比例应用题知识点和基础练习题
- 格式:pdf
- 大小:387.39 KB
- 文档页数:3
用比例解决问题
知识点一:用正比例解决问题
1、一辆汽车 2 小时行驶 140 km,照这样的速度,从甲地到乙地共行驶了5小时,甲、乙两地之间的公路长多少千米?
2、一台拖拉机 2 小时耕地1.25 hm²,照这样计算,8小时可以耕地多少公顷?
3、某学校的操场上有一根旗杆,为测量它的高度,在旗杆旁边竖起一根 2.5m 高的竹竿,量得竹竿的影长2m ,同时量得旗杆影长6.4m ,求旗杆的高度.
4、小明家到图书馆的路程为 1200 m。
小明从家出发,4分钟走了320m。
照这样的速度,他还要几分钟才能走到图书馆?
知识点二:用反比例解决问题
1、一辆汽车从甲地开往乙地,每小时行 70 km,5 小时到达,如果要 4 小时到达,每小时需要行驶多少千米?
2、一间房子用方砖铺地,用面积是9 dm²的方砖,需要 96 块。
如果改用面积是4 dm²的方砖,需要多少块?
3、给一间房子铺地,如果用边长 6 dm的方砖,需要80块。
如果改用边长 8 dm的方砖,需要多少块?(用比例解)
4、将一批纸装订成练习本,每本 36页,可订 40本。
若每本 30页,可订多少本?
5、一辆汽车从甲地开往乙地,每小时行 60 km,3 小时可到达。
返回时,如果速度提高 20%,多少小时就可返回甲地?。
知识点精讲比例应用题一、简单比例关系应用题。
1. 已知甲、乙两数的比是5:3,甲数是25,求乙数。
- 解析:设乙数为x,因为甲、乙两数的比是5:3,即(甲)/(乙)=(5)/(3)。
已知甲数是25,则(25)/(x)=(5)/(3),交叉相乘得5x = 25×3,5x=75,解得x = 15。
2. 一种合金中铜和锌的比是2:3,现在有铜12克,需要多少克锌才能制成这种合金?- 解析:设需要锌x克,因为铜和锌的比是2:3,即(铜)/(锌)=(2)/(3)。
已知铜12克,则(12)/(x)=(2)/(3),交叉相乘得2x=12×3,2x = 36,解得x = 18克。
3. 某班男、女生人数比是4:5,男生有20人,这个班共有多少人?- 解析:设女生有x人,因为男、女生人数比是4:5,(男生人数)/(女生人数)=(4)/(5),已知男生20人,则(20)/(x)=(4)/(5),交叉相乘得4x=20×5,4x = 100,解得x = 25人。
那么这个班共有20 + 25=45人。
二、比例在工程问题中的应用。
4. 一项工程,甲、乙两队的工作效率比是3:4,甲队单独做需要12天完成,乙队单独做需要多少天完成?- 解析:工作总量 = 工作效率×工作时间。
设乙队单独做需要x天完成。
因为甲、乙两队的工作效率比是3:4,设甲队工作效率为3a,乙队工作效率为4a。
甲队单独做需要12天完成,工作总量为3a×12 = 36a。
乙队工作总量也为36a,工作效率为4a,则工作时间x=(36a)/(4a)=9天。
5. 甲、乙两个工程队合修一条路,甲、乙两队的工作效率比是5:3,两队合修6天完成,单独修甲队比乙队少用多少天?- 解析:设甲队工作效率为5a,乙队工作效率为3a,工作总量=(甲队工作效率 + 乙队工作效率)×工作时间=(5a + 3a)×6=48a。
比例解应用题【学习内容及预期目标】涉及两个或多个量之间比例的应用题。
熟练掌握比的转化和运算;对条件较多的应用题,学会通过列表的方法逐步分析求解;了解正比例与反比例的概念,掌握行程和工程问题中的正反比例关系。
★不同问题中的正、反比例关系:一、积为定值:如:(1)路程相同时,速度和时间成反比关系;(2)面积相同时,长和宽(或底和高)成反比关系;(3)工作总量相同时,工作效率和时间成反比关系;(4)利润相同时,利润率和成本成反比关系;(5)溶质相同时,溶液和浓度成反比关系;......二、商为定值:如:(1)速度相同时,路程和时间成正比关系;时间相同时,路程和速度成正比关系;(2)长(或底)相同时,面积和宽(或高)成正比关系;(3)工作效率相同时,工作总量和时间成正比关系;工作时间相同时,工作总量和效率成正比关系;(4)利润率相同时,利润和成本成正比关系;成本相同时,利润和利润率成正比关系;(5)溶液质量相同时,溶质质量和浓度成正比关系;浓度相同时,溶质和溶液质量成正比关系;......★例题解析:1、圆珠笔和铅笔的价格比是4:3,20支圆珠笔和21支铅笔共用71.5元.请问:圆珠笔的单价是每支多少元?解析:如果把每支圆珠笔的价格看成4份,那么每支铅笔的价格就是3份.因此20支圆珠笔的总价是4×20=80份,21支铅笔的总价是3×21=63份,所以它们的总价之比是80:63.而20支圆珠笔的价格就是40143805.716380805.71=⨯=+⨯元.所以圆珠笔的单价是40÷20=2元.2、加工一个零件,甲要2分钟,乙要3分钟,丙要4分钟.现有1170个零件,三人各加工多少个零件,才能使得他们同时完成任务?解析:三人的工效比即三人加工零件的个数比为3:4:641:31:21=. 所以甲要加工54034661170=++⨯个零件;乙要加工36034641170=++⨯个零件;丙要加工18034631170=++⨯个零件. 3、有两块重量相同的铜锌合金.第一块合金中铜与锌的重量比是2:5,第二块合金中铜与锌的重量比是1:3.现在把这两块合金合铸成一块大的.求合铸所成的合金中铜与锌的重量之比.解析:设一块合金的重量为1份,则第一块合金中铜的重量是725221=+⨯份,锌的重量是75721=-份; 第二块合金中铜的重量是413111=+⨯份,锌的重量是43411=-份. 两块合金中铜的总重量是28154172=+份,锌的总重量是284128152=- 份. 因此,合铸后铜与锌的重量比是41:152841:2815=. 4、一段路程分为上坡和下坡两段,这两段的长度之比是4:3.已知小迪在上坡时每小时走3千米,下坡时每小时走4.5千米.如果小迪走完全程用了半小时,请问:这段路程一共多远?解析:上坡和下坡路程之比是4:3,小迪速度分别是3千米/小时和4.5千米/小时.由于时间=路程÷速度,那么上坡与下坡的时间之比就是(4÷3):(3÷4.5)=2:1.因为全程共用了半小时,所以上坡用了3112221=+⨯小时,下坡用了613121=-小时.因此,上坡路程为1331=⨯千米,下坡路程为75.05.461=⨯千米,全程一共1.75千米. (解法二:列方程)设上、下坡路程分别为4x 千米、3x 千米,根据题意列表分析:由走完全程用了半小时可得方程:215.4334=+x x 解方程可得 x =0.25 所以全程共有4x +3x =7×0.25=1.75千米.5、已知甲、乙、丙三个班总人数的比为3:4:2,甲班男、女生人数的比为5:4,丙班男、女生人数的比为2:1,而且三个班所有男生和女生人数的比为13:14.请问:(1)乙班男、女生人数的比是多少?(2)如果甲班男生比乙班女生少12人那么甲、乙、丙三个班各有多少人?解析:(1)假设男生人数一共有13份,女生人数一共14份,则三个班总人数为27份.于是甲班总人数为9份,乙班总人数为12份,丙班总人数为6份.其中甲班男生有5份,女生有4份.丙班男生有4份,女生有2份.所以,乙班男生有4份,女生有8份,故男、女生比例为2:1. (2)(由(1)易得.