初三数学知识点归纳
- 格式:docx
- 大小:279.24 KB
- 文档页数:32
初三数学知识点整理(6篇)初三数学学问点整理11.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。
(2)数轴上的点:全部的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)(3)用数轴比拟大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。
重点学问:初中数学第一课,熟悉正数与负数!新初一的来~2.相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:把握相反数是成对消失的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。
(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。
(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。
3.肯定值1.概念:数轴上某个数与原点的距离叫做这个数的肯定值。
①互为相反数的两个数肯定值相等;②肯定值等于一个正数的数有两个,肯定值等于0的数有一个,没有肯定值等于负数的数.③有理数的肯定值都是非负数.2.假如用字母a表示有理数,则数a 肯定值要由字母a本身的取值来确定:①当a是正有理数时,a的肯定值是它本身a;②当a是负有理数时,a的肯定值是它的相反数﹣a;③当a是零时,a的肯定值是零.即|a|={a(a>0)0(a=0)﹣a(a0k0时,函数图像的两个分支分别在第一、三象限。
在每个象限内,y随x 的增大而减小。
①x的取值范围是x0,y的取值范围是y0;②当k0抛物线与x轴有两个不同交点.②△=0抛物线与x轴有的公共点(相切).③△0时,抛物线有最低点,函数有最小值.②当a<0时,抛物线有点,函数有值.(7)的符号的判定:表达式,请代值,对应y值定正负;对称轴,用处多,三种式子相约;轴两侧判,左同右异中为0;1的两侧判,左同右异中为0;-1两侧判,左异右同中为0.(8)函数图象的平移:左右平移变x,左+右-;上下平移变常数项,上+下-;平移结果先知道,反向平移是诀窍;平移方式不知道,通过顶点来寻找。
初三数学知识点归纳大全一、代数1. 代数式的拆分与合并2. 代数式的加减乘除3. 一元一次方程的解法(整数解、分数解)4. 一元一次方程的应用问题(两式联立、三式联立等)5. 一元一次不等式的解法6. 一元一次不等式的应用问题7. 二元一次方程的解法8. 二元一次方程的应用问题9. 去括号与去分母10. 同底数幂的乘法与除法11. 平方根与立方根的计算12. 分式的加减乘除13. 分式的化简与扩展14. 一次函数的概念与性质15. 一次函数的函数图像16. 一次函数的应用17. 二次根式的性质与运算18. 二次根式的应用19. 二次函数的概念与性质20. 二次函数的函数图像21. 二次函数的顶点与轴22. 二次函数的性质与应用23. 不等式组的解法24. 不等式组的应用25. 逻辑与命题公式二、几何1. 图形的初步认识2. 各种图形的性质(正方形、长方形、平行四边形、梯形等)3. 直角三角形的性质4. 等腰三角形的性质5. 等边三角形的性质6. 直线与角的关系7. 三角形的角平分线与中线8. 三角形的垂直平分线9. 三角形的高与中线10. 三角形的内心、外心、垂心、重心11. 各种四边形的性质12. 圆的性质与计算13. 圆的应用问题14. 直线与圆的位置关系15. 平面直角坐标系16. 正多边形的性质17. 圆锥曲线的认识18. 圆锥曲线的性质与图形19. 圆锥曲线的简单应用问题三、概率统计1. 随机事件的概念和性质2. 随机事件的计算3. 随机事件的应用问题4. 频率与概率的关系5. 简单的概率计算6. 概率的应用问题7. 样本调查与统计图表8. 样本调查与统计表格9. 样本调查与统计图形10. 样本调查的简单分析四、数据与图表1. 平均数的计算与应用2. 中位数的计算与应用3. 众数的计算与应用4. 带有频数的计算5. 折线图的绘制与分析6. 饼图的绘制与分析7. 条形图的绘制与分析8. 数据的简单分析与应用以上是初三数学知识点的归纳大全,希望能帮助到你。
