导数及其应用单调性
- 格式:doc
- 大小:125.50 KB
- 文档页数:4
导数的定义及其应用领域导数是微积分学中的重要概念,它描述了函数在某一点的变化率。
导数的定义和性质被广泛地应用在物理、工程、经济学等领域中。
本文将简要介绍导数的定义,以及它在不同领域的应用。
一、导数的定义导数可以理解为函数的瞬时变化率。
对于函数f(x),在点x处的导数表示为f'(x)或df(x)/dx。
导数的定义可以通过极限来描述,即f'(x) = lim┬(h→0)〖((f(x+h)-f(x))/h)〗,其中h是趋于0的增量。
二、导数的性质导数具有多个重要性质,其中一些常见的性质包括:1. 导数可以用于判断函数的单调性。
如果在某个区间内,函数的导数始终为正(或负),则该函数在该区间内单调增加(或减少)。
2. 导数可以用于求解函数的最大值和最小值。
函数在极值点处的导数为零或不存在。
3. 导数满足乘法规则、和差规则和链式法则等运算规则,使得我们可以方便地计算复杂函数的导数。
三、导数的应用领域1. 物理学中的运动学导数在物理学中的运动学方程中起着关键作用。
例如,速度可以定义为物体位移关于时间的导数,加速度则是速度关于时间的导数。
通过求解导数,我们可以推导出各种运动的速度、加速度和位移关系,从而更好地理解物体的运动规律。
2. 工程学中的控制系统导数在工程学中的控制系统中经常被使用。
例如,在机械工程中的控制系统中,导数可以表示速度或者加速度的变化。
这对于设计和分析各种控制系统非常重要,从而提高系统的稳定性和响应度。
3. 经济学中的边际效应导数在经济学中的边际效应分析中起着关键作用。
例如,在经济学中,边际成本和边际收益可以通过求导来计算。
这对于制定合理的经济政策和决策具有重要意义。
4. 生物学中的生态模型导数在生物学中的生态模型中也有广泛应用。
生态学家利用导数来描述物种数量的变化速率,从而研究生态系统的稳定性和动态性。
导数的计算帮助我们理解和预测生物多样性和种群变化等重要生物学现象。
5. 金融学中的风险管理导数在金融学中的风险管理中也起着重要作用。
导数与函数的单调性【考点梳理】函数的导数与单调性的关系函数y =f (x )在某个区间内可导,则(1)若f ′(x )>0,则f (x )在这个区间内单调递增;(2)若f ′(x )<0,则f (x )在这个区间内单调递减;(3)若f ′(x )=0,则f (x )在这个区间内是常数函数.【考点突破】考点一、判断或证明函数的单调性【例1】已知函数已知函数f (x )=ln x +a (1-x ),讨论f (x )的单调性.[解析] f (x )的定义域为(0,+∞),f ′(x )=1x-a . 若a ≤0,则f ′(x )>0恒成立,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0; x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0, 所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. 【类题通法】用导数判断或证明函数f (x )在(a ,b )内的单调性的步骤(1)一求.求f ′(x );(2)二定.确认f ′(x )在(a ,b )内的符号;(3)三结论.作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.【对点训练】已知函数f (x )=x 3+ax 2+b (a ,b ∈R),试讨论f (x )的单调性.[解析] f ′(x )=3x 2+2ax ,令f ′(x )=0,解得x 1=0,x 2=-2a 3.当a =0时,因为f ′(x )=3x 2≥0,所以函数f (x )在(-∞,+∞)上单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫-∞,-2a 3∪(0,+∞)时,f ′(x )>0, x ∈⎝ ⎛⎭⎪⎫-2a 3,0时,f ′(x )<0, 所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,-2a 3,(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-2a 3,0上单调递减; 当a <0时,x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫-2a 3,+∞时,f ′(x )>0, x ∈⎝ ⎛⎭⎪⎫0,-2a 3时,f ′(x )<0, 所以函数f (x )在(-∞,0),⎝ ⎛⎭⎪⎫-2a 3,+∞上单调递增,在⎝⎛⎭⎪⎫0,-2a 3上单调递减. 考点二、求函数的单调区间【例2】已知函数f (x )=x 22-a ln x ,a ∈R ,求f (x )的单调区间.[解析] 因为f (x )=x 22-a ln x ,所以x ∈(0,+∞), f ′(x )=x -a x =x 2-a x. (1)当a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上为单调递增函数.(2)当a >0时,f ′(x )=(x +a )(x -a )x,则有 ①当x ∈(0,a )时,f ′(x )<0,所以f (x )的单调递减区间为(0,a ).②当x ∈(a ,+∞)时,f ′(x )>0,所以f (x )的单调递增区间为(a ,+∞).综上所述,当a ≤0时,f (x )的单调递增区间为(0,+∞),无单调递减区间.当a >0时,函数f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).【类题通法】求函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求f ′(x );(3)在定义域内解不等式f ′(x )>0,得单调递增区间;(4)在定义域内解不等式f ′(x )<0,得单调递减区间.【对点训练】已知函数f (x )=ax 2-a -ln x ,a ∈R ,求f (x )的单调区间.[解析] 由题意得f ′(x )=2ax -1x =2ax 2-1x(x >0). 当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0有x =12a ,当x ∈⎝ ⎛⎭⎪⎫0,12a 时,f ′(x )<0,所以f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12a . 当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,所以f (x )的单调递增区间为⎝⎛⎭⎪⎫12a ,+∞. 综上所述,当a ≤0时,f (x )的单调递减区间为(0,+∞),无单调递增区间.当a >0时,函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12a ,单调递增区间为⎝ ⎛⎭⎪⎫12a ,+∞. 考点三、已知函数的单调性求参数【例3】已知函数f (x )=x 3-ax -1.若f (x )在R 上为增函数,求实数a 的取值范围.[解析] 因为f (x )在(-∞,+∞)上是增函数,所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立,即a ≤3x 2对x ∈R 恒成立.因为3x 2≥0,所以只需a ≤0.又因为a =0时,f ′(x )=3x 2≥0,f (x )=x 3-1在R 上是增函数,所以a ≤0,即实数a 的取值范围为(-∞,0].【变式1】函数f (x )不变,若f (x )在区间(1,+∞)上为增函数,求a 的取值范围.[解析] 因为f ′(x )=3x 2-a ,且f (x )在区间(1,+∞)上为增函数,所以f ′(x )≥0在(1,+∞)上恒成立,即3x 2-a ≥0在(1,+∞)上恒成立,所以a ≤3x 2在(1,+∞)上恒成立,所以a ≤3,即a 的取值范围为(-∞,3].【变式2】函数f (x )不变,若f (x )在区间(-1,1)上为减函数,试求a 的取值范围.[解析] 由f ′(x )=3x 2-a ≤0在(-1,1)上恒成立,得a ≥3x 2在(-1,1)上恒成立. 因为-1<x <1,所以3x 2<3,所以a ≥3.即当a 的取值范围为[3,+∞)时,f (x )在(-1,1)上为减函数.【变式3】函数f (x )不变,若f (x )在区间(-1,1)上不单调,求a 的取值范围.[解析] ∵f (x )=x 3-ax -1,∴f ′(x )=3x 2-a .由f ′(x )=0,得x =±3a 3(a ≥0). ∵f (x )在区间(-1,1)上不单调,∴0<3a 3<1,得0<a <3, 即a 的取值范围为(0,3).【类题通法】根据函数单调性求参数的一般方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题,即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.