略)6、小高从家去学校,平时总是7:50到校.有一天他起晚了,结果晚出发了10分钟.为了不至于迟到,他将速度提高了五分之一,跑步前往学校,最后在7:55到校.请问:小高这天是几点出发的?解析:小高今天比平时晚出发10分钟,晚到5分钟,那么他在路上少用了10-5=5分钟.小高今天的速度比平时快五分之一,则今天和平时的速度之比为6:5,那么他今天在路上用的时间和平时所用时间的比为5:6.今天小高在路上比平时少用了5分钟,那么今天要用5÷(6-5)×5=25分钟.而小高是7:55到的学校,所以他今天出发的时间是7:30.7、两根粗细相同、材料相同的蜡烛,长度之比为29:26,燃烧50分钟后,长蜡烛与短蜡烛的长度比为11:9,那么较长的那根还能燃烧多少分钟?解析:观察发现,这两只蜡烛燃烧的时候差不变,所以将两个比的差统一为6份.那么原长度比就为58:52,后来的长度比为33:27,所以50分钟对应58-33=25份,所以较长的那根还能燃烧50÷25×33=66分钟.8、康师傅加工一批零件,加工720个之后,他的工作效率提高了20%,结果提前4天完成任务;如果康师傅从一开始就把工作效率提高12.5%,那么也可以提前4天完成任务.问:这批零件共有多少个?解析:康师傅加工了720个零件后,工作效率提高了20%,相当于变成原来的1+20%=56,那么所用时间就变成原来的65.如果提前4天完成任务,那么不改变工作效率,康师傅还需要继续工作4÷(1-5/6)=24天.如果一开始康师傅就提高工作效率,变成原来的1+12.5%=89,那么所用时间就变成原来的98.要比原来提前4天完成任务,那么康师傅原来需要4÷(1-98)=36天完成任务.比较两次计算的结果,康师傅加工720个零件相当于原来工作36-24=12天,那么他原来每天加工720÷12=60个零件,因此这批零件共有2160个.(解法二:列方程)设康师傅原来每天加工x 个零件,共用t 天完成.根据“从一开始就把工作效率提高12.5%,那么可以提前4天完成任务” 可得方程:12.5%x (t -4)=4x 解方程可得:t=36. 即原来需要36天完成任务. 再设他先加工720个零件用了y 天,则工效提高后用了(32-y )天,可得方程: xy +1.2x (32-y )=36x 解方程可得:y=12. 即他加工720个零件用了12天,每天应加工720÷12=60个零件. 因此这批零件共有60×36=2160个.★巩固练习:1、已知甲比乙小5,甲数的四分之三等于乙数的三分之二,请问:甲数是多少?2、甲、乙两包糖的重量比是5:3,如果从甲包取出10克放入乙包后,甲、乙两包糖的重量比变为7:5.请问:这两包糖重量的总和是多少克?3、小聪和小明共折了100只纸鹤.折完后,小聪将自己所折纸鹤的六分之一给了小明,这时小明的纸鹤数量变为小聪的三分之一,那么小明折了多少只纸鹤?4、学校组织体检,收费标准如下:老师每人3元,女生每人2元,男生每人1元.已知老师和女生的人数比为2:9,女生和男生的人数比为3:7,共收体检费945元.那么老师、女生、男生各有多少人?5、甲如果单独完成某项工作,甲需24天,乙需36天,丙需48天.现在甲先做,乙后做,最后由丙完成.甲、乙工作的天数比为1:2,乙、丙工作的天数比为3:5.问:完成这项工作一共用了多少天?***已知猫5步的路程与狗跑3步的路程相同,猫跑7步的路程与兔跑5步的路程相同.而猫跑3步的时间与狗跑5步的时间相同,猫跑5步的时间与兔跑7步的时间相同.求猫、狗、兔的速度之比.。
比例类应用题一、按比例分配问题1、按比例分配: 把一个数按照一定的比来进行分配,这种分配方法通常叫做按比例分配.2、问题特征:(1)已知总量和各部分的比例关系,求各部分具体的量。
(2)已知各部分的比例关系及其中一个量,求总量或者其他分量。
3、解题方法:根据已知条件,把已知数量..与份数..对应起来,转化为求一个数的几分之几来做,例1、 学校新进一批图书共240本,按照3:4:5的比例分给三、四、五年级三个年级,请问三、四、五各年级各分得图书多少本?例2、甲、乙、丙分别有一些邮票,他们邮票数量比是7:4:3,丙有60枚邮票,甲和乙各有多少枚邮票?例3、甲乙丙三个班人数的和是420人,甲班和乙班的人数比是2:3,乙班和丙班的人数比是4:5,甲乙丙三个班各有多少人?例4、甲、乙、丙三人同去商场购物,甲花钱数的12等于乙花钱数的13,乙花钱数的34等于丙花钱数的47,结果丙比甲多花钱93元,问他们三人共花了多少钱? 例5、某小学共收集废纸396kg ,其中6年级比5年级多收集51,5年级和4年级收集废纸的比为10:11,则三个年级各收集废纸多少千克?例6、甲乙丙三人存款若干元,甲的存款是三人存款总数的41,乙的存款比丙的存款多1200元,乙丙的存款钱数之比为3:2,问三人存款各是多少元?二、比例类应用题的类型:1、正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中,相对应的两个数的比值一定,两种量就叫做正比例的量,他们的关系叫做正比例的关系.反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中,相对应的两个数的积一定,这两种量就叫做反比例的量,他们的关系叫做反比例关系.2、正反比例区别:正比例:比值(商)一定;(类似于归一)反比例:积一定. (类似于归总)3、解题方法:① 分析数量关系,判断两个量存在怎样的比例关系.② 设未知数x .③ 根据比例的意义列出等式并解答④ 检验并答题例7、根据下列实际问题列出比例式:(1)10秒钟跳绳15个,35秒钟跳绳x 个。
比与比例的知识点与练习题比例的意义和性质比的意义和性质1.比的意义:两个数相除叫做比。
冒号“:”是比号,读作“比”。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
比的前项相当于被除数,后项相当于除数,比值相当于商。
比值通常用分数表示,也可以用小数表示,有时也可能是整数。
比的后项不能是零。
比的前项相当于分子,后项相当于分母,比值相当于分数值。
2.比的性质:比的前项和后项同时乘上或者除以相同的数(除外),比值不变,这叫做比的基本性质。
比的化简可以根据比的基本性质进行,结果必须是一个最简比。
比例的意义和性质1.比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
2.比例的基本性质:在比例里,两个外项的积等于两个内项的积。
3.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
练比例的意义和性质练题1.填空。
1) 两个比相等的式子叫做比例。
2) 组成比例的四个数叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
3) 在比例里,两个外项的积等于两个内项的积。
4) 求比例中的未知项,叫做解比例。
5) 比值相等的两个比就相等。
2.按要求写比例。
1) 例如:1:2可以表示为2:4.2) 3:5=6:10.3) 1:2和2:1:10.4) 3:2:5:12.5) 17:3/5=68:12,所以比例为17:3/5=68:12.6) 2/3:6/2=4:9.3.按要求转化。