初三数学知识点归纳总结一、数线与有理数1. 数线的绘制及利用2. 正数、负数、零的相对位置3. 绝对值的概念和性质4. 有理数的概念和进一步运算二、整式与分式1. 代数式与整式的关系和分类2. 整式的加、减、乘、除运算3. 因式分解与最大公因式4. 分式的概念及运算三、图形的初步认识1. 平面,直线,角的认识2. 平行线与相交线的性质3. 三角形及其分类4. 圆的概念与性质四、数的运算1. 空间中的平面图形:点、线、角、多边形等的性质和计算2. 数的概念、关系和性质的认识3. 基本运算(加、减、乘、除)的运用4. 计算与应用题实际问题中的数的运算五、比例与百分数1. 比的概念及比例的基本性质2. 比例式的解答和应用3. 百分数的概念和运用4. 实际应用中的比例和百分数计算六、方程与方程式1. 用字母表示未知量,用方程表示实际问题的关系2. 列方程、解方程及应用3. 二元一次方程式4. 代入法解方程与应用七、图形的认识和运用1. 平面图形(三角形、直角三角形、平行四边形、菱形、梯形等)的特点和性质2. 坐标平面及其应用3. 平行线,垂直线,垂线的性质和判断4. 与线段、角度有关的直线、角度和轴对称的认识和判断八、统计与概率1. 统计调查的基本方法与技巧2. 可视化的统计图形和统计图表的制作与分析3. 概率的概念、计算和应用4. 实际问题中的统计和概率计算以上是初三数学的主要知识点归纳总结,每个知识点都包含了若干个具体的概念、性质、解题方法和应用。
初三数学知识点的掌握对于学生打好数学基础和提高数学能力都有重要的作用。
在学习过程中,需要注意理论知识的掌握和应用能力的培养,通过练习、思考和解决问题来加深对数学的理解和运用能力的提高。
初三数学知识点归纳
初三数学知识点归纳(上)
1. 实数与实数运算:实数的分类、实数运算的基本性质、实数的逆元、实数的绝对值、实数之间的大小比较、实数的平方与平方根、两个实数的算术平均数与几何平均数
2. 代数式与等式:代数式与字母的运用、等式的性质、解方程的基本方法、根的概念、一元二次方程的解法
3. 函数初步:函数的基本概念、函数的图象、函数的性质、函数的运算、复合函数、反函数
4. 平面图形初步:平面直角坐标系、平面内的点、线、角、多边形、圆的性质、相似与全等
5. 实际问题与数学模型:解决实际问题的基本方法、数学模型及其应用
初三数学知识点归纳(下)
1. 空间图形初步:空间直角坐标系、空间内的点、直线、平面、角、多面体、圆锥、圆柱、球的性质、相似与全等
2. 三角形初步:勾股定理与勾股性质、三角形的面积公式、三角形的中线、高线、角平分线、垂线和中垂线
3. 三角函数初步:正弦函数、余弦函数、正切函数、余切函数的性质及图象、辅助角公式、三角函数的应用
4. 统计初步:统计调查、频数分布表、频率分布图、样本均值及总体均值、误差、抽样、调查结果的分析和处理
5. 概率初步:随机事件、概率的概念、概率的计算方法、样本空间、排列组合、锁链法、概率的应用
以上是初三数学全部知识点的归纳总结,希望对大家有所帮助。
希望同学们认真学习,多做练习,提高数学成绩。
初三数学知识点考点归纳总结一. 代数运算1.1 有理数有理数的四则运算,分数的加减乘除运算,化简分数、约分、分数转小数与百分数。
1.2 代数式代数式的基本概念、同类项合并、分配律、消元、整除关系、基本恒等式。
1.3 方程式一元一次方程式的解及其应用,一元二次方程式的解及其应用,二元一次方程式的解及其应用。
1.4 比例比例的概念、性质,比例的计算及应用,重复比例,反比例定理及其应用。
二. 几何与图形2.1 三角形角的概念、角度和弧度的转换,三角形的分类及性质,三角形的内角和定理,三角形的外角和定理。
2.2 直线与角平行直线和平行线特征及其性质,垂直直线和直角的特征及其性质,角的大小以及相邻角、对顶角等相关概念。
2.3 圆和圆的性质圆的基本性质,弧、弦、切线、割线等相关概念及其性质,圆内接四边形和正多边形。
2.4 空间几何与立体图形线面体的概念,正方体、长方体、棱柱、棱锥、圆柱、圆锥的性质和计算。
三. 概率与统计3.1 随机事件和概率事件的概念和性质,基本事件概率、加法规则,条件概率和乘法规则,概率分布和直方图的绘制。
3.2 常见概率问题求样本空间、容斥原理,贝叶斯定理,计算机模拟实验,概率统计中的应用问题。
四. 函数4.1 一些常见函数幂函数、指数函数、对数函数、三角函数、反三角函数的基本概念和性质。
4.2 函数的运算函数的加、减、乘、除的运算,函数的复合运算,导数的概念,导数的基本应用:切线问题和极值点问题。
以上是初三数学知识点考点的归纳总结。
需要注意的是,以上知识点只是初三数学所要学习的知识点的一个大致的方向,可能还存在某些细节问题需要重点学习。
同时,不管学习的什么知识点,都需要掌握好其基本概念和方法,这样才能在应用中灵活运用,解决问题,取得相应的成绩。
初三数学知识点归纳初三数学知识点归纳1、整数和小数整数和小数是常见的数形式,整数是没有小数点的数字,如1,2,3,-4,-5等,小数是有小数点的数字,如0.1,0.25,0.867等。
整数和小数的加减乘除运算可以使用加减乘除法则进行,需要注意小数位数和进位。
2、代数式与方程式代数式是用字母及数字表示的数学式子,如2x+3y,a+b+c等,其中字母通常代表变量,可以取任意值。
方程式是一个等式,其中包含未知数,如2x+3=7,2x+7y=12等。