【对点训练】1.若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( ) A .[-1,1] B .⎣⎢⎡⎦⎥⎤-1,13 C .⎣⎢⎡⎦⎥⎤-13,13 D .⎣⎢⎡⎦⎥⎤-1,-13 [答案] C[解析] 取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增的条件,故排除A ,B ,D.故选C.2.已知a ∈R ,若函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数)在(-1,1)上单调递增,求a 的取值范围.[解析] 因为函数f (x )在(-1,1)上单调递增,所以f ′(x )≥0对x ∈(-1,1)都成立.因为f ′(x )=(-2x +a )e x +(-x 2+ax )e x =[-x 2+(a -2)x +a ]e x ,所以[-x 2+(a -2)x +a ]e x ≥0对x ∈(-1,1)都成立.因为e x>0,所以-x 2+(a -2)x +a ≥0, 则a ≥x 2+2x x +1=(x +1)2-1x +1=(x +1)-1x +1对x ∈(-1,1)都成立. 令g (x )=(x +1)-1x +1,则g ′(x )=1+1(x +1)2>0, 所以g (x )=(x +1)-1x +1在(-1,1)上单调递增, 所以g (x )<g (1)=(1+1)-11+1=32, 所以a ≥32,又当a =32时,当且仅当x =0时,f ′(x )=0, 所以a 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞.。
导数的应用的单调性与极值在微积分学中,导数是一个非常重要的概念,它有着广泛的应用。
本文将讨论导数的应用方面,着重探讨其与单调性和极值的关系。
一、导数与函数的单调性在研究函数的单调性时,导数是一个非常重要的工具。
通过求函数的导数,我们可以得到函数的增减性质。
1. 单调递增如果一个函数在某个区间内的导数恒大于零,那么这个函数在该区间内是单调递增的。
也就是说,函数的图像在这个区间上是向上的。
举个例子,考虑函数f(x) = x^2,我们可以求得它的导数f'(x) = 2x。
由于2x大于零,所以函数f(x)在整个实数轴上都是单调递增的。
2. 单调递减类似地,如果一个函数在某个区间内的导数恒小于零,那么这个函数在该区间内是单调递减的。
还是以前面的例子f(x) = x^2为例,我们可以看到,函数f(x)的导数2x在负数区间上小于零,因此函数f(x)在负数区间上是单调递减的。
通过上述例子可以看出,导数可以帮助我们分析函数的单调性,从而更好地理解函数的变化规律。
二、导数与函数的极值另一个与导数密切相关的概念是函数的极值。
极值分为极大值和极小值,而导数可以帮助我们判断函数的极值点。
1. 极值点一个函数在某个点上的导数等于零时,该点就是函数的极值点。
根据导数的定义,导数为零表示函数在该点附近的变化趋势趋向于水平。
2. 极大值如果一个函数在某个点的导数从正数变为负数,那么这个点就是函数的极大值点。
在极大值点上,函数的图像从上升转向下降。
3. 极小值与极大值相反,如果一个函数在某个点的导数从负数变为正数,那么这个点就是函数的极小值点。
在极小值点上,函数的图像从下降转向上升。
例如,考虑函数f(x) = x^3,我们可以求得它的导数f'(x) = 3x^2。
当x等于零时,导数为零,说明函数在x=0处有极值。
通过进一步的分析,我们可以得知这个点是极小值点。
三、综合应用导数的应用不仅仅局限于单调性和极值的讨论,还可以应用于其他问题的求解。
利用导函数解决函数单调性问题函数在数学中是一个非常重要的概念,在数学中广泛应用。
在学习函数的过程中,其中一个特性就是函数的单调性。
函数的单调性是指函数在定义域上的变化趋势。
利用函数的导数可以帮助我们解决函数的单调性问题,本文将从导数的概念入手,依次介绍如何通过导数判断函数的单调性。
一、导数的概念首先,我们需要了解导数的概念。
在数学中,导数是函数在某一点的变化率。
可以理解为函数图像在某一点的切线斜率。
常见的记作方式为f'(x),表示函数f(x)在x处的导数。
二、导数与函数单调性的关系导数与函数的单调性之间有着密不可分的联系。
一般来说,在函数的单调性问题中,我们需要判断函数的导数是否大于等于0或小于等于0,从而来判断函数的单调性。
1.导数大于0的函数如果一个函数在其定义域内的任意一点处的导数大于0,则说明该函数在该点左侧是单调递增的,在该点右侧是单调递减的。
换言之,如果一个函数在每个点的导数都大于0,则该函数是单调递增的。
2.导数小于0的函数如果一个函数在其定义域内的任意一点处的导数小于0,则说明该函数在该点左侧是单调递减的,在该点右侧是单调递增的。
换言之,如果一个函数在每个点的导数都小于0,则该函数是单调递减的。
3.导数等于0的函数如果一个函数在其定义域内的任意一点处的导数等于0,则需要进一步分析该点的特性。
如果该点左侧的导数小于0,右侧的导数大于0,则该函数在该点达到局部最小值;反之,如果该点左侧的导数大于0,右侧的导数小于0,则该函数在该点达到局部最大值。
如果该点左右两侧的导数符号相同,则该点为函数的拐点。
三、使用导数解决函数单调性问题的例题下面我们通过一个例题来演示如何利用导数解决函数单调性问题。
例题:已知函数f(x) = 2x^3 - 12x + 5,求函数f(x)的单调区间。
解题思路:1.首先求函数f(x)的一阶导数:f '(x) = 6x^2 - 12 。
2.分析一阶导数的符号:当6x^2 - 12 > 0时,即x^2 > 2,x > sqrt(2)或x < -sqrt(2)时,f(x)单调递增。
高考数学导数及其应用知识点数学导数及其应用知识点一函数的单调性在a,b内可导函数fx,f′x在a,b任意子区间内都不恒等于0.f′x≥0?fx在a,b上为增函数.f′x≤0?fx在a,b上为减函数.1、f′x>0与fx为增函数的关系:f′x>0能推出fx为增函数,但反之不一定.如函数fx=x3在-∞,+∞上单调递增,但f′x≥0,所以f′x>0是fx为增函数的充分不必要条件.2、可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f′x0=0是可导函数fx在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y′|x=0=0,但x=0不是极值点.此外,函数不可导的点也可能是函数的极值点.3、可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.数学导数及其应用知识点二函数的极值1、函数的极小值:函数y=fx在点x=a的函数值fa比它在点x=a附近其它点的函数值都小,f′a=0,而且在点x=a附近的左侧f′x<0,右侧f′x>0,则点a叫做函数y=fx的极小值点,fa叫做函数y=fx的极小值.2、函数的极大值:函数y=fx在点x=b的函数值fb比它在点x=b附近的其他点的函数值都大,f′b=0,而且在点x=b附近的左侧f′x>0,右侧f′x<0,则点b叫做函数y=fx的极大值点,fb叫做函数y=fx的极大值.极小值点,极大值点统称为极值点,极大值和极小值统称为极值.数学导数及其应用知识点三函数的最值1、在闭区间[a,b]上连续的函数fx在[a,b]上必有最大值与最小值.2、若函数fx在[a,b]上单调递增,则fa为函数的最小值,fb为函数的最大值;若函数fx在[a,b]上单调递减,则fa为函数的最大值,fb为函数的最小值.数学导数及其应用知识点四求可导函数单调区间的一般步骤和方法1、确定函数fx的定义域;2、求f′x,令f′x=0,求出它在定义域内的一切实数根;3、把函数fx的间断点即fx的无定义点的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数fx的定义区间分成若干个小区间;4、确定f′x在各个开区间内的符号,根据f′x的符号判定函数fx在每个相应小开区间内的增减性.数学导数及其应用知识点五函数极值的步骤1、确定函数的定义域;2、求方程f′x=0的根;3、用方程f′x=0的根顺次将函数的定义域分成若干个小开区间,并形成表格;4、由f′x=0根的两侧导数的符号来判断f′x在这个根处取极值的情况.六、求函数fx在[a,b]上的最大值和最小值的步骤1、求函数在a,b内的极值;2、求函数在区间端点的函数值fa,fb;3、将函数fx的各极值与fa,fb比较,其中最大的一个为最大值,最小的一个为最小值.感谢您的阅读,祝您生活愉快。
一、 导数在单调性中的应用:函数的单调性是函数最基本的性质之一,是我们研究函数所要掌握的最基本的知识.它在中学数学中的用处是非常广泛的,其思维方法有:一、利用增(减)函数的定义判断单调性;二、导数法。