1) 6:8=3:4,8:6=4:3,24:6=4:1,2:3=8:12.2) 7:8=14:16,7:16=14:32,8:7=16:14,16:7=32:14.3) 7a=6b,a:b=6:7.4) 3/5a=4/9b,a:b=4:5/27.5.如果甲数的4/5与乙数的7/9相等,则甲数与乙数的比是多少?解:设甲数为4x,乙数为5y,则有:4x/(5y) = 7/9解得:x/y = 35/36因此甲数与乙数的比为4x/5y = 140/180 = 7/96.男生人数的5/8与女生人数的5/9相等,那么女生人数与男生人数的比是多少?解:设男生人数为5x,女生人数为8y,则有:5x/(8y) = 5/9解得:x/y = 8/9因此女生人数与男生人数的比为8y/5x = 72/25选择题:1.比例5:3=15:9的内项3增加6,要使比例成立,外项9应该增加多少?解:内项3增加6,变为9,比例变为5:3=15:9+6,即5:3=21:15因此,外项9应该增加6,变为15.答案:⑴62.把2千克盐加入15千克水中,盐与盐水重量的比是多少?解:盐水总重量为17千克,盐的重量为2千克,因此盐与盐水重量的比为2:17.答案:⑶2:173.下面的比中能与3:8组成比例的是多少?解:3:8的比值为0.375,只有1.5:4的比值也为0.375,因此1.5:4能与3:8组成比例。
6年级比例应用题一、简单比例关系应用题(1 10题)1. 一辆汽车3小时行驶180千米,照这样的速度,5小时行驶多少千米?解析:首先根据速度 = 路程÷时间,求出汽车的速度。
汽车3小时行驶180千米,速度为公式千米/小时。
然后根据路程 = 速度×时间,5小时行驶的路程为公式千米。
设5小时行驶公式千米,根据速度一定,路程和时间成正比例关系,可得公式,解得公式。
2. 配制一种农药,药粉和水的比是1:500,现有水6000千克,配制这种农药需要药粉多少千克?解析:药粉和水的比是公式,即水是药粉的500倍。
现有水6000千克,那么药粉的重量为公式千克。
设需要药粉公式千克,根据比例关系公式,解得公式。
3. 学校图书馆科技书与故事书的比是3:5,科技书有180本,故事书有多少本?解析:因为科技书与故事书的比是公式,设故事书有公式本,则公式,交叉相乘得公式,公式本。
思路是根据两种书数量的比例关系列方程求解。
4. 一块长方形菜地长和宽的比是5:3,长是40米,宽是多少米?解析:设宽是公式米,因为长和宽的比是公式,所以公式,交叉相乘得公式,公式米。
利用长和宽的比例关系来建立方程求解宽的长度。
5. 某工厂男职工与女职工的人数比是4:3,男职工有320人,女职工有多少人?解析:设女职工有公式人,根据男职工与女职工人数比是公式,可得公式,交叉相乘得公式,公式人。
依据给定的人数比例关系列方程求解女职工人数。
6. 一种混凝土是由水泥、沙子和石子按2:3:5配制而成的。
现在要配制150吨这种混凝土,需要水泥、沙子和石子各多少吨?解析:水泥、沙子和石子的比例为公式,总份数为公式份。
水泥占公式,沙子占公式,石子占公式。
水泥的重量为公式吨,沙子的重量为公式吨,石子的重量为公式吨。
先求出各成分占总量的比例,再根据总量求出各成分的量。
7. 小明和小红的零花钱之比是7:5,如果小明有56元零花钱,小红有多少元零花钱?解析:设小红有公式元零花钱,因为小明和小红零花钱之比是公式,所以公式,交叉相乘得公式,公式元。
比例的应用题六年级一、按比例分配问题。
1. 学校把栽70棵树的任务,按照六年级三个班的人数分配给各班,一班有46人,二班有44人,三班有50人。
三个班各应栽树多少棵?- 解析:首先求出三个班的总人数:46 + 44+50=140(人)。
然后计算各班人数占总人数的比例,一班:(46)/(140),二班:(44)/(140),三班:(50)/(140)。
最后用树的总数乘以各班所占比例得到各班应栽树的棵数。
- 一班应栽树:70×(46)/(140) = 23(棵);- 二班应栽树:70×(44)/(140)=22(棵);- 三班应栽树:70×(50)/(140)=25(棵)。
2. 一种混凝土是由水泥、沙子和石子按2:3:5的比例混合而成的。
如果要配制20吨这种混凝土,需要水泥、沙子和石子各多少吨?- 解析:首先求出总份数:2 + 3+5 = 10份。
然后计算每份的重量:20÷10 = 2吨。
最后根据各自的份数求出水泥、沙子和石子的重量。
- 水泥:2×2 = 4吨;- 沙子:2×3 = 6吨;- 石子:2×5 = 10吨。
3. 某工厂有三个车间,第一车间、第二车间、第三车间的人数比是8:12:21,第一车间比第二车间少80人,三个车间共有多少人?- 解析:设第一车间有8x人,第二车间有12x人。
根据第一车间比第二车间少80人,可列方程12x-8x = 80,解得x = 20。
则三个车间总人数为(8 +12+21)×20=41×20 = 820人。
二、比例尺问题。
4. 在比例尺是1:6000000的地图上,量得A、B两地的距离是5厘米。
一辆汽车以每小时75千米的速度从A地开往B地,需要多少小时?- 解析:根据比例尺公式,实际距离=图上距离÷比例尺,所以A、B两地的实际距离为5÷(1)/(6000000)=5×6000000 = 30000000厘米=300千米。
比例解应用题练习题1. 问题描述:某地区高中毕业生中男女生比例为5:4。
今年有500名高中毕业生,问男生有多少名?解答:根据题目中给出的男女生比例为5:4,我们可以计算出男女生的总比例为5+4=9。
令男生的人数为x,女生的人数为y,则有以下关系:x + y = 500 (总人数为500)x/y = 5/4 (男女生比例为5:4)根据以上两个方程,我们可以得到一个方程组:x + y = 5004x = 5y我们可以通过解方程组求得男生的人数。
首先,将第二个方程中的x用y的表达式代入第一个方程中:4(5y/4) + y = 5005y + 4y = 5009y = 500y = 500/9然后,将y的值代入第一个方程,求得x的值:x + 500/9 = 500x = 500 - 500/9计算得出:x ≈ 277.78所以,男生的人数约为278名。
2. 问题描述:某学校图书馆中的数学书和英语书的比例为3:5。
如果数学书有120本,问英语书有多少本?解答:根据题目中给出的数学书和英语书的比例为3:5,我们可以计算出数学书和英语书的总比例为3+5=8。
令数学书的本数为x,英语书的本数为y,则有以下关系:x + y = 120 (总本数为120)x/y = 3/5 (数学书和英语书比例为3:5)根据以上两个方程,我们可以得到一个方程组:x + y = 1203x = 5y我们可以通过解方程组求得英语书的本数。
首先,将第二个方程中的x用y的表达式代入第一个方程中:3(5y/3) + y = 1205y + 3y = 1208y = 120y = 120/8然后,将y的值代入第一个方程,求得x的值:x + 120/8 = 120x = 120 - 120/8计算得出:x ≈ 45所以,英语书的本数约为45本。
3. 问题描述:某地区蔬菜市场上,韭菜与芹菜的价格比为5:2。