方程式的解是未知数的值,求解方程式需要使用化简、移项等方法。
3、平面几何平面几何是研究平面图形的学科,常见的平面图形有三角形、直角三角形、等边三角形、矩形、正方形、圆等。
要掌握平面几何知识,需要了解各种图形的定义、性质、面积、周长等。
常见的平面几何计算方法有勾股定理、相似性质、正弦余弦定理等。
4、立体几何立体几何是研究三维空间中的图形的学科,常见的图形有长方体、正方体、圆锥、圆柱、球等。
要掌握立体几何知识,需要了解各种图形的定义、性质、体积、表面积等。
常见的立体几何计算方法有解析几何、共面条件、空间向量等。
5、函数函数是一种数学关系,将一组数映射到另一组数上。
函数有定义域、值域、图像、反函数等概念,可以表示实际问题中的关系。
常见的函数类型有一次函数、二次函数、三次函数、指数函数、对数函数等。
要掌握函数知识,需要了解函数的定义、性质、图像、变化规律等。
6、概率统计概率统计是研究随机事件的发生概率和分布规律的学科,常见的统计方法有平均数、中位数、众数、标准差等,常见的概率计算方法有事件的概率、独立事件、概率分布等。
掌握概率统计知识可以对实际问题进行准确的分析和解决。
7、三角函数三角函数是一组以角度为自变量的数学函数,包括正弦、余弦、正切、余切、正割、余割等,都是周期函数。
使用三角函数可以描述周期运动、波浪等现象。
了解三角函数的定义、性质、变化规律等,可以应用于实际问题,如计算三角形面积、利用三角函数描述电磁波、声波等。
初三数学知识点
一、整数运算:
1. 整数的加减乘除运算及应用
2. 整数的倍数和约数
3. 整数的正负数和相反数
二、分数运算:
1. 基本概念和表示方法
2. 分数的四则运算及应用
3. 分数化简与比较大小
三、代数式:
1. 求代数式的值
2. 同类项合并
3. 四则运算及应用
四、方程与不等式:
1. 一元一次方程和二元一次方程的概念和解法
2. 不等式基本概念及解法
3. 常用不等式的应用
五、平面几何:
1. 基本图形和特殊线段的性质(如:外心、垂心、中心、中垂线、角平分线等)
2. 直角三角形的性质和勾股定理的应用
3. 常用几何公式和计算
六、数列:
1. 数列基本概念和表示方法(如:等差数列、等比数列)
2. 数列的通项公式、公差、首项、末项的计算
3. 数列的求和公式和应用
七、三角函数:
1. 基本概念,正弦、余弦、正切、余切的性质
2. 三角函数的图象和周期性
3. 常用三角函数公式和计算
八、概率与统计:
1. 随机事件及概率的定义和计算
2. 统计基本概念,如频数、频率、中位数、众数、平均数等
3. 统计图表的选择和作图
九、函数:
1. 函数的基本概念和表示法
2. 函数的解析式及各种函数的性质
3. 常用函数的图象以及函数的变化规律
十、立体几何:
1. 基本几何体及其性质
2. 空间平面、空间直线、空间角的基本概念和特殊性质
3. 立体几何的计算及应用
以上为初三数学的知识点概括,学习者可结合实际情况进行更深入的学习,并灵活应用相关知识进行解题。
初三数学知识点归纳总结一、整数运算1. 整数的加法、减法、乘法、除法运算规则;2. 整数的加减法混合运算,注意运算顺序和正负数的关系;3. 整数的乘法和除法运算,注意正负数相乘相除的规律和性质。
二、代数式与方程1. 代数式的含义和性质,如系数、变量、常数项等;2. 方程的概念和解方程的基本思想;3. 一元一次方程的解法,如去括号、合并同类项、移项等;4. 一元一次方程的应用问题解法,如工程问题、几何问题等。
三、图形的认识1. 长方形、平行四边形、正方形、三角形、圆等基本图形的特征和性质;2. 平面图形的相似性质;3. 三角形中的角度关系,如内角和、外角和、同旁内角等;4. 三角形的全等条件和判定方法。
四、比例与百分数1. 比例的含义和性质,如比例的等价性、反比例的概念等;2. 比例的四则运算,包括比例的乘法、除法、身份的应用问题等;3. 百分数的概念和转化方法,如百分数与分数、小数的互相转化等;4. 百分数的应用问题解答,如百分比增长、减少、利润计算等。
五、统计与概率1. 数据的收集、整理、分析和解读方法;2. 棒图、折线图、扇形图等图表的制作和解读;3. 概率的基本概念和性质,如随机性、样本空间、事件等;4. 事件发生的几率计算,包括等可能事件、不等可能事件等。
六、空间几何1. 立体图形的认识和特征,如正方体、长方体、棱锥、棱台等;2. 空间几何问题的解答,如表面积、体积的计算方法等;3. 直角坐标系与点、线、面的位置关系的判断;4. 网格图和坐标系图的应用,如解决迁移问题、距离等问题。
七、函数的初步认识1. 函数的概念和符号表示法;2. 函数的自变量、因变量的关系,例如y = f(x);3. 函数的图象认识,如线性函数、一次函数等;4. 函数的应用问题解答,如函数关系、函数图象的运用等。