利用在(,)a b 内可导的函数()f x 在(,)a b 上递增(或递减)的充要条件是()0f x '≥(或()0f x '≤),(,)x ab∈恒成立(但()f x '在(,)a b 的任意子区间内都不恒等于0)。
方法一化简较为繁琐,比较适合解决抽象函数的单调性问题,而用导数知识来判断函数的单调性既快捷又容易掌握.,特别是对于具体函数更加适用。
1. 利用导数求单调区间:例:函数y =x ln x 在区间(0,1)上是 A. 单调增函数 B. 单调减函数C.在(0,e 1)上是减函数,在(e 1,1)上是增函数 D.在(0,e 1)上是增函数,在(e1,1)上是减函数例2.函数y =sin 2x 的单调递减区间是__________.2. 利用导数和单调性的关系,选择导函数与原函数的图像问题:例:设f ′(x )是函数f (x )的导函数,y =f ′(x )的图象如下图所示,则y =f (x )的图象最有可能是(ACBD3、已知函数()y xf x '=的图象如右图所示(其中'()f x 是函数()f x 的导函数),下面四个图象中()y f x =的图象大致是( )3. 利用导数和单调性的关系判断方程解的个数:例:方程3269100x x x -+-=的实根的个数是 () A 、3 B 、2 C 、1 D 、04. 单调性的综合应用:例:已知()1xf x e ax =--。
(1)求()f x的单调增区间;(2)若()f x 在定义域R 内单调递增,求a 的取值范围;(3)是否存在a 使()f x 在(,0]-∞上单调递减,在[0,)+∞上单调递增?若存在,求出a 的值;若不存在,说明理由。
导数在研究函数中的应用—单调性一、教材分析本节课,是苏教版选修2-2第一章第3节课。
它承接导数的定义和运算,开启了导数在函数中应用的研究,是导数应用的基础知识,地位重要.二、学情分析学生前面已经学习了导数的定义和简单函数四则运算的导数公式,尤其是已经有了“割线逼近切线”这种数学思想,这为本节课提供了充分的思想方法准备.并且,在本节课开头设置的三个问题中,有的问题可以用单调性定义解决,有些通过观察可以直接判断,而有些则并不能一眼看出单调性,这就触动学生要寻找新的解题方法,探索新的思路。
通过数学问题的导引,带领学生走进课堂.在实际教学中,考虑到学生比较容易局限于观察图象,得出结论,缺乏严谨的推理。
事实上,图象只能提供直观感受,并不能作为说理依据。
教师就要引导学生共同思考:怎样从已有的单调性的定义中,找出合理、可行、有效的方法。
师生共同观察、思考、猜想、证明,最终得出结论,比较圆满地完成一个数学知识的学习过程,体验数学发现的乐趣,拓宽师生的数学视野.三、教学目标1 .探索并了解函数的单调性和函数导数的关系;2.比较初等方法与导数方法在研究函数性质过程中的异同,体现导数方法在研究函数性质中的一般性和有效性.四、教学重点、难点我认为本节课的重点是从单调性的定义出发,逐步建立单调性与导数之间的关系。
其间,既有代数变形,又有图形直观;既有大胆的猜想,又有严密推理。
教师和学生在这些思想方法之间灵活穿梭、切换,既有激烈地思想交锋,又有严密地逻辑推理,让看似平静的课堂充满了智慧的碰撞。
五、教学方法与教学手段教师从课本章头图引入课题,自然地把导数和单调性结合起来。
教师通过设置问题串,从“会”到“不会”,激发学生学习兴趣,展开探究。
教师利用多媒体PPT和几何画板,动态演示,确定研究方向,最终得出结论。
六、教学过程教师为了能够真正体现“要提高学生独立获取数学知识,并用数学语言表达问题的能力”这个新课程理念,设计了10个环节。
导数的性质及其应用性质单调性(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。
需代入驻点左右两边的数值求导数正负判断单调性。
(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。
根据微积分基本定理,对于可导的函数,有:如果函数的导函数在某一区间内恒大于零(或恒小于零) ,那么函数在这一区间内单调递增(或单调递减) ,这种区间也称为函数的单调区间。
导函数等于零的点称为函数的驻点,在这类点上函数可能会取得极大值或极小值(即极值可疑点) 。
进一步判断则需要知道导函数在附近的符号。
对于满足的一点,如果存在使得在之前区间上都大于等于零,而在之后区间上都小于等于零,那么是一个极大值点,反之则为极小值点。
x变化时函数(蓝色曲线)的切线变化。
函数的导数值就是切线的斜率,绿色代表其值为正,红色代表其值为负,黑色代表值为零。
凹凸性可导函数的凹凸性与其导数的单调性有关。
如果函数的导函数在某个区间上单调递增,那么这个区间上函数是向下凹的,反之则是向上凸的。
如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,反之这个区间上函数是向上凸的。
曲线的凹凸分界点称为曲线的拐点。
应用导数与物理、几何、代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。
导数亦名纪数、微商(微分中的概念),是由速度变化问题和曲线的切线问题(矢量速度的方向)而抽象出来的数学概念,又称变化率。
如一辆汽车在10小时内走了600千米,它的平均速度是60千米/小时。
但在实际行驶过程中,是有快慢变化的,不都是60千米/小时。
为了较好地反映汽车在行驶过程中的快慢变化情况,可以缩短时间间隔,设汽车所在位置s与时间t的关系为:那么汽车在由时刻t0变到t1这段时间内的平均速度是:当t1无限趋近于t0时,汽车行驶的快慢变化就不会很大,平均速度就近似等于t0时刻的瞬时速度,因而就把此时的极限作为汽车在时刻t0的瞬时速度,即,这就是通常所说的速度。
导数在函数的单调性、极值中的应用一、知识梳理1.函数的单调性与导数在区间(a,b)内,函数的单调性与其导数的正负有如下关系:如果f_′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f_′(x)<0,那么函数y=f(x)在这个区间内单调递减;如果f_′(x)=0,那么f(x)在这个区间内为常数.问题探究1:若函数f(x)在(a,b)内单调递增,那么一定有f ′(x)>0吗?f ′(x)>0是否是f(x)在(a,b)内单调递增的充要条件?提示:函数f(x)在(a,b)内单调递增,则f ′(x)≥0,f ′(x)>0是f(x)在(a,b)内单调递增的充分不必要条件.2.函数的极值与导数(1)函数的极小值函数y=f(x)在点x=a的函数值f(a)比它在x=a附近其他点的函数值都小,f ′(a)=0,而且在点x=a附近的左侧f_′(x)<0,右侧f_′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f ′(b)=0,而且在点x=b附近,左侧f_′(x)>0,右侧f_′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点,极大值点统称为极值点,极大值和极小值统称为极值.问题探究2:若f ′(x0)=0,则x0一定是f(x)的极值点吗?提示:不一定.可导函数在一点的导数值为0是函数在这点取得极值的必要条件,而不是充分条件,如函数f(x)=x3,在x=0时,有f ′(x)=0,但x=0不是函数f(x)=x3的极值点.二、自主检测1.函数y=x-lnx的单调减区间是( )A.(-∞,1) B.(0,1)C.(1,+∞) D.(0,2)2.函数f(x)=x3-3x2+3x的极值点的个数是( )A.0 B.1C.2 D.33.函数f(x)=x3+ax-2在区间(1,+∞)上是增函数,则实数a的取值范围是( ) A.[3,+∞) B.[-3,+∞)C.(-3,+∞) D.(-∞,-3)4.(2012年山东诸城高三月考)已知函数y=f(x),其导函数y=f ′(x)的图象如图所示,则y=f(x)( )A.在(-∞,0)上为减函数B.在x=0处取极小值C.在(4,+∞)上为减函数D.在x=2处取极大值5.若函数f(x)=x3+ax2+3x-9在x=-3时取得极值,则a=( )A.2 B.3C.4 D.56.(1)函数f(x)在x=x0处可导,则“f ′(x0)=0”是“x0是函数f(x)极值点”的________条件.(2)函数f(x)在(a,b)上可导,则“f ′(x)>0”是“f(x)在(a,b)上单调递增”的________条件.(3)函数f(x)在(a,b)上可导,则“f ′(x)≥0”是“f(x)在(a,b)上单调递增”的________条件.三、考向指导考点1 求函数的单调区间1.求可导函数单调区间的一般步骤和方法(1)确定函数f(x)的定义域;(2)求 f ′(x),令f ′(x)=0,求出它在定义域内的一切实根;(3)把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;(4)确定f ′(x)在各个开区间内的符号,根据f ′(x)的符号判定函数f(x)在每个相应小开区间内的增减性.2.证明可导函数f(x)在(a,b)内的单调性的步骤(1)求 f ′(x).(2)确认 f ′(x)在(a,b)内的符号.