如果购买5斤韭菜需要10元,问购买3斤芹菜需要多少元?解答:根据题目中给出的韭菜与芹菜的价格比为5:2,我们可以计算出韭菜与芹菜的总比为5+2=7。
比和比例知识点归纳1、比的意义和性质比的意义:两个数相除又叫做两个数的比。
例如:9:6=1.5前比后比项号项值比的基本性质:比的前项和后项都乘以或除以相同的数(零除外),比值不变。
应用比的基本性质可以化简比。
习题:一、判断。
1、比的前项和后项同时乘一个相同的数,比值不变。
()2、比的基本性质和商的基本性质是一致的。
()3、10克盐溶解在100克水中,这时盐和盐水的比是1:10.()4、比的前项乘5,后项除以1/5,比值不变。
()5、男生比女生多2/5,男生人数与女生人数的比是7:5.()6、“宽是长的几分之几”与“宽与长的比”,意义相同,结果表达不同。
()7、2/5既可以看做分数,也可以看做是比。
()二、应用题。
1.一项工程,甲单独做20天完成,乙单独做30天完成。
(1)写出甲、乙两队完成这项工程所用的时间比,并化简。
(2)写出甲、乙两队工作效率比,并化简。
2.育才小学参加运动会的男生人数和女生人数的比是5∶3,其中女生72人。
那么男生比女生多多少人?3.食品店有白糖和红糖共360千克,红糖的质量是白糖的。
红糖和白糖各有多少千克?4.甲、乙两个车间的平均人数是162人,两车间的人数比是5∶7。
甲、乙两车间各有多少人?5.有一块长方形地,周长100米,它的长与宽的比是3∶2。
这块地有多少平方米?6.建筑用混凝土是由水泥、沙、石子按5∶4∶3搅拌而成,某公司建住宅楼需混凝土2400吨,需水泥、沙、石子各多少吨?外项2、比例的意义和性质:比例的意义:表示两个比相等的式子叫做比例。
例如:9:6=3:2内项比例的基本性质:在比例中两个内项的积等于两个外项的积。
应用比例的基本性质可以解比例。
一、填空(1)两个数相除又叫做两个数的()。
(2)在5:4中,比的前项是(),后项是(),比值是()(3)8:9读作:(),这个比还可以写成()。
(4)比的前项和后项同时乘或除以相同的数(0除外),比值()。
这叫做()。
小升初毕业复习分数,比与比例题型汇总独家原创最新最全命中分数基础题题型一:单位一不变1、笑笑读一本故事书,第一天读了全书的40%,第二天读了全书的41,两天共读了52页,这本故事书有多少页?2、工程队修一条路,第一天修了全长的51,第二天修了全长的25%,还剩下154千米没修,这条路全长多少千米?3、水泥厂仓库里有水泥500吨,甲车队一次可以运走总数的12%,乙车队一次可以运走总数 20%。
如果让两个车队一起来运,一次共运走多少吨水泥?题型二:单位一改变4、一本小说,小明第一天看了全书的31,第二天看了剩下的32,还剩下全书的几分之几没看?5、张明看一本120页的故事书,第一天看了全书的41,第二天看了余下的52,第三天应从第几页看起?6、修路队在一条公路上施工。
第一天修了这条公路的14 ,第二天修了余下的23,已知这两天共修路1200米,这条公路全长多少米?题型三:比一个数几分之几多(少)几7、某工厂二月份比元月份增产110,三月份比二月份减产110.问三月份比元月份增产了还是减产了,增加或减少了百分之几?8、一件商品先涨价15,然后再降价15,问现在的价格和原价格比较升高、降低还是不变,升高、降低了百分之几?9、小李看了一本书,第一天看了全书的121还少5页,第二天看了全书的151还多3页,还剩206页,这本书共有多少页?10、一筐鸡蛋,第一次取出全部的一半多2个,第二次取出余下的一半少2个,篮子里还剩20个,篮子里原来有鸡蛋多少个?题型四:甲比乙多(少)几分之几11、(2017一中系)甲数比乙数多54,乙数比甲数少()() 12、水结成冰时,冰的体积比水增加 111,当冰化成水时,水的体积比冰减少题型五:总量为不变量。
13、某校六年级有甲、乙两个班,甲班人数是乙班的75,如果从乙班调3人到甲班,甲班人数是乙班人数的54,甲、乙两班原来有多少人?14、有两筐梨。
乙筐是甲筐的35 ,从甲筐取出5千克梨放入乙筐后,乙筐的梨是甲筐的79 。
按比例分配应用题参考答案典题探究一.基本知识点:二.解题方法:例1.六年级(2)班有学生48人,男生与总人数的比是5:8,则女生有()人.A.30 B.18 C.25考点:按比例分配应用题.专题:比和比例应用题.分析:“男生与总人数的比是5:8”,则女生占了总人数的,总人数已知是48人,就是求48的是多少.据此解答.解答:解:48×=18(人)答:女生有18人.故选:B.点评:本题的重点是求出女生人数占总数的几分之几,再根据分数乘法的意义列式解答.例2.甲、乙、丙三个数的比是3:4:5,这三个数的平均数是48,乙数是()A.48 B.36 C.12 D.60考点:按比例分配应用题.专题:比和比例应用题.分析:“甲、乙、丙三个数的比是3:4:5”,则乙数占了三个数总和的,这三个数的和是48×3=144.据此解答.解答:解:48×3=144144×=48答:乙数是48.故选:A.点评:本题的重点是求出乙占了三个数和的几分之几,再求出三个数的和是多少,然后根据分数乘法的意义列式解答.例3.欢欢看一本80页的书,已看的页数和剩下的页数比是7:5,欢欢大约看了()页.A.7B.47 C.56考点:按比例分配应用题;比的应用.专题:比和比例应用题.分析:由“已看的页数和剩下的页数比是7:5”,可求出已看的页数占总页数的,然后根据总页数,解决问题.解答:解:7+5=12,80×=80×≈47(页).答:欢欢大约看了47页.故选:B点评:本题关健是先通过“已看的页数和剩下的页数比“求出已看的页数占总页数的几分之几,用按比例分配的方法,解决问题.例4.一批货物按2:3:5分配给甲、乙、丙三个商店.丙商店分得这批货物的,乙商店分得这批货物的30%.考点:按比例分配应用题.分析:把这批货物的总重量看做单位“1”,也就是要分配的总量,是按照甲、乙、丙三个商店的质量比为2:3:5进行分配的,先求出三个商店分得的总份数,进一步用按比例分配的方法求出三家商店各分得这批货物的几分之几,进而确定哪家商店分得这批货物的,进一步把乙商店分得这批货物的几分之几改写成百分数即可.解答:解:三个商店分得的总份数:2+3+5=10(份),甲商店分得:1×=,乙商店分得:1×==0.3=30%,丙商店分得,1×==;答:丙商店分得这批货物的,乙商店分得这批货物的30%.故答案为:丙,30.点评:此题属于比的应用按比例分配,关键是先弄清要分配的总量是多少,没有具体的数量,就看作单位“1”.演练方阵A档(巩固专练)1.在50千克盐水中,盐和水的比是1:9,盐是()千克.A.1:10 B.1:9 C.5D.5考点:按比例分配应用题.专题:比和比例应用题.分析:盐和水的比是1:9,则盐就占了盐水的,已知盐水重50千克,用乘法可求出盐的重量.据此解答.解答:解:50×=5(千克)答:盐是5千克.故选:D.点评:本题的重点是根据比与分数的关系求出盐占了盐水的几分之几,再根据求一个数的几分之几是多少用乘法计算.2.一个三角形,3个内角度数之比是2:5:2,这个三角形是()三角形.A.锐角B.钝角C.直角D.等边考点:按比例分配应用题;三角形的内角和.专题:比和比例应用题;平面图形的认识与计算.分析:已知三角形三个内角的度数之比,根据三角形内角和定理,可求得最大角的度数,由此判断三角形的类型.