综上所述,初三数学主要涵盖整数运算、代数式与方程、图形的认识、比例与百分数、统计与概率、空间几何和函数的初步认识等内容。
初三数学重点知识点归纳初三年级数学知识点归纳旋转一.知识框架二.知识概念1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。
这个定点叫做旋转中心,转动的角度叫做旋转角。
(图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。
)2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。
3.中心对称图形与中心对称:中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。
中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。
4.中心对称的性质:关于中心对称的两个图形是全等形。
关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。
本章内容通过让学生经历观察、操作等过程了解旋转的概念,探索旋转的性质,进一步发展空间观察,培养几何思维和审美意识,在实际问题中体验数学的快乐,激发对学习学习。
初三数学复习知识点轴对称知识点1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
3.角平分线上的点到角两边距离相等。
4.线段垂直平分线上的任意一点到线段两个端点的距离相等。
5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
6.轴对称图形上对应线段相等、对应角相等。
7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
初三数学知识点整理一、《二次函数》1、二次函数的定义:形如y=ax2+bx+c (a≠0)形式叫二次函数。
2、解析式的形式:①一般式:y=ax2+bx+c (a≠0)②顶点式:y=a(x—h)2+k3、图像性质:【顶点的横坐标即图像的对称轴,纵坐标即函数的极值】4 、 a、b、c的作用①a决定:图像的开口方向,a>0,开口向上,a<0,开口向下。
② |a ︳决定:图像的开口大小,|a ︳越大,开口越小.②a、b共同决定:对称轴,当a、b同号时,对称轴在y轴的左侧。
当a、b异号时,对称轴在y轴的右侧。
③c决定:图像与Y轴交点的纵坐标.5、变换求解析式时,考虑两个方面:①a的值②顶点的变化6二次函数与一元二次方程对于二次函数y=ax2+bx+c(a≠0),当Y=0时,得一元二次方程ax2+bx+c=0当b2-4ac>0时,方程有两个不相等的实数根,抛物线与x轴有两个交点,交点横坐标为方程的实根.当b2-4ac=0时,方程有两个相等的实数根,抛物线与x轴有且只有一个交点,交点横坐标为方程的实根。
当b2-4ac<0时,方程没有实数根,抛物线与x轴没有交点。
7、对于二次函数y=ax2+bx+c(a≠0)①如何求与x轴的交点坐标:令y=0代入函数关系式,解得方程的根即为交点的横坐标。
②如何求与y轴的交点坐标:令x=0代入函数关系式。
交点坐标为(0,c)③如何求两个函数图像的交点坐标:将两个函数解析式组成方程组求解。
8、对于二次函数y=ax2+bx+c(a≠0)①当图像顶点在x2-4ac=0 对应解析式为y=a(x—h)2②当图像顶点在y对应解析式为y=ax2+c③当图像顶点在原点时,对应解析式为 y=ax2④当图像过原点时,对应解析式为 y=ax2+bx9、①方程ax2+bx+c=K的解为函数y=ax2+bx+c与直线Y=K的交点的横坐标。
②抛物线的对称轴方程为221xx,其中x1,x2为图像上两对称点的横坐标。
北师大版初中数学定理知识点汇总[九年级(上册)第一章 证明(二)※等腰三角形的“三线合一”:顶角平分线、底边上的中线、底边上的高互相重合。
※等边三角形是特殊的等腰三角形,作一条等边三角形的三线合一线,将等边三角形分成两个全等的 直角三角形,其中一个锐角等于30o ,这它所对的直角边必然等于斜边的一半。
※有一个角等于60o 的等腰三角形是等边三角形。
※如果知道一个三角形为直角三角形首先要想的定理有: ①勾股定理:222c b a =+(注意区分斜边与直角边)②在直角三角形中,如有一个内角等于30o ,那么它所对的直角边等于斜边的一半 ③在直角三角形中,斜边上的中线等于斜边的一半(此定理将在第三章出现) ※垂直平分线.....是垂直于一条线段..并且平分这条线段的直线..。
(注意着重号的意义) <直线与射线有垂线,但无垂直平分线>※线段垂直平分线上的点到这一条线段两个端点距离相等。
※线段垂直平分线逆定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。