(3)作出结论: f ′(x)>0时,f(x)为增函数; f ′(x)<0时,f(x)为减函数.例1 (2010年全国)已知函数f(x)=x3-3ax2+3x+1.(1)设a=2,求f(x)的单调区间;(2)设f(x)在区间(2,3)中至少有一个极值点,求a的取值范围.课堂过手练习:设函数f(x)=x3+ax2-9x-1(a<0).若曲线y=f(x)的斜率最小的切线与直线12x+y=6平行,求:(1)a的值;(2)函数y=f(x)的单调区间.考点2 由函数的单调性求参数的取值范围已知函数的单调性,求参数的取值范围,应注意函数f(x)在(a,b)上递增(或递减)的充要条件应是 f ′(x)≥0(或 f ′(x)≤0),x∈(a,b)恒成立,且 f ′(x)在(a,b)的任意子区间内都不恒等于0,这就是说,函数f(x)在区间上的增减性并不排斥在区间内个别点处有 f ′(x0)=0,甚至可以在无穷多个点处 f ′(x0)=0,只要这样的点不能充满所给区间的任何一个子区间.例2 已知函数f(x)=x3-ax-1,在实数集R上y=f(x)单调递增,求实数a的取值范围.课堂过手练习:已知f(x)=ex-ax-1.(1)求f(x)的单调增区间;(2)若f(x)在定义域R 内单调递增,求a 的取值范围;(3)是否存在a ,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a 的值;若不存在,说明理由.考点3 求已知函数的极值运用导数求可导函数 y =f(x)极值的步骤:(1)先求函数的定义域,再求函数 y =f(x)的导数 f ′(x);(2)求方程 f ′(x)=0的根;(3)检查 f ′(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值.如果左负右正,那么 f(x)在这个根处取得极小值.例3 设f(x)=ex1+ax 2,其中a 为正实数.(1)当a =43时,求f(x)的极值点;(2)若f(x)为R 上的单调函数,求a 的取值范围.课堂过手练习:函数f(x)=x3-3x2+1在x =________处取得极小值.考点4 利用极值求参数已知函数解析式,可利用导数及极值的定义求出其极大值与极小值;反过来,如果已知某函数的极值点或极值,也可利用导数及极值的必要条件建立参数方程或方程组,从而解出参数,求出函数解析式.例4 设x=1与x=2是函数f(x)=alnx+bx2+x的两个极值点.(1)试确定常数a和b的值;(2)试判断x=1,x=2是函数f(x)的极大值点还是极小值点,并说明理由.课堂过手练习:设函数f(x)=(x-a)2lnx,a∈R.若x=e为y=f(x)的极值点,求实数a.易错点求参数取值时出现典例:已知函数f(x)=ax3+3x2-x+1在R上是减函数,求a的取值范围.(1)当函数在某个区间内恒有f ′(x)=0,则f(x)为常数,函数不具有单调性.∴f (x)≥0是f(x)为增函数的必要不充分条件.在解题中误将必要条件作充分条件或将既不充分与不必要条件误作充要条件使用而导致的错误还很多,在学习过程中注意思维的严密性.(2)函数极值是一个局部性概念,函数的极值可以有多个,并且极大值与极小值的大小关系不确定.要强化用导数处理单调性、极值、最值、方程的根及不等式的证明等数学问题的意识.(3)如果一个函数在给定定义域上的单调区间不止一个,这些区间之间一般不能用并集符号“∪”连接,只能用“,”或“和”字隔开.纠错课堂练习:已知函数f(x)=x3+ax2+bx+c在x=1处取极值-2.(1)试用c表示a,b;(2)求f(x)的单调递减区间.1.与函数的单调性有关的问题(1)利用导数求函数的单调区间,可通过f ′(x)>0或f ′(x)<0来进行,至于区间的端点是否包含,取决于函数在端点处是否有意义,若有意义,则端点包含与不包含均可;若无意义,则必不能包含端点.(2)若函数f(x)在(a,b)上递增(或递减),则在(a,b)上f ′(x)≥0(或f ′(x)≤0)恒成立,若该不等式中含有参数,我们可利用上述结论求参数的范围,它蕴涵了恒成立思想.利用上述方法求得参数的范围后,要注意检验该参数的端点值能否使f ′(x)=0恒成立.若能,则去掉该端点值;否则,即为所求.2.与函数的极值有关的问题(1)求函数的极值点,可通过f ′(x)=0来求得,但同时还要注意检验在其两侧附近的导函数值是否异号.(2)若函数f(x)在x=x0处有极值,则一定有f ′(x0)=0,我们可利用上述结论求参数的值.。
导数在研究函数中的应用——单调性【教学分析】1.教材分析本节课是高中数学苏教版教材选修2-2第节导数在研究函数单调性中的应用.这节内容是导数作为研究函数的工具的起点,是本节的重点,学生对本节的收获直接影响着后面极值、最值的学习.函数单调性是高中阶段讨论函数“变化”的一个最基本的性质.学生在中学阶段对于单调性的学习共分为三个阶段:第一阶段,在初中以具体函数为载体,从图形直观上感知单调性;第二阶段在高中学习必修一时,用运算的性质研究单调性;第三阶段就是在本节课中,用导数的性质研究单调性.本节内容属于导数的应用,是本章的重点,学生在学习了导数的概念、几何意义、基本函数的导数、导数的四则运算的基础上学习本节内容.学好它既可加深对导数的理解,又为研究函数的极值和最值打好基础,具有承前启后的重要作用.研究过程蕴含了数形结合、分类讨论、转化与化归等数学思想方法,以及研究数学问题的一般方法,即从特殊到一般,从简单到复杂,培养了学生应用导数解决实际问题的意识.2.学情分析《普通高中数学新课程标准(实验)》中要求:结合实例,借助几何直观探索并了解函数的单调性与导数间的关系.对于函数的单调性学生已经掌握图象、定义两种判断方法,但是图象和定义法不是万能的.对于不能用这两种方法解决的单调性问题学生需要思考.学生之前学习了导数的概念,经历过从平均变化率到瞬时变化率的过程,研究过导数的几何意义是函数图象在某点处的切线,从数和形的角度认识了导数也是刻画函数变化陡峭程度的量,但是沟通导数和单调性之间的练习对学生来说是教学中要突破的难点和重点.3. 教学目标(1)了解函数的单调性与导数的关系,能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间.(2)通过实例,借助几何直观、数形结合探索函数的单调性与导数的关系;通过初等方法与导数方法研究函数性质过程中的比较,体会导数在研究函数性质中的一般性和有效性,同时感受和体会数学自身发展的一般规律.(3)通过教师指导下的学生交流探索活动,激发学生的学习兴趣,培养学生转化与化归的思维方式,并引导学生掌握从特殊到一般,从简单到复杂的思维方法,用联系的观点认识问题,提高学生提出问题、分析问题、解决问题的能力.4. 教学重点:利用导数研究函数的单调性5. 教学难点:发现和揭示导数的正负与函数单调性的关系.6. 教学方法与教学手段:问题教学法、合作学习法、多媒体课件等【教学过程】1.创设情境,激发兴趣情境一:过山车章头图情境二:观看过山车视频【设计意图】通过章头图拉近学生与数学的关系,让学生感受到生活处处有数学,也为本节课的研究埋下伏笔。
导数在研究函数中应用之函数单调性函数的导数在研究函数的性质时有着广泛的应用,其中之一就是研究函数的单调性。
函数的单调性是指函数在定义域上的增减性质。
在实际应用中,研究函数的单调性可以帮助我们分析函数的变化趋势,找出函数取值的最大值和最小值,进而解决一些实际问题。
首先,我们来回顾一下函数的导数定义:对于函数y=f(x),如果在点x处导数存在,那么函数在点x处的导数就是函数在该点的切线斜率,用符号f'(x)表示。
注意,函数的导数可以看作是函数的变化率,因此函数在其中一区间上单调增加的条件就是函数在该区间上导数恒大于0;同理,函数在其中一区间上单调减少的条件就是函数在该区间上导数恒小于0。
在研究函数的单调性时,我们可以通过分析函数的导数来判断函数在其中一区间上的单调性。
具体来说,我们通过以下几个步骤来研究函数的单调性:1.首先,找出函数的定义域。
函数的定义域是指使得函数有意义的x的取值范围。
在研究函数单调性时,我们只关注函数的定义域内部的区间。
2.接下来,求出函数的导函数。
导函数是函数的导数函数,用来描述函数的变化趋势。
3.然后,解方程f'(x)=0,找出函数导数的零点。
当导数的值为0时,函数可能存在极值点,因此我们需要找出这些点。
4.根据求出的导数的零点,将函数的定义域划分成多个区间,在每个区间内分别讨论函数的单调性。
5.最后,根据导函数的正负变化情况判断函数在每个区间上的单调性。
导函数的正负变化可以通过判断导函数的符号来实现。
如果导函数在一些区间上始终为正,那么函数在该区间上单调增加;如果导函数在一些区间上始终为负,那么函数在该区间上单调减少。
通过以上分析,我们可以得出一个重要结论:函数在导数大于0的区间上单调增加,在导数小于0的区间上单调减少。
当然,导数为0的点除外,因为这些点可能是函数的极值点。
函数的单调性在实际应用中有着很重要的作用。
例如,我们在经济学中经常研究产品的生产与销售关系。