解答:解;2+5+2=9180×=100(度);答:这个三角形是钝角三角形;故选:B.点评:解答此题应明确三角形的内角度数的和是180°,求出最大的角的度数,然后根据三角形的分类判定类型.3.甲、乙、丙三数之比为2:7:9,这三个数的平均数为24,则甲数是()A.8B.16 C.32 D.64考点:按比例分配应用题.专题:比和比例应用题.分析:根据这三个数的平均数为24,可得这三个数的和是24×3=72,求出这三个数的总份数及甲数占总份数的几分之几,根据求一个数的几分之几是多少用乘法计算.解答:解:2+7+9=1872×=8故选:A.点评:根据平均数求出总数,利用求一个数的几分之几是多少用乘法计算是解决此题的关键.4.一个三角形三个内角度数的比是3:2:1,这是一个()三角形.A.锐角B.直角C.钝角D.无法确定考点:按比例分配应用题;三角形的分类.专题:比和比例应用题.分析:因为三角形的内角度数和是180°,三角形的最大的角的度数占内角度数和的,根据一个数乘分数的意义,求出最大角,进而判断即可.最大的角:180°×=90°所以这个三角形是直角三角形故选:B.点评:解答此题应明确三角形的内角度数的和是180°,求出最大的角的度数,然后根据三角形的分类判定类型.5.从直角的顶点引一条射线,把直角分成两个角,使它们的度数之比为2:3,其中较大角的度数是()A.36°B.54°C.18°D.108°考点:按比例分配应用题.专题:比和比例应用题.分析:把直角分成两个角,使它们的度数之比为2:3,就是把90度按照2:3进行分配,那么较大的角就占,根据一个数乘分数的意义,求出较大角.解答:解:2+3=5;90°×=54°;答:较大的角是54°.故选:B.点评:解答此题应明确直角是90°,求出总份数,然后求出较大角占的分率,再根据分数乘法的意义求解.6.把140本书按一定的比分给2个班,合适的比是()A.4:5 B.3:4 C.5:6考点:按比例分配应用题;比的应用.专题:压轴题.分析:把140本书按一定的比分给2个班,如果按4:5分,就是把140平均分成4+5=9(份),一个班分4份,一个班分5份,140不能被9整除;如果按3:4分,就是把140平均分成3+4=7(份),一个班分3份,一个班分5份,140能被7整除;如果按5:6分,就是把140平均分成5+6=11(份),一个班分5份,一个班分6份,140不能被11整除.解答:解:根据分析,如果按3:4分,就是把140平均分成3+4=7(份),一个班分3份,一个班分5份,140能被7整除;故选:B点评:本题是考查按比例分配的实际应用,培养学生应用所学知识解决问题的能力.7.已知甲数与乙数的比是2:7,甲乙两数的和是36,甲数比乙数少()A.16 B.18 C.20 D.22考点:按比例分配应用题.分析:根据题意可知:乙数占两数和的,乙数占两数和的,甲数比乙数少两数和的(﹣),进而根据一个数乘分数的意义,解答即可.36×(﹣),=36×,=20;故选:C.点评:解答此题的关键:判断出单位“1”,先求出甲数比乙数少两数和的几分之几,进而根据一个数乘分数的意义,解答即可.8.把600本书按3:5分给五、六年级,六年级分到()本.A.150 B.225 C.300 D.375考点:按比例分配应用题.分析:此题要分配的总量是600本书,是按照五、六年级的本数比为3:5进行分配,先求出五、六年级分得本数的总份数,进一步求出六年级分得的本数占总本数的几分之几,最后求得六年级分得的本数,列式解答后再选择即可.解答:解:总份数:3+5=8(份),六年级分得的本数:600×=375(本);答:六年级分到375本.故选:D.点评:此题属于比的应用按比例分配,关键是先弄清要分配的总量是多少,再看此总量是按照什么比例进行分配的,再进一步按照比例分配的方法求出其中的一个量.9.六一班有学生50人,六二班有学生40人,两个班共植树36棵,要合理分配任务,六一班应植树几棵?正确列式是()A.B.C.D.考点:按比例分配应用题.专题:压轴题;比和比例应用题.分析:要合理分配任务,也就是按照两个班的学生人数进行分配.先求出两个班一共有多少人,再求出六一班学生人数占两个班总人数的几分之几,然后根据一个数乘分数的意义,用乘法解答.解答:解:50+40=90(人),36×=20(棵),答:六一班应植树20棵.故选:C.点评:此题解答关键是理解只有按两个班的人数的多少进行分配才合理.根据按比例分配的方法解答.10.被减数、减数与差的和是80,差与减数的比是5:3,差是()A.50 B.25 C.15考点:按比例分配应用题.分析:由于被减数=减数+差,所以根据“被减数、减数与差的和是80,”可求出减数和差的和,再由“差与减数的比是5:3,”可找到总数和总份数,即可求出一份.解答:解:(80÷2)÷(5+3)=40÷8=55×5=25故选B点评:找准总数,找准把总数分成的总份数,求出一份是多少.即可解答.B档(提升精练)1.把63吨化肥,按4:2:3分配给甲、乙、丙三个乡,甲乡比乙乡多分()吨.A.28 B.7C.14 D.21考点:按比例分配应用题.分析:根据总数是63吨,总份数是4+2+3,可求出一份是多少,再根据甲乡比乙乡多(4﹣2)份,即可求出甲乡比乙乡多分的吨数.解答:解:63÷(4+2+3)×(4﹣2)=63÷9×2=7×2=14(吨)答:故选C.点评:找准总数,找准把总数分成的总份数,再求出一份是多少.2.长方形的周长是48厘米,长与宽的比是3:5,它的面积是()平方厘米.A.270 B.135 C.540考点:按比例分配应用题;长方形、正方形的面积.专题:比和比例应用题;平面图形的认识与计算.分析:先求出长与宽的总份数,再求出长与宽占总数的几分之几,分别求出长与宽,进一步求出面积.解答:解:长与宽的总份数:3+5=8(份),48÷2×=9(厘米),48÷2×=15(厘米).面积:9×15=135(平方厘米).答:面积是135平方厘米.故选B.点评:此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.3.一个等腰三角形的周长是120厘米,相邻两条边长度的比是2:1,这个等腰三角形的底是()A.60厘米B.48厘米C.30厘米D.24厘米考点:按比例分配应用题;等腰三角形与等边三角形.专题:压轴题.分析:由题意可知“等腰三角形相邻两条边长度的比是2:1”,根据三角形边的关系“三角形的两边之和大于第三边,两边之差小于第三边”,所以腰的长度大于底的长度,即:腰的长度:底的长度=2:1;这样把三角形的周长分成了2+2+1=5(份),底占其中的1份,底是周长的;知道周长求底,根据题意列式计算即可.解答:解:120×,=120×,=24(厘米);即:三角形的底是24厘米.故选:D.点评:解答此题先根据三角形边的关系确定腰和底的比,再求出周长的总份数,最后求底的长度.4.一个三角形三个角度数的比是2:2:5,这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形考点:按比例分配应用题;三角形的分类.分析:三角形的内角和是180°,根据比例求出这三个角各是多少度,再根据角的度数判断是什么样的三角形.解答:解:总份数:2+2+5=9(份);这三个角的最大角是:180°×=100°;100°>90°;这个三角形是钝角三角形.