ΔFBD∽ΔEBA,∴AEDF =BEBF=√32,∠BDF=∠BAE,又∵∠DOB=∠AOF,∴∠DBA=∠AHD=30°,∴直线AE与DF所夹锐角的度数为30°,所以答案是:√32,30°;(2)结论仍然成立,理由如下:如图3,设AE与BD交于点O,AE与DF交于点H,∵将ΔBEF绕点B按逆时针方向旋转,∴∠ABE=∠DBF,又∵BEBF =ABDB=√32,∴ΔABE∽ΔDBF,∴AEDF =BEBF=√32,∠BDF=∠BAE,又∵∠DOH=∠AOB,∴∠ABD=∠AHD=30°,∴直线AE与DF所夹锐角的度数为30°.拓展延伸:如图4,当点E在AB的上方时,过点D作DG⊥AE于G,∵AB=2√3,∠ABD=30°,点E是边AB的中点,∠DAB=90°,∴BE=√3,AD=2,DB=4,∵∠EBF=30°,EF⊥BE,∴EF=1,∵D、E、F三点共线,∴∠DEB=∠BEF=90°,∴DE=√BD2−BE2=√16−3=√13,∵∠DEA=30°,∴DG=12DE=√132,由(2)可得:AEDF =BEBF=√32,√13+1=√32,∴AE=√39+√32,∴ΔADE的面积=12×AE×DG=12×√39+√32×√132=13√3+√398;如图5,当点E在AB的下方时,过点D作DG⊥AE,交EA的延长线于G,同理可求:ΔADE 的面积=12×AE ×DG =12×√39−√32×√132=13√3−√398; 所以答案是:13√3+√398或13√3−√398. 小提示:本题是几何变换综合题,考查了矩形的性质,相似三角形的判定和性质,直角三角形的性质,旋转的性质等知识,利用分类讨论思想解决问题是解题的关键.17、已知△OAB 在平面直角坐标系中的位置如图所示.(1)将△ABO 绕原点O 顺时针旋转90°得△OA 1B 1;(2)以原点O 为位似中心,将△OA 1B 1在原点异侧按位似比2:1进行放大得到△OA 2B 2.答案:(1)见解析(2)见解析分析:(1)先找到A 、B 的对应点A 1、B 1,然后顺次连接O 、A 1、B 1即可;(2)先找到A 1、B 1的对应点A 2、B 2,然后顺次连接O 、A 2、B 2即可;.(1)解:如图所示,△OA 1B 1即为所求;(2)解:如图所示,△OA2B2即为所求.小提示:本题主要考查了再坐标系中画旋转图形,画位似图形,熟知画旋转图形和画位似图形的方法是解题的关键.18、已知AB是圆O直径,点C为圆上一点,OD⊥BC于D,过C作切线,交OD延长线于E.(1)求证:BE为圆O切线;(2)连接AD并延长交BE于F,若C为弧AB中点,OB=10,求BF.答案:(1)见详解;(2)203分析:(1)连接OC,先证明△COE≌△BOE,可得∠OBE=∠OCE=90°,即可求证;(2)过点D作DH⊥AB于点H,根据AB是圆O直径,OB=10,可得∠ACB=90°,AB=2OB=20,又由C为弧AB中OB=5,再证明△ADH~点,可得到△ABC是等腰直角三角形,进而△DOB是等腰直角三角形,从而DH=OH=12△AFB,利用相似三角形的性质,即可求解.(1)证明:如图1,连接OC,∵CE是圆O切线,∴∠OCE=90°,∵OC=OB,OD⊥BC,∴∠COE=∠BOE,∵OE=OE,∴△COE≌△BOE,∴∠OBE=∠OCE=90°,∴BE为圆O切线;(2)如图,过点D作DH⊥AB于点H,∵AB是圆O直径,OB=10,∴∠ACB=90°,AB=2OB=20,∵C为弧AB中点,∴AC=BC,∴△ABC是等腰直角三角形,∴∠ABC=45°,∵OD⊥BC,∴△DOB是等腰直角三角形,∵DH⊥AB,∴DH=OH=12OB=5,∴AH=AO+OH=15,∵BE⊥AB,∴DH∥BF,∴△ADH~△AFB,∴AHAB =DHBF,即1520=5BF,解得:BF=203.小提示:本题考查了相似三角形的判定与性质、切线的判定与性质、圆周角定理、等腰直角三角形的判定与性质、全等三角形的判定与性质、平行线的判定等知识,熟练掌握切线的判定与性质,证明△COE≌△BOE,△ADH~△AFB是解题的关键.。
描述:例题:初三数学下册(人教版)知识点总结含同步练习题及答案
第二十七章 相似 27.3 位似
一、学习任务
1. 了解图形的位似,能利用位似将一个图形放大或缩小,会建立坐标系描述点的位置.
二、知识清单
位似
三、知识讲解
1.位似
两个多边形不仅相似,而且对应顶点的连线相交于一点,对应边互相平行,像这样的两个图形叫
做位似图形(homothetic figures ),这个点叫做位似中心.
如图, 各顶点坐标分别是:,,.以 为位似中心,在 轴下方将 放大为原来的 倍.
分析:根据位似变化的性质,即可求得 ,,的坐标,则可画出 .
解:
△ABC A (−4,4)B (−1,2)C (−5,1)O x
△ABC 2A 1B 1C 1△
A 1
B 1
C 1
()
高考不提分,赔付1万元,关注快乐学了解详情。
答案:解析:A .B .C .D .D 由题意知两矩形位似比为 ,矩形 如图所示:
4
(−2,3)
(2,−3)(3,−2)或(−2,3)
(−2,3)或(2,−3)1:2OA 'B 'C '答案:4. 如图,在平面直角坐标系中,以原点 为位中心,将 扩大到原来的 倍,得到 .
若点 的坐标是 ,则点 的坐标是
A .
B .
C .
D .C O △ABO 2△A 'B 'O A (1,2)A '(
)(2,4)
(−1,−2)(−2,−4)(−2,−1)。