导数在研究函数中的应用知 识 梳 理1.函数的导数与单调性的关系 函数y =f (x )在某个区间内可导,则(1)若f ′(x )>0,则f (x )在这个区间内单调递增. (2)若f ′(x )<0,则f (x )在这个区间内单调递减. (3)若f ′(x )=0,则f (x )在这个区间内是常数函数.注意与斜率联系起来:1.因为导数的几何意义是曲线切线的斜率,故当在某区间上()0f x '>,即切线斜率为正时,函数()f x 在这个区间上为增函数;当在某区间上()0f x '<,即切线斜率为负时,函数()f x 在这个区间上为减函数;2.如果已知导函数在某区间是增函数,也表示原函数在该区间上各点处的斜率是递增的;利用导数求函数单调区间的基本步骤(1)确定函数()f x 的定义域; (2)求导数'()f x ;(3)在函数()f x 的定义域内解不等式'()0f x >或'()0f x <; (4)确定()f x 的单调区间。
或者:令'()0f x =,求出它在定义域内的一切实数根。
把这些实数根和函数的间断点(即()f x 的无定义点)的横坐标按从小到大的顺序排列起来,然后用这些点把函数()f x 的定义区间分成若干个小区间,判断在各个小区间内()f x '的符号。
注意:1.求函数单调区间时,要注意单调区间一定是函数定义域的子集。
2.求单调区间常常通过列表的方法进行求解,使解题思路步骤更加清晰、明确。
【典型例题】类型一:求函数的单调区间k例1、确定函数32()267=-+f x x x 的单调区间.【解析】2'()6126(2)f x x x x x =-=-。
令'()0f x >,得x <0或x >2,∴当x <0或x >2时函数()f x 是增函数。
因此,函数()f x 的单调增区间为(-∞,0)和(2,+∞)。
导数的应用函数的单调性1. 导数与函数的单调性在数学中,导数是函数的重要性质之一,它描述了函数在每个点的变化率。
函数的单调性是指函数在定义域上的变化趋势,可以是递增、递减或者保持不变。
通过导数的概念,我们可以研究函数的单调性。
在导数为正的区间上,函数递增;在导数为负的区间上,函数递减;在导数为0的点处,函数可能存在极值。
2. 导数与函数的单调性的关系函数的单调性与其导数之间存在重要的关系。
具体而言,对于一个可导函数,我们可以根据其导数的正负性来判断函数在哪些区间上单调。
•如果函数的导数在某个区间上恒大于0,则函数在该区间上严格递增;•如果函数的导数在某个区间上恒小于0,则函数在该区间上严格递减;•如果函数的导数在某个区间上恒大于等于0,则函数在该区间上递增;•如果函数的导数在某个区间上恒小于等于0,则函数在该区间上递减;•如果函数的导数在某个区间上恒等于0,则函数在该区间上保持不变。
通过以上性质,我们可以通过计算导数来研究一个函数在定义域上的单调性。
3. 导数的应用函数的单调性导数的应用函数的单调性是指通过对函数求导,来研究函数在定义域上的变化趋势。
具体而言,我们可以通过计算函数的导数来判断函数在哪些区间上是递增、递减或者保持不变。
下面通过几个例子来展示导数的应用函数的单调性。
3.1 一次函数的单调性考虑一个一次函数f(x)=ax+b,其中a和b是实数。
对函数f(x)求导,得到的导数为f′(x)=a。
根据导数的正负性,我们可以得出以下结论:•如果a>0,则函数f(x)在整个定义域上是递增的;•如果a<0,则函数f(x)在整个定义域上是递减的;•如果a=0,则函数f(x)在整个定义域上保持不变。
3.2 二次函数的单调性考虑一个二次函数f(x)=ax2+bx+c,其中a、b和c是实数,且a eq0。
对函数f(x)求导,得到的导数为f′(x)=2ax+b。
根据导数的正负性,我们可以得出以下结论:•如果a>0,则函数f(x)在 $(-\\infty, -\\frac{b}{2a})$ 和$(\\frac{-b}{2a}, +\\infty)$ 区间上是递增的,而在 $\\left(-\\frac{b}{2a}, \\frac{-b}{2a}\\right)$ 区间上是递减的;•如果a<0,则函数f(x)在 $(-\\infty, -\\frac{b}{2a})$ 和$(\\frac{-b}{2a}, +\\infty)$ 区间上是递减的,而在 $\\left(-\\frac{b}{2a}, \\frac{-b}{2a}\\right)$ 区间上是递增的。
科 目数学 年级 高三 备课人 高三数学组 第 课时 3.2导数在函数中的应用(单调性)考纲定位 会利用导数研究函数的单调性,会求函数的单调区间.【考点整合】1、导数与函数单调性的关系:(设()f x 在区间(,)a b 有定义,且存在导函数()f x ')单调递增单调递减 在某区间(,)a b 内,有()f x ' 0在某区间(,)a b 内,有()f x ' 0 【典型例题】一、判断函数的单调性1、利用导数判断下列函数的单调性:(1)33y x x =+ (2)4,[2,)y x x x =+∈+∞二、求函数的单调区间2、求下列函数的单调区间:(1)3211232y x x x =+- (2)232ln y x x =-小结:利用导数判断函数单调性的步骤: ; ; ; .三、判断含有参数的函数的单调性3、已知函数3()1f x x ax =--.(1)若函数()f x 在R 上单调递增,求实数a 的范围;(2)若函数()f x 在(-1,1)上单调递减,求实数a 的范围;四、高考真题演练4、(2008 湖北)若21()ln(2)2f x x b x =-++在(1,)-+∞上是减函数,则b 的取值范围是( ) A.[1,)-+∞ B.(1,)-+∞ C.(,1]-∞- D.(,1)-∞-5、(2009 江苏)函数32()15336f x x x x =--+的单调减区间为 .6、(2011 江西)设3211()232f x x x ax =-++.若()f x 在2(,)3+∞上存在单调递增区间,求a 的取值范围.7、(2010 全国)设函数2()1x f x e x ax =---.(1)若0a =,求()f x 的单调区间;(2)当0x ≥时,有()0f x ≥,求a 的取值范围.【作业】《胜券在握》P2页 第题【课后反思】。
导数的应用函数的单调性与凹凸性在微积分学中,导数是研究函数变化率的重要工具。
除了可以用来求函数的变化率外,导数还可以用来探讨函数的单调性和凹凸性。
本文将详细介绍导数在分析函数的单调性和凹凸性时的应用。
一、导数与单调性在数学中,函数的单调性指的是函数在其定义域内是否具有递增或递减的趋势。
导数可以帮助我们判断函数的单调性。
1.1 单调递增的判断对于一个定义在区间 (a, b) 上的函数 f(x),如果在 (a, b) 内任意两个不同的数 x₁和 x₂满足 f'(x₁) ≤ f'(x₂),那么函数 f(x) 在区间 (a, b) 上是单调递增的。
1.2 单调递减的判断对于一个定义在区间 (a, b) 上的函数 f(x),如果在 (a, b) 内任意两个不同的数 x₁和 x₂满足 f'(x₁) ≥ f'(x₂),那么函数 f(x) 在区间 (a, b) 上是单调递减的。
通过上述判断条件,我们可以利用导数来确定函数的单调性。
二、导数与凹凸性凹凸性是指函数图像的弯曲程度,也可以理解为函数的曲率。
通过导数的二阶导数可以判断函数的凹凸性。
2.1 凹函数的判断对于一个定义在区间 (a, b) 上的函数 f(x),如果在 (a, b) 内任意一点x 满足f''(x) ≤ 0,那么函数 f(x) 在区间 (a, b) 上是凹函数。
2.2 凸函数的判断对于一个定义在区间 (a, b) 上的函数 f(x),如果在 (a, b) 内任意一点x 满足f''(x) ≥ 0,那么函数 f(x) 在区间 (a, b) 上是凸函数。
根据上述判断条件,我们可以利用导数的二阶导数来确定函数的凹凸性。
三、实例分析为了更好地理解导数在分析函数单调性和凹凸性时的应用,我们来分析一个具体的例子。
考虑函数 f(x) = x³ - 3x² + 2x,我们需要判断函数 f(x) 的单调性和凹凸性。