故答案选:C.点评:此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.5.甲、乙、丙三人储蓄钱数的比是1:2:3,他们储蓄钱数的平均数是50元,乙储蓄了()元.A.50 B.100 C.150考点:按比例分配应用题.专题:压轴题;比和比例应用题.分析:根据“甲乙丙三人储蓄钱数之比是1:2:3”,求得甲乙丙储蓄钱数的总份数,再求得乙储蓄的钱数占总数的几分之几;根据“他们储蓄钱数的平均数是50元”,求得三人储蓄的总钱数;最后求得乙储蓄的钱数,列式解答即可.解答:解:甲乙丙储蓄钱数的总份数:1+2+3=6(份);三人储蓄的总钱数:50×3=150(元);乙储蓄的钱数:150×=50(元).答:乙储蓄了50元.故选:A.点评:此题主要考查按比例分配应用题的特点:已知三个数的比,三个数的和,求其中的一个数,用按比例分配解答.6.把126吨化肥,按4:3:2分配给甲、乙、丙三个村,甲村比丙村多分化肥()吨.A.14 B.28 C.42考点:按比例分配应用题.专题:比和比例应用题.分析:根据总数是126吨,总份数是4+3+2,可求出一份是多少,再根据甲村比丙村多(4﹣2)份,即可求出甲村比丙村多分的吨数.解答:解:126÷(4+3+2)×(4﹣2)=126÷9×2=28(吨)答:甲村比丙村多分化肥28吨.故选:B.点评:找准总数,找准把总数分成的总份数,再求出一份是多少,进而解决问题.7.甲、乙、丙三个数的和为300,甲数为120,乙数和丙数的比是5:4,丙数是()A.180 B.100 C.80考点:按比例分配应用题.专题:比和比例.分析:乙数和丙数的比是5:4,根据比与分数的关系可知:丙数就占乙丙两数和,乙丙两数的和是(300﹣120).据此解答.解答:解:(300﹣120)×,=180×,=80.答:丙数是80.故选:C.点评:本题的关键是根据比与分数的关系求出丙占乙丙两数和的几分之几,再求出乙丙两数的和是多少,然后根据分数乘法的意义列式解答.8.A、B、C、D四人一起完成一件工作,D做了一天就因病请假了,结果A做了6天,B 做了5天,C做了4天,D作为休息的代价,拿出480元给A、B、C三人作为报酬,若按天数计算劳务费,则这480元中A应该分()元.A.180 B.192 C.200 D.320考点:按比例分配应用题.专题:比和比例应用题.分析:根据题意可知:他们一共做了6+5+4+1=16天,那么平均算下来,16÷4=4天,一个人就要做四天,但D做了一天因事请假,他做了一天,就少做了3天,则A多做了6﹣4=2天,B多做了一天,那么那48元是给多做天数的报酬,一共多做了3天,就用报酬费480÷3=160元,一天就要给160元,A多做了2天,就用160×2=320元即可解决.解答:解:一共做的天数:6+5+4+1=16(天)平均每人做的天数:16÷4=4(天)A多做的天数:6﹣4=2(天)B多做的天数:5﹣4=1(天)一共多做的天数:2+1=3(天)A应得480÷3×2=320(元),答:这480元应分给A320元.故选:D.点评:解答此题的关键是先求出一共做的天数,从而知道平均每人要做的天数,再求出A多做了几天,就把D少做3天的酬劳平均分成3份,即可求出.9.已知A+B=80,A:B=3:5,则A、B分别是()A.30、48 B.50、30 C.30、50考点:按比例分配应用题.分析:首先求得A、B两数的总份数,再分别求得A、B所占总数的几分之几,最后求得A、B两个数,列式解答即可.解答:解:总份数:3+5=8(份),数A:80×=30,数B:80×=50,或80﹣30=50.答:则A是30,B是50.故选:C.点评:此题主要考查按比例分配应用题的特点:已知两个数的比与两个数的和,求这两个数,用按比例分配的方法解答.10.绿化队准备植树96棵,按7:8:9的比例分配给甲、乙、丙三个小组.甲组应植树()棵.A.36 B.32 C.28 D.26考点:按比例分配应用题.专题:比和比例应用题.分析:由题意可得:甲组植树的棵数占植树总棵数的,把植树总棵数看作单位“1”,根据一个数乘分数的意义,用乘法解答即可.解答:解:7+8+9=24,96×=28(棵);答:甲组应植树28棵;故选:C.点评:此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.C档(跨越导练)1.一个分数的分子分母和是132,约分后为,原分数是()A.B.C.考点:按比例分配应用题.专题:压轴题.分析:解答此题先求分子和分母的和的总份数,再求1份是多少,然后求分子和分母分别是多少,最后写出这个分数.解答:解:总份数:4+7=11(份),一份:132÷11=12,分子:4×12=48,分母:7×12=84.即:这个分数是.故选:B.点评:此题主要考查按比例分配,解答此题先求分子、分母和的总份数,再求其中的1份是多少,最后求分子、分母分别是多少.2.一个最简真分数,分子、分母的和是50,如果把这个分数的分子、分母都减去5,所得分数的值是,原来的分数是()A.B.C.D.考点:按比例分配应用题.分析:这个最简分数的分子、分母分别减去5之后,所得分数的分子、分母之和为(50﹣5﹣5)40.因为所得分数的值是,根据比例分配,则:所得分数的分子为:40×=16,分母为:40×=24.故:原分数为:=.解答:解:(50﹣5﹣5)×,=40×,=16;40×,=24.,=.故选:B.点评:解答此题的关键是求所得分数的分子、分母之和;重点是根据比例分配,求出所得现在分数的分子、分母分别占和的几分之几.3.把1些树苗按2:3:5分配给一班、二班、三班的学生去种植,一班比三班的树苗少()%.A.60 B.40 C.20考点:按比例分配应用题;百分数的实际应用.专题:比和比例应用题.分析:用一班比三班少的份数除以三班的份数,就是一班比三班少百分之几.据此解答.解答:解:(5﹣2)÷5,=3÷5,=60%.答:一班比三班的树苗少60%.故选:A.点评:本题的关键是根据比与除法的关系来进行解答.4.某电器商店有180台电视机,彩电与黑白电视的台数比是5:4,彩电有()台.A.50 B.100 C.80考点:按比例分配应用题.专题:比和比例应用题.分析:根据题意,首先求出总份数,再求出彩电占总数量的几分之几,根据一个数乘分数的意义,有乘法解答.解答:解:180×=100(台);答:彩电有100台.故选:B.点评:此题考查的目的是让学生掌握按比例分配应用题的特点及解答规律,已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.5.一种混合糖中甲、乙两种糖的比是2:3,现加入甲糖120千克,乙糖40千克,得到混合糖660千克,新混合糖中甲、乙两种糖的比是()A.15:16 B.16:17 C.16:15 D.15:17考点:按比例分配应用题;比的意义.分析:根据题意“现加入甲糖120千克,乙糖40千克,得到混合糖660千克”得到加入糖之前甲、乙两种糖的和:660﹣(120+40)=500克,再根据题意求得甲、乙两种糖的总份数,然后分别求得甲、乙两种糖各占总分数的几分之几,最后分别求得加入糖之前甲、乙两种糖的质量,用原来两种糖的质量分别加上加入糖的质量,求出新混合糖种甲乙两种糖分别是多少,再求比并化简,列式解答即可.