※三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等。
(如图1所示,AO=BO=CO )※角平分线上的点到角两边的距离相等。
※角平分线逆定理:在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。
角平分线是到角的两边距离相等的所有点的集合。
A CBO图1图2OA C BDEF※三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。
(如图2所示,OD=OE=OF)第二章 一元二次方程※只含有一个未知数的整式方程,且都可以化为02=++c bx ax (a 、b 、c 为 常数,a ≠0)的形式,这样的方程叫一元二次方程......。
※把02=++c bx ax (a 、b 、c 为常数,a ≠0)称为一元二次方程的一般形式,a 为二次项系数;b 为一次项系数;c 为常数项。
※解一元二次方程的方法:①配方法 <即将其变为0)(2=+m x 的形式>②公式法 aacb b x 242-±-= (注意在找abc 时须先把方程化为一般形式)③分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解。
(主要包括“提公因式”和“十字相乘”) ※配方法解一元二次方程的基本步骤:①把方程化成一元二次方程的一般形式;②将二次项系数化成1; ③把常数项移到方程的右边;④两边加上一次项系数的一半的平方; ⑤把方程转化成0)(2=+m x 的形式; ⑥两边开方求其根。
※根与系数的关系:当b 2-4ac>0时,方程有两个不等的实数根;当b 2-4ac=0时,方程有两个相等的实数根; 当b 2-4ac<0时,方程无实数根。
※如果一元二次方程02=++c bx ax 的两根分别为x 1、x 2,则有:ac x x abx x =⋅-=+2121。
※一元二次方程的根与系数的关系的作用: (1)已知方程的一根,求另一根;(2)不解方程,求二次方程的根x 1、x 2的对称式的值,特别注意以下公式:①2122122212)(x x x x x x -+=+ ②21212111x x x x x x +=+ ③212212214)()(x x x x x x -+=-④21221214)(||x x x x x x -+=- ⑤||22)(|)||(|2121221221x x x x x x x x +-+=+⑥)(3)(21213213231x x x x x x x x +-+=+ ⑦其他能用21x x +或21x x 表达的代数式。
(3)已知方程的两根x 1、x 2,可以构造一元二次方程:0)(21221=++-x x x x x x (4)已知两数x 1、x 2的和与积,求此两数的问题,可以转化为求一元二次方程0)(21221=++-x x x x x x 的根※在利用方程来解应用题时,主要分为两个步骤:①设未知数(在设未知数时,大多数情况只要设问题为x ;但也有时也须根据已知条件及等量关系等诸多方面考虑);②寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。
※处理问题的过程可以进一步概括为: 解答检验求解方程抽象分析问题→→ 第三章 证明(三)※平行四边的定义:两线对边分别平行的四边形叫做平行四边形.....,平行四边形不相邻的两顶点连成的线段叫做它的对角线...。
※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。
※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。
两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两条对角线互相平分的四边形是平行四边形。
※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。
这个距离称为平行线之间的距离。
菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
※矩形的定义:有一个角是直角的平行四边形叫矩形..。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。
正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。
鹏翔教图3※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。
同一底上的两个内角相等的梯形是等腰梯形。
※三角形的中位线平行于第三边,并且等于第三边的一半。
※夹在两条平行线间的平行线段相等。