2023年高考数学总复习第三章导数及其应用第2节导数与函数的单调性考试要求 1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次);2.利用导数研究函数的单调性,并会解决与之有关的方程(不等式)问题.1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.利用导数求函数单调区间的基本步骤(1)确定函数f(x)的定义域;(2)求导数f′(x);(3)由f′(x)>0(或<0)解出相应的x的取值范围.当f′(x)>0时,f(x)在相应的区间内是单调递增函数;当f′(x)<0时,f(x)在相应的区间内是单调递减函数.3.单调性的应用若函数y=f(x)在区间(a,b)上单调,则y=f′(x)在该区间上不变号.若函数f(x)在区间(a,b)上递增,则f′(x)≥0,所以“f′(x)>0在(a,b)上成立”是“f(x)在(a,b)上单调递增”的充分不必要条件.1.思考辨析(在括号内打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.()(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.()(3)函数在(a,b)内单调递减与函数的单调递减区间为(a,b)是不同的.()(4)函数f(x)=x-sin x在R上是增函数.()答案(1)×(2)√(3)√(4)√解析(1)f(x)在(a,b)内单调递增,则有f′(x)≥0.2.(易错题)函数f(x)=x+ln(2-x)的单调递增区间为()A.(-∞,1)B.(-∞,2)C.(1,+∞)D.(2,+∞)答案A解析由f(x)=x+ln(2-x),得f′(x)=1-12-x=1-x2-x(x<2).令f′(x)>0,即1-x2-x>0,解得x<1.∴函数f(x)=x+ln(2-x)的单调递增区间为(-∞,1).3.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图像如图所示,则函数y=f(x)的图像可能是()答案D解析设导函数y=f′(x)与x轴交点的横坐标从左往右依次为x1,x2,x3,由导函数y=f′(x)的图像易得当x∈(-∞,x1)∪(x2,x3)时,f′(x)<0;当x∈(x1,x2)∪(x3,+∞)时,f′(x)>0(其中x1<0<x2<x3),所以函数f(x)在(-∞,x1),(x2,x3)上单调递减,在(x1,x2),(x3,+∞)上单调递增,观察各选项,只有D选项符合.4.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.R答案B解析由f(x)>2x+4,得f(x)-2x-4>0,设F(x)=f(x)-2x-4,则F′(x)=f′(x)-2,因为f′(x)>2,所以F′(x)>0在R上恒成立,所以F(x)在R上递增,而F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x-4>0等价于F(x)>F(-1),所以x>-1,故选B.5.(易错题)若函数f(x)=13x3-32x2+ax+4的单调递减区间为[-1,4],则实数a的值为________.答案-4解析f′(x)=x2-3x+a,且f(x)的单调递减区间为[-1,4],∴f′(x)=x2-3x+a≤0的解集为[-1,4],∴-1,4是方程f′(x)=0的两根,则a=(-1)×4=-4.6.(2021·青岛检测)已知函数f(x)=sin2x+4cos x-ax在R上单调递减,则实数a 的取值范围是________.答案[3,+∞)解析f′(x)=2cos2x-4sin x-a=2(1-2sin2x)-4sin x-a=-4sin2x-4sin x+2-a=-(2sin x+1)2+3-a.由题设,f′(x)≤0在R上恒成立.因此a≥3-(2sin x+1)2恒成立,则a≥3.考点一不含参函数的单调性1.函数f(x)=x+3x+2ln x的单调递减区间是()A.(-3,1)B.(0,1)C.(-1,3)D.(0,3)答案B 解析法一函数的定义域是(0,+∞),f ′(x )=1-3x 2+2x ,令f ′(x )=1-3x 2+2x<0,得0<x <1,故所求函数的单调递减区间为(0,1),故选B.法二由题意知x >0,故排除A 、C 选项;又f (1)=4<f (2)=72+2ln 2,故排除D选项.故选B.2.函数f (x )=(x -3)e x 的单调递增区间为________.答案(2,+∞)解析f (x )的定义域为R ,f ′(x )=(x -2)e x ,令f ′(x )>0,得x >2,∴f (x )的单调递增区间为(2,+∞).3.已知定义在区间(0,π)上的函数f (x )=x +2cos x ,则f (x )的单调递增区间为________.答案0,π6,5π6,π解析f ′(x )=1-2sin x ,x ∈(0,π),令f ′(x )=0,得x =π6或x =5π6,当0<x <π或5π<x <π时,f ′(x )>0,∴f (x )0,π6,5π6,π.感悟提升确定函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;(4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.考点二讨论含参函数的单调性例1已知函数f (x )=12ax 2-(a +1)x +ln x ,a >0,试讨论函数y =f (x )的单调性.解函数f (x )的定义域为(0,+∞),f′(x)=ax-(a+1)+1x=ax2-(a+1)x+1x=(ax-1)(x-1)x.(1)当0<a<1时,1a>1,∴x∈(0,1)f′(x)>0;x f′(x)<0,∴函数f(x)在(0,1)(2)当a=1时,1a=1,∴f′(x)≥0在(0,+∞)上恒成立,∴函数f(x)在(0,+∞)上单调递增;(3)当a>1时,0<1a<1,∴x(1,+∞)时,f′(x)>0;x f′(x)<0,∴函数f(x)(1,+∞).综上,当0<a<1时,函数f(x)在(0,1)减;当a=1时,函数f(x)在(0,+∞)上单调递增;当a>1时,函数f(x)(1,+∞).感悟提升 1.含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.遇二次三项式常考虑二次项系数、对应方程的判别式以及根的大小关系,以此来确定分界点,分情况讨论.2.划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.3.个别导数为0的点不影响所在区间的单调性,如f(x)=x3,f′(x)=3x2≥0(f′(x)=0在x=0时取到),f(x)在R上是增函数.训练1已知f (x )=a (x -ln x )+2x -1x 2,a >0,讨论f (x )的单调性.解f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3=a (x -1)x 3x -2a x +2a (1)当0<a <2时,2a>1,当x (0,1)∪2a,+∞时,f ′(x )>0,当x 1,2a 时,f ′(x )<0.(2)当a =2时,2a =1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )递增.(3)当a >2时,0<2a <1,当x 0,2a ∪(1,+∞)时,f ′(x )>0,当x 2a,1时,f ′(x )<0.综上所述,当0<a <2时,f (x )在(0,1)2a ,+∞内递增,在1,2a 内递减.当a =2时,f (x )在(0,+∞)内递增;当a >2时,f (x )0,2a (1,+∞)2a,1.考点三根据函数单调性求参数值(范围)例2(经典母题)已知x =1是f (x )=2x +bx +ln x 的一个极值点.(1)求函数f (x )的单调递减区间;(2)设函数g (x )=f (x )-3+ax,若函数g (x )在区间[1,2]内单调递增,求实数a 的取值范围.解(1)f (x )=2x +bx+ln x ,定义域为(0,+∞).∴f ′(x )=2-b x 2+1x =2x 2+x -bx2.因为x=1是f(x)=2x+bx+ln x的一个极值点,所以f′(1)=0,即2-b+1=0.解得b=3,经检验,适合题意,所以b=3.所以f′(x)=2x2+x-3x2,令f′(x)<0,得0<x<1.所以函数f(x)的单调递减区间为(0,1).(2)g(x)=f(x)-3+ax=2x+ln x-ax(x>0),g′(x)=2+1x+ax2(x>0).因为函数g(x)在[1,2]上单调递增,所以g′(x)≥0在[1,2]上恒成立,即2+1x+ax2≥0在[1,2]上恒成立,所以a≥-2x2-x在[1,2]上恒成立,所以a≥(-2x2-x)max,x∈[1,2].因为在[1,2]上,(-2x2-x)max=-3,所以a≥-3.所以实数a的取值范围是[-3,+∞).迁移在本例(2)中,若函数g(x)在区间[1,2]上不单调,求实数a的取值范围.解∵函数g(x)在区间[1,2]上不单调,∴g′(x)=0在区间(1,2)内有解,则a=-2x2-x=-+18在(1,2)内有解,易知该函数在(1,2)上是减函数,∴a=-2x2-x的值域为(-10,-3),因此实数a的取值范围为(-10,-3).感悟提升 1.已知函数的单调性,求参数的取值范围,应用条件f′(x)≥0(或f′(x)≤0),x∈(a,b)恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是f′(x)不恒等于0的参数的范围.2.如果能分离参数,则尽可能分离参数后转化为参数值与函数最值之间的关系.3.若函数y =f (x )在区间(a ,b )上不单调,则转化为f ′(x )=0在(a ,b )上有解.训练2(1)若函数y =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是()A.13,+∞ B.-∞,13C.13,+∞ D.