解答:解:加入糖之前甲、乙两种糖的和:660﹣(120+40),=660﹣160,=500(千克),总分数:2+3=5(份),加入糖之前甲、乙两种糖的质量分别是:500×=200(千克),600×=300(千克),新混合糖中甲、乙两种糖的质量分别是:200+120=320(千克),300+40=340(千克),新混合糖甲、乙两种糖的比:320:340,=(320÷20):(340÷20),=16:17.答:新混合糖中甲、乙两种的比16:17.故选:B.点评:此题主要考查按比例分配应用题的特点:已知两个数的比和两个数的和,在这里需根据题意求这两个数得和,用现在糖的质量减去加入糖的质量,用按比例分配的方法解答.6.甲、乙、丙三个数的平均数是19,甲、乙两数的比是3:4,丙比甲少3,甲是()A.24 B.18 C.15考点:按比例分配应用题.分析:根据“甲、乙、丙三个数的平均数是19”,可求出三个数的和为57,再根据“丙比甲少3”,可假设丙和甲一样也占3份,那么三个数的和就成为(57+3),先求出三个数的总份数,再求出甲数占三个数和的几分之几,进而求出甲数的数值即可.解答:解:三个数的和:19×3=57,丙和甲一样也占3份时,三个数的和为:57+3=60,总份数:3+4+3=10(份),甲数为:60×=18;答:甲数是18.故选:B.点评:此题属于考查按比例分配的应用题,解决此题关键是把丙和甲看的一样多,都占3份时,三个数的和是多少,作为要分配的总量,进而按照3:4:3进行分配,再用按比例分配的方法进行解答.7.下面的说法正确的是()A.一个等腰三角形的周长是108厘米,其中两条边的比是2:5,腰为24或45厘米B.一种彩票的中奖率是1%,爸爸买了100张这种彩票,爸爸一定会有1次中奖C.相关联的两个量X、Y,Y=X,那么Y和X成正比例考点:按比例分配应用题;辨识成正比例的量与成反比例的量;简单事件发生的可能性求解.专题:比和比例;比和比例应用题;可能性.分析:(1)根据三角形的特性:三角形的任意两条边之和一定大于第三条边,可知等腰三角形三条边的比为2:5:5,不会是2:2:5,按比例分配求出腰即可判断;(2)一种彩票的中奖率是1%,属于不确定事件,可能中奖,也可能不中奖,买了100张彩票只能说明比买1张的中奖的可能性大;(3)由Y=X,变式可得出=4,根据正比例的意义作出判断.解答:解:A.因为:三角形的任意两条边之和一定大于第三条边,所以等腰三角形三条边的比为2:5:5,108×=45(厘米),因此腰为24厘米不对;B.一种彩票的中奖率是1%,买100张彩票一定有1张中奖的说法错误.C.Y=X,=4,比值一定,所以Y和X成正比例,是正确的;故选:C.点评:此题主要考查了概率的意义,以及等腰三角形的性质和正比例的意义等知识.8.下面说法正确的是()A.一个三角形内角度数的比是1:2:3,这是个锐角三角形B.国际儿童节和国庆节都在大月C.同一个平面内,永不相交的两条直线叫做平行线D.在生活中,知道了物体的方向,就能确定物体的位置考点:按比例分配应用题;年、月、日及其关系、单位换算与计算;垂直与平行的特征及性质;三角形的分类;三角形的内角和;方向.专题:综合判断题.分析:(1)根据三角形内角和是180度,按比例分配求出最大角的度数,即可判断;(2)知道一年中1、3、5、7、8、10、12是大月,再知道儿童节和国庆节在哪个月,即可得解;(3)根据平行线的定义:在同一平面内,不相交的两条直线叫平行线,即可判断;(4)物体位置对于某一观察点来说,是由一定的方向和距离确定的,只知道方向或距离不能确定物体的位置.判断即可.解答:解;A.180×=90°,所以是直角三角形而不是锐角三角形;B.国际儿童节是6月1日,国庆节是10月1日,6月是小月,10月是大月,所以国际儿童节和国庆节都在大月错误;C.在同一平面内,不相交的两条直线叫做平行线,是正确的;D.对于某一观察点来说,知道了物体的方向和距离就可以确定物体的位置,只知道方向或距离不能确定物体的位置.故选c.点评:此题主要考查的知识:平行线的定义,一年中哪些是大月和小月,节日的日期,以及要确定一物体的位置,必须知道方向和距离.9.甲、乙、丙三人的平均体重是50千克,他们的体重的比是4:3:3,甲的体重是()A.50×3×B.50×C.50×D.50×3×考点:按比例分配应用题.分析:根据题意,三人的总体重为50×3=150(千克),甲的体重占三人总体重的,根据一个数乘分数的意义,列式即可.解答:解:甲的体重是:50×3×;故选:A.点评:解答此题的关键是找准对应量,找出数量关系,根据数量关系,用按比例分配解答.10.水是由氢和氧按1:8的重量化合而成的,72千克水中,含氢和氧各()A.1千克,71千克B.8千克,64千克C.9千克,63千克D.63千克,9千克考点:按比例分配应用题.专题:比和比例应用题.分析:因为氢和氧按1:8化合成水,氢占水的,氧占水的,然后用乘法解答即可.解答:解:72×=8(千克)72×=64(千克);答:含氢和氧分别有8千克、64千克;故选:B.点评:本题的关键是分别求出氢和氧各占水的几分之几,然后再根据一个数乘分数的意义,用乘法列式解答.。
比例应用题及答案难点1. 题目:一个班级有男生和女生,男生人数是女生人数的1.5倍。
如果男生人数是45人,那么女生有多少人?答案:设女生人数为x人,根据题意,男生人数是女生人数的1.5倍,可以得到方程1.5x = 45。
解方程得到x = 45 / 1.5 = 30。
所以女生有30人。
2. 题目:一个工厂生产两种类型的机器,A型机器和B型机器。
A型机器的生产时间是B型机器的2倍。
如果A型机器的生产时间是4小时,那么B型机器的生产时间是多少?答案:设B型机器的生产时间为y小时,根据题意,A型机器的生产时间是B型机器的2倍,可以得到方程2y = 4。
解方程得到y = 4/ 2 = 2。
所以B型机器的生产时间是2小时。
3. 题目:一个果园里,苹果树和梨树的比例是3:2。
如果果园里有45棵苹果树,那么梨树有多少棵?答案:设梨树的数量为z棵,根据题意,苹果树和梨树的比例是3:2,可以得到方程3/2 = 45/z。
解方程得到z = (2/3) * 45 = 30。
所以梨树有30棵。
4. 题目:一个学校有学生和老师,学生人数是老师人数的4倍。
如果老师人数是30人,那么学生有多少人?答案:设学生人数为a人,根据题意,学生人数是老师人数的4倍,可以得到方程a = 4 * 30。
计算得到a = 120。
所以学生有120人。
5. 题目:一个商店销售两种商品,商品X和商品Y。
商品X的销售额是商品Y的1.2倍。
如果商品X的销售额是3600元,那么商品Y的销售额是多少?答案:设商品Y的销售额为b元,根据题意,商品X的销售额是商品Y的1.2倍,可以得到方程1.2b = 3600。
解方程得到b = 3600 / 1.2 = 3000。
所以商品Y的销售额是3000元。
6. 题目:一个花园里,玫瑰花和郁金香的比例是5:3。
如果花园里有30朵郁金香,那么玫瑰花有多少朵?答案:设玫瑰花的数量为c朵,根据题意,玫瑰花和郁金香的比例是5:3,可以得到方程5/3 = c/30。
比 应用题关键:(1)确定单位“1”,(2)找到数量对应的分率。