※在直角三角形中,斜边上的中线等于斜边的一半第四章视图与投影※三视图包括:主视图、俯视图和左视图。
三视图之间要保持长对正,高平齐,宽相等。
一般地,俯视图要画在主视图的下方,左视图要画在正视图的右边。
主视图:基本可认为从物体正面视得的图象俯视图:基本可认为从物体上面视得的图象左视图:基本可认为从物体左面视得的图象※视图中每一个闭合的线框都表示物体上一个表面(平面或曲面),而相连的两个闭合线框一定不在一个平面上。
※在一个外形线框内所包括的各个小线框,一定是平面体(或曲面体)上凸出或凹的各个小的平面体(或曲面体)。
※在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线。
物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影..。
太阳光线可以看成平行的光线,像这样的光线所形成的投影称为平行投影....。
探照灯、手电筒、路灯的光线可以看成是从一点出发的,像这样的光线所形成的投影称为中心投影....。
※区分平行投影和中心投影:①观察光源;②观察影子。
眼睛的位置称为视点..。
..;眼睛看不到的地方称为盲区..;由视点发出的线称为视线※从正面、上面、侧面看到的图形就是常见的正投影,是当光线与投影垂直时的投影。
①点在一个平面上的投影仍是一个点;②线段在一个面上的投影可分为三种情况:线段垂直于投影面时,投影为一点;线段平行于投影面时,投影长度等于线段的实际长度;线段倾斜于投影面时,投影长度小于线段的实际长度。
③平面图形在某一平面上的投影可分为三种情况:平面图形和投影面平行的情况下,其投影为实际形状;平面图形和投影面垂直的情况下,其投影为一线段; 平面图形和投影面倾斜的情况下,其投影小于实际的形状。
第五章 反比例函数※反比例函数的概念:一般地,xky =(k 为常数,k ≠0)叫做反比例函数,即y 是x 的反比例函数。
(x 为自变量,y 为因变量,其中x 不能为零)※反比例函数的等价形式:y 是x 的反比例函数 ←→ )0(≠=k x ky ←→ )0(1≠=-k kx y←→ )0(≠=k k xy ←→ 变量y 与x 成反比例,比例系数为k.※判断两个变量是否是反比例函数关系有两种方法:①按照反比例函数的定义判断;②看两个变量的乘积是否为定值<即k xy =>。
(通常第二种方法更适用) ※反比例函数的图象由两条曲线组成,叫做双曲线※反比例函数的画法的注意事项:①反比例函数的图象不是直线,所“两点法”是不能画的;②选取的点越多画的图越准确;③画图注意其美观性(对称性、延伸特征)。
※反比例函数性质:①当k>0时,双曲线的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小; ②当k<0时,双曲线的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大;③双曲线的两支会无限接近坐标轴(x 轴和y 轴),但不会与坐标轴相交。
※反比例函数图象的几何特征:(如图4所示) 点P(x,y)在双曲线上都有||||S k xy S AOB OAPB ===∆矩形第六章 频率与概率每一小组的频数与数据总数的比值叫做这一小组的频率..; 即:实验次数频数数据总数频数频率==在频率分布直方图中,由于各个小长方形的面积等于相应各组的频率,而各组频率的和等于1。
因此,各个小长方形的面积的和等于1。
※频率分布表和频率分布直方图是一组数据的频率分布的两种不同表示形式,前者准确,后者直观。
用一件事件发生的频率来估计这一件事件发生的概率。
可用列表的方法求出概率,但此方法不太适用较复杂情况。
※假设布袋内有m 个黑球,通过多次试验,我们可以估计出布袋内随机摸出一球,它为白球的概率;※要估算池塘里有多少条鱼,我们可先从池塘里捉上100条鱼做记号,再放回池塘,之后再从池塘中捉上200条鱼,如果其中有10条鱼是有标记的,再设池塘共有x 条鱼,则可依照20010100=x 估算出鱼的条数。
(注意估算出来的数据不是确切的,所以应谓之“约是XX ”) ※生活中存在大量的不确定事件,概率是描述不确定现象的数学模型,它能准确地衡量出事件发生的可能性的大小,并不表示一定会发生。
初中数学知识点总结(下册) 第一章 直角三角形边的关系※一. 正切:定义:在Rt △ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA ,即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan ”乘以“A ”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;⑤tanA 的值越大,梯子越陡,∠A 越大; ∠A 越大,梯子越陡,tanA 的值越大。