-∞,13(2)(2022·郑州调研)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是________.答案(1)C(2)(1,2]解析(1)由y =x 3+x 2+mx +1是R 上的单调函数,所以y ′=3x 2+2x +m ≥0恒成立,或y ′=3x 2+2x +m ≤0恒成立,显然y ′=3x 2+2x +m ≥0恒成立,则Δ=4-12m ≤0,所以m ≥13.(2)易知f (x )的定义域为(0,+∞),且f ′(x )=x -9x.又x >0,令f ′(x )=x -9x ≤0,得0<x ≤3.因为函数f (x )在区间[a -1,a +1]上单调递减,a -1>0,a +1≤3,解得1<a ≤2.考点四与导数有关的函数单调性的应用角度1比较大小例3(1)已知函数f (x )=x sin x ,x ∈R ,则π5f (1),f -π3的大小关系为()A.-π3f (1)>π5B.f (1)>-π3π5C.π5f (1)>-π3D.-π3π5>f (1)(2)已知y =f (x )是定义在R 上的奇函数,且当x <0时不等式f (x )+xf ′(x )<0成立,若a =30.3·f (30.3),b =log π3·f (log π3),c =log 319·则a ,b ,c 的大小关系是()A.a >b >cB.c >b >aC.a >c >bD.c >a >b答案(1)A(2)D解析(1)因为f (x )=x sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ),所以函数f (x )是偶函数,所以又当x f ′(x )=sin x +x cos x >0,所以函数f (x )f (1)<f (1)> A.(2)设g (x )=xf (x ),则g ′(x )=f (x )+xf ′(x ),又当x <0时,f (x )+xf ′(x )<0,∴x <0时,g ′(x )<0,g (x )在(-∞,0)上单调递减.由y =f (x )在R 上为奇函数,知g (x )在R 上为偶函数,∴g (x )在(0,+∞)上是增函数,∴c =g (-2)=g (2),又0<log π3<1<30.3<3<2,∴g (log π3)<g (30.3)<g (2),即b <a <c .角度2解不等式例4已知f (x )在R 上是奇函数,且f ′(x )为f (x )的导函数,对任意x ∈R ,均有f (x )>f ′(x )ln 2成立,若f (-2)=2,则不等式f (x )>-2x -1的解集为()A.(-2,+∞)B.(2,+∞)C.(-∞,-2)D.(-∞,2)答案D解析f (x )>f ′(x )ln 2⇔f ′(x )-ln 2·f (x )<0.令g(x)=f(x)2x,则g′(x)=f′(x)-f(x)·ln22x,∴g′(x)<0,则g(x)在(-∞,+∞)上是减函数.由f(-2)=2,且f(x)在R上是奇函数,得f(2)=-2,则g(2)=f(2)22=-12,又f(x)>-2x-1⇔f(x)2x>-12=g(2),即g(x)>g(2),所以x<2.感悟提升 1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小. 2.与抽象函数有关的不等式,要充分挖掘条件关系,恰当构造函数;题目中若存在f(x)与f′(x)的不等关系时,常构造含f(x)与另一函数的积(或商)的函数,与题设形成解题链条,利用导数研究新函数的单调性,从而求解不等式.训练3(1)已知函数f(x)=3x+2cos x.若a=f(32),b=f(2),c=f(log27),则a,b,c的大小关系是()A.a<b<cB.c<b<aC.b<a<cD.b<c<a(2)(2021·西安模拟)函数f(x)的导函数为f′(x),对任意x∈R,都有f′(x)>-f(x)成立,若f(ln2)=12,则满足不等式f(x)>1e x的x的取值范围是()A.(1,+∞)B.(0,1)C.(ln2,+∞)D.(0,ln2)答案(1)D(2)C解析(1)由题意,得f′(x)=3-2sin x.因为-1≤sin x≤1,所以f′(x)>0恒成立,所以函数f(x)是增函数.因为2>1,所以32>3.又log 24<log 27<log 28,即2<log 27<3,所以2<log 27<32,所以f (2)<f (log 27)<f (32),即b <c <a .(2)对任意x ∈R ,都有f ′(x )>-f (x )成立,即f ′(x )+f (x )>0.令g (x )=e x f (x ),则g ′(x )=e x [f ′(x )+f (x )]>0,所以函数g (x )在R 上单调递增.不等式f (x )>1e x 即e xf (x )>1,即g (x )>1.因为f (ln 2)=12,所以g (ln 2)=e ln 2f (ln 2)=2×12=1.故当x >ln 2时,g (x )>g (ln 2)=1,所以不等式g (x )>1的解集为(ln 2,+∞).1.如图是函数y =f (x )的导函数y =f ′(x )的图像,则下列判断正确的是()A.在区间(-2,1)上f (x )单调递增B.在区间(1,3)上f (x )单调递减C.在区间(4,5)上f (x )单调递增D.在区间(3,5)上f (x )单调递增答案C解析在区间(4,5)上f ′(x )>0恒成立,∴f (x )在区间(4,5)上单调递增.2.函数f (x )=ln x -ax (a >0)的单调递增区间为()D.(-∞,a)答案A解析函数f(x)的定义域为(0,+∞),f′(x)=1x-a,令f′(x)=1x-a>0,得0<x<1a,所以f(x)3.函数y=f(x)的图像如图所示,则y=f′(x)的图像可能是()答案D解析由函数f(x)的图像可知,f(x)在(-∞,0)上单调递增,f(x)在(0,+∞)上单调递减,所以在(-∞,0)上,f′(x)>0;在(0,+∞)上,f′(x)<0,选项D满足. 4.(2021·德阳诊断)若函数f(x)=e x(sin x+a)在R上单调递增,则实数a的取值范围为()A.[2,+∞)B.(1,+∞)C.[-1,+∞)D.(2,+∞)答案A解析因为f(x)=e x(sin x+a),所以f′(x)=e x(sin x+a+cos x).要使函数f(x)在R上单调递增,需使f′(x)≥0恒成立,即sin x+a+cos x≥0恒成立,所以a≥-sin x-cos x.因为-sin x-cos x=-2sin所以-2≤-sin x-cos x≤2,所以a≥ 2.5.(2021·江南十校联考)已知函数f(x)=ax2-4ax-ln x,则f(x)在(1,4)上不单调的一个充分不必要条件可以是()A.a>-12B.0<a<116C.a>116或-12<a<0 D.a>116答案D解析f′(x)=2ax-4a-1x=2ax2-4ax-1x,令g(x)=2ax2-4ax-1,则函数g(x)=2ax2-4ax-1的对称轴方程为x=1,若f(x)在(1,4)上不单调,则g(x)在区间(1,4)上有零点.当a=0时,显然不成立;当a≠0>0,(1)=-2a-1<0,(4)=16a-1>0,<0,(1)=-2a-1>0,(4)=16a-1<0,解得a>116或a<-12.∴a>116是f(x)在(1,4)上不单调的一个充分不必要条件.6.已知函数y=f(x+1)是偶函数,当x∈(1,+∞)时,函数f(x)=sin x-x,设a=b=f(3),c=f(0),则a,b,c的大小关系为()A.b<a<cB.c<a<bC.b<c<aD.a<b<c答案A解析由函数y=f(x+1)是偶函数,可得函数f(x)的图像关于直线x=1对称,则a=b=f(3),c=f(0)=f(2),又当x∈(1,+∞)时,f′(x)=cos x-1≤0,所以f(x)=sin x-x在(1,+∞)上为减函数,所以b<a<c,故选A.7.若函数f (x )=ax 3+3x 2-x +1恰好有三个单调区间,则实数a 的取值范围为________.答案(-3,0)∪(0,+∞)解析依题意知,f ′(x )=3ax 2+6x -1有两个不相等的零点,≠0,=36+12a >0,解得a >-3且a ≠0.8.(2022·哈尔滨调研)若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是________.答案1解析f ′(x )=4x -1x =(2x -1)(2x +1)x(x >0),令f ′(x )>0,得x >12;令f ′(x )<0,得0<x <12.-1≥0,-1<12<k +1,解之得1≤k <32.9.设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集是__________________.答案(-∞,-2)∪(0,2)解析令φ(x )=f (x )x,∵当x >0时,f (x )x ′=x ·f ′(x )-f (x )x 2<0,∴φ(x )=f (x )x 在(0,+∞)上为减函数,又f (2)=0,即φ(2)=0,∴在(0,+∞)上,当且仅当0<x <2时,φ(x )>0,此时x 2f (x )>0.