练习题一、比的性质、比与分数的关系1、甲乙两数的比是11:9,甲数占甲、乙两数和的)()(,乙数占甲、乙两数和的)()(。
甲、乙两数的比是3:2,甲数是乙数的( )倍,乙数是甲数的)()(。
2、在3:5里,如果前项加上6,要使比值不变,后项应加 。
3、89吨大豆可榨油31吨,1吨大豆可榨油( )吨,要榨1吨油需大豆( )吨。
4、把甲数的71给乙,甲、乙两数相等,甲数是乙数的)()(,甲数比乙数多)()(。
5、甲数比乙数多41,甲数与乙数比是( )。
乙数比甲数少)()(。
【一】已知两数比和其中一个数,求另一个数。
1. 田甜和航航走路的速度比是5:4,已知航航每分钟走80米,那么田甜每分钟走多少米?2. 乐乐和笑笑的压岁钱之比是6:7,已知乐乐有180元钱,那么笑笑有多少钱?【二】已知两数比和两数和,求这两个数。
1.乙两数的比3:4,它们的和是21.甲、乙两数分别是多少?2.一套校服的总价是144元,其中衣服与裤子的价格比是7:9,那么衣服与裤子的价格分别是多少元?3.一个直角三角形的周长是84厘米,三条边的长度比是3:4:5,这个直角三角形的面积是多少平方厘米?4.A、B、C三个影厅的座位数之比为3:5:4,已知平均每个影厅有320个座位,求三个影厅给油多少个座位?5.用192厘米的铁丝做一个长方体的框架.长、宽、高的比是7:5:4.要在框架的表面糊上一层纸,糊纸的面积是多少?6.王大伯家共有菜地400m2,其中种西红柿,剩下的按3:2的面积比种黄瓜和茄子.三种蔬菜的面积分别是多少平方米?7.甲、乙、丙三人合买国库券,甲所付的钱是乙、丙总和1:2,乙所付的钱和甲、丙付钱的总和的比是2 :7。
已知丙付了280元:,那么甲和乙分别付了多少饯?8.红、白、黄三种玻璃珠放在一起,其中红珠占25%,白珠与另外两种珠的个数比是3 :5,黄珠有60个,三种珠共有多少个?9.果园里栽了苹果树、梨树、橘子树三种果树,苹果树栽了360棵,占果树总棵树的,梨树与橘子树棵树的比是5:4,梨树有多少棵?【三】已知两数比和两数差,求这两个数。
比例应用题1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质1:若a: b=c:d,则(a + c):(b + d)= a:b=c:d;性质2:若a: b=c:d,则(a - c):(b - d)= a:b=c:d;性质3:若a: b=c:d,则(a +x c):(b +x d)=a:b=c:d;(x为常数)性质4:若a: b=c:d,则a×d = b×c;(即外项积等于内项积)正比例:如果a÷b=k(k为常数),则称a、b成正比;反比例:如果a×b=k(k为常数),则称a、b成反比.二、主要比例转化实例①x ay b=⇒y bx a=;x ya b=;a bx y=;②x ay b=⇒mx amy b=;x may mb=(其中0m≠);③x ay b=⇒x ax y a b=++;x y a bx a--=;x y a bx y a b++=--;④x ay b=,y cz d=⇒x a cz b d=;::::x y z ac bc bd=;⑤x的ca等于y的db,则x是y的adbc,y是x的bcad.三、按比例分配与和差关系⑴按比例分配例如:将x个物体按照:a b的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x的比分别为():a a b+和():b a b+,所以甲分配到axa b+个,乙分配到bxa b+个.知识点拨教学目标⑵已知两组物体的数量比和数量差,求各个类别数量的问题例如:两个类别A 、B ,元素的数量比为:a b (这里a b >),数量差为x ,那么A 的元素数量为axa b-,B 的元素数量为bxa b-,所以解题的关键是求出()a b -与a 或b 的比值.四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l ”。
六年级数学比例知识点一、比例的基本概念比例是用来表示两个比(也就是两个分数)之间的关系。
如果两个比相等,我们就说这两个比是成比例的。
比例通常用冒号表示,例如A:B = C:D,读作“A与B的比例等于C与D的比例”。
二、比例的基本性质1. 反比例性质:如果A:B = C:D,那么AD = BC。
2. 合比性质:如果A:B = C:D,那么A/B + C/D = 1。
3. 分比性质:如果A:B = C:D,那么A/C = B/D。
4. 合分比性质:如果A:B = C:D,那么(A+C)/B = D/B。
三、比例的应用1. 比例在几何中的应用:通过比例可以解决相似图形的问题,如相似三角形、相似多边形等。
2. 比例在实际问题中的应用:如速度与时间的关系(速度×时间=路程),工作效率与工作时间的关系等。
四、比例的计算1. 直接计算:根据比例的定义,直接计算两个比是否相等。
2. 交叉相乘验证:如果A:B = C:D,可以通过验证AD是否等于BC来判断比例是否成立。
3. 比例的简化:通过找到比例项的公因数,消除它们,使比例达到最简形式。
五、比例线段1. 定义:如果线段AB与线段CD成比例,记作AB∥CD,那么AB与CD 平行且长度之比是常数。
2. 计算:通过测量线段AB和CD的长度,计算出它们的比例系数。
六、比例的应用题1. 直接比例问题:解决与比例直接相关的问题,如“小明的身高与他的影子长度成正比”。
2. 间接比例问题:解决比例关系不明显的问题,需要先确定比例关系,再进行计算。
七、比例的图形表示1. 绘制比例线段:通过直尺和比例尺,可以在图纸上绘制出按比例缩放的图形。
2. 绘制相似图形:利用比例关系,可以绘制出与给定图形相似的图形。
八、比例的练习题1. 计算比例:如果A:B = 2:3,C:D = 4:6,判断A与C的比例是否等于B与D的比例。
2. 比例应用:如果小明以每小时5公里的速度行走,他走了2小时,那么他走了多少公里?3. 比例线段:一条线段长12厘米,另一条线段的比例系数是1:3,求第二条线段的长度。
六年级上册数学比例的应用题基础和提高题讲解和练习题打印版一、把各个物品的在比例中的数值看成是各个物品的份数:
例1、苹果的个数与梨的个数比是3:11。
(1)苹果的个数是梨的个数的()/()。
(2)梨的个数是苹果的个数的()/()。
(3)梨的个数是苹果的个数的()倍。
苹果的份数是 3 ,梨的份数是11,所以
苹果的个数是梨的个数的(3/11)
梨的个数是苹果的个数的(11/3)
梨的个数是苹果的个数的(11/3 )倍
练习:
1.小猫的只数是小狗只数的7/8。
(1)小猫的只数与小狗只数的比是()。
(2)小猫的只数与小猫和小狗只数之和的比是()。
2.丽丽看一本书,看完的页数与未看的页数的比是7:5。
(1)看完的页数占未看页数的()。
(2)未看页数占看完页数的()
(3)看完的页数占全书页数的()。
(4)未看的页数占全书页数的()
二、己知数量和和比例:比例数字之和就是份数和;物品在比例中的数字,就是该种物品的份数,
数量和÷份数和= 一份的数量
一份的数量× 一种物品的份数=这种物品的数量
例2、要配置一种糖水,水、糖共54克,水和糖的比是7:2,水、糖各是多少克?
份数和:2+7=9
一份的数量:54÷9= 6(克)。