又f(x)为奇函数,∴h(x)=x2f(x)也为奇函数,由数形结合知x∈(-∞,-2)时,f(x)>0.故x2f(x)>0的解集为(-∞,-2)∪(0,2).10.已知函数f(x)=ln x+ke x(k为常数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(1)求实数k的值;(2)求函数f(x)的单调区间.解(1)f′(x)=1x-ln x-ke x(x>0).又由题意知f′(1)=1-ke=0,所以k=1.(2)由(1)知,f′(x)=1x-ln x-1e x(x>0).设h(x)=1x-ln x-1(x>0),则h′(x)=-1x2-1x<0,所以h(x)在(0,+∞)上单调递减.由h(1)=0知,当0<x<1时,h(x)>0,所以f′(x)>0;当x>1时,h(x)<0,所以f′(x)<0.综上f(x)的单调增区间是(0,1),减区间为(1,+∞).11.讨论函数g(x)=(x-a-1)e x-(x-a)2的单调性.解g(x)的定义域为R,g′(x)=(x-a)e x-2(x-a)=(x-a)(e x-2),令g′(x)=0,得x=a或x=ln2,①当a>ln2时,x∈(-∞,ln2)∪(a,+∞)时,f′(x)>0,x∈(ln2,a)时,f′(x)<0;②当a=ln2时,f′(x)≥0恒成立,∴f(x)在R上单调递增;③当a<ln2时,x∈(-∞,a)∪(ln2,+∞)时,f′(x)>0,x∈(a,ln2)时,f′(x)<0,综上,当a>ln2时,f(x)在(-∞,ln2),(a,+∞)上单调递增,在(ln2,a)上单调递减;当a=ln2时,f(x)在R上单调递增;当a<ln2时,f(x)在(-∞,a),(ln2,+∞)上单调递增,在(a,ln2)上单调递减.12.已知a=ln33,b=e-1,c=3ln28,则a,b,c的大小关系为()A.b>c>aB.a>c>bC.a>b>cD.b>a>c答案D解析依题意,得a=ln33=ln33,b=e-1=ln ee,c=3ln28=ln88.令f(x)=ln xx(x>0),则f′(x)=1-ln xx2,易知函数f(x)在(0,e)上单调递增,在(e,+∞)上单调递减.所以f(x)max=f(e)=1e=b,且f(3)>f(8),即a>c,所以b>a>c.13.(2021·成都诊断)已知函数f(x)是定义在R上的偶函数,其导函数为f′(x).若x>0时,f′(x)<2x,则不等式f(2x)-f(x-1)>3x2+2x-1的解集是________.答案1解析令g(x)=f(x)-x2,则g(x)是R上的偶函数.当x>0时,g′(x)=f′(x)-2x<0,则g(x)在(0,+∞)上递减,于是在(-∞,0)上递增.由f(2x)-f(x-1)>3x2+2x-1得f(2x)-(2x)2>f(x-1)-(x-1)2,即g (2x )>g (x -1),于是g (|2x |)>g (|x -1|),则|2x |<|x -1|,解得-1<x <13.14.(2021·全国乙卷)已知函数f (x )=x 3-x 2+ax +1.(1)讨论f (x )的单调性;(2)求曲线y =f (x )过坐标原点的切线与曲线y =f (x )的公共点的坐标.解(1)由题意知f (x )的定义域为R ,f ′(x )=3x 2-2x +a ,对于f ′(x )=0,Δ=(-2)2-4×3a =4(1-3a ).①当a ≥13时,Δ≤0,f ′(x )≥0在R 上恒成立,所以f (x )在R 上单调递增;②当a <13时,令f ′(x )=0,即3x 2-2x +a =0,解得x 1=1-1-3a 3,x 2=1+1-3a 3,令f ′(x )>0,则x <x 1或x >x 2;令f ′(x )<0,则x 1<x <x 2.所以f (x )在(-∞,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增.综上,当a ≥13时,f (x )在R 上单调递增;当a <13时,f (x )∞(1+1-3a 3,+∞)上单调递增,在.(2)记曲线y =f (x )过坐标原点的切线为l ,切点为P (x 0,x 30-x 20+ax 0+1).因为f ′(x 0)=3x 20-2x 0+a ,所以切线l 的方程为y -(x 30-x 20+ax 0+1)=(3x 20-2x 0+a )(x -x 0).由l 过坐标原点,得2x 30-x 20-1=0,解得x 0=1,所以切线l 的方程为y =(1+a )x .=(1+a )x ,=x 3-x 2+ax +1,=1,=1+a=-1,=-1-a .所以曲线y=f(x)过坐标原点的切线与曲线y=f(x)的公共点的坐标为(1,1+a)和(-1,-1-a).。
选修2-2 第1章 导数及其应用
§1.3.1 单调性 第1课时 总第53教案
一、教学目的:1.正确理解利用导数判断函数的单调性的原理;
2.掌握利用导数判断函数单调性的方法.
二、教学重点:利用导数判断函数单调性.
教学难点:利用导数判断函数单调性. 三、教学过程:
预习测评:1. 函数的导数与函数的单调性的关系: 我们已经知道,曲线y=f(x)的切线的斜率就是函数y=f(x)的导数.从函数342
+-=x x y 的图像可以看到:
定义:一般地,设函数y=f(x) 在某个区间内有导数,如果在这个区间内/
y >0,那么函数y=f(x) 在为这个区间内的增函数;如果在这个区间内/
y <0,那么函数y=f(x) 在为这个区间内的减函数 . 2.用导数求函数单调区间的步骤:
①求函数f (x )的导数f ′(x ).
②令f ′(x )>0解不等式,得x 的范围就是递增区间. ③令f ′(x )<0解不等式,得x 的范围,就是递减区间. 典题互动:
例1、确定下列函数的单调区间
①x x x f -=3
)( ②x x x f ln )(-= ③x
x f 21)(= ④x x x f sin 2
1
)(+= ⑤1+-=x e y x ⑥)34(4
134
+--=x x y ⑦x x y -=3 ⑧x x y 1+= ⑨1
2-=x bx y
y =f (x )=x 2
-4x +3 切线的斜率 f ′(x )
(2,+∞) (-∞,2)
3
2
1
f x () = x 2-4⋅x ()+3
x
O
y
B A
例2: 若x ax x f +=3
)(恰有三个单调区间,试确定实数a 的取值范围,并求出这三个单调区间。
例3: 要使函数2)1(3)(2
-++=x a x x f 在区间]3,(-∞上是减函数,求实数a 的取值范围。
例4:已知x>1,求证:)1ln(x x +>
学效自测:
1、讨论函数)(x f 的单调性 (1)b kx y += (2)x
k y = (3))0( 2
≠++=a c bx ax y
2、证明:(1) x
e x
f =)(在区间),(+∞-∞上是增函数;(2) x e x f x
-=)(在区间)0,(-∞上是减函数。
§1.3.1 单调性 第1课时 课后练习
1、函数y=x 2
的增区间为______________
2、当x>0时,x
x x f 2
)(+=,则)(x f 的单调减区间为_________________________
3、函数2
1x x
y +=
的增区间为__________________
4、函数c bx ax x x f +++=2
3
)(,其中a 、b 、c 为实数,当032
<-b a 时,)(x f 在R 上为__________
(增函数,减函数,常数,无法确定函数的单调性)
5、若三次函数x ax x f -=3
)(在区间),(+∞-∞内是减函数,则a 的范围为________________
6、求函数()2
3
252
x f x x x =--+的单调增区间_______________________________ 7、若函数d cx bx x x f +++=2
3
)(的单调减区间为[]2,1-,则b=_____________c=__________________
8、若函数)0(22131)(2
3≠--=a ax ax ax x f 在区间[]2,1-上为增函数,
则a 的范围为________________ 9、求证:方程0sin 2
1
=-x x 只有一个根x=0
10、已知),1( )1,(2t x b x x a -=+=,,若函数b a x f •=)(在区间(-1,1)上是增函数,求t 的取值范围。
11、当)2,0(π
∈x 时,求证:33
1
tan x x x +>
12、已知实数a ,),)(4()(2
a x x x f --=若),2[]2,()(+∞--∞和在x f 上都递增,求a 的取值范围。
13、设函数a
ax x e x f x
++=2)(,其中a 为实数。
(1)若函数的定义域为R ,求a 的取值范围。
(2)当函数的定义域为R ,求函数的单调减区间。