八年级数学分式的运算6
- 格式:pdf
- 大小:905.72 KB
- 文档页数:8
人教版八年级数学上册说课稿15.2 分式的运算一. 教材分析本次说课的内容是人教版八年级数学上册的15.2分式的运算。
这部分内容是学生在学习了分式的概念、分式的性质和分式的化简等知识的基础上进行学习的,是进一步培养学生对分式的理解和运用能力的重要环节。
在这部分内容中,学生需要掌握分式的加减乘除运算规则,能够熟练地进行分式的运算。
二. 学情分析学生在学习这部分内容时,已经具备了分式的基本知识,对分式的概念和性质有一定的理解。
但学生在进行分式的运算时,还存在着对运算规则理解不深,运算步骤不清晰等问题。
因此,在教学过程中,需要引导学生深入理解分式运算的规则,明确运算的步骤,提高学生的运算能力。
三. 说教学目标1.知识与技能目标:学生能够掌握分式的加减乘除运算规则,能够熟练地进行分式的运算。
2.过程与方法目标:通过学生的自主学习和合作交流,培养学生对分式运算的理解和运用能力。
3.情感态度与价值观目标:培养学生对数学学习的兴趣,提高学生对数学学习的自信心。
四. 说教学重难点1.教学重点:分式的加减乘除运算规则的掌握和运用。
2.教学难点:分式运算步骤的清晰和运算规则的灵活运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作法进行教学。
2.教学手段:利用多媒体课件进行教学,引导学生通过观察、思考、讨论和总结,深入理解分式的运算规则。
六. 说教学过程1.导入新课:通过一个实际问题,引导学生进入分式的运算学习。
2.自主学习:学生通过自主学习,掌握分式的加减乘除运算规则。
3.合作交流:学生分组进行合作交流,通过讨论和总结,明确分式运算的步骤。
4.案例分析:通过分析典型案例,引导学生理解和掌握分式运算的规则。
5.练习巩固:学生进行练习,巩固所学的内容。
6.总结提升:教师引导学生进行总结提升,明确分式运算的重点和难点。
七. 说板书设计板书设计要清晰、简洁,能够突出教学的重点和难点。
在板书中,可以将分式的加减乘除运算规则用图示的方式进行展示,让学生一目了然。
分 式一、概念:定义1:整式A 除以整式B ,可以表示成BA的形式。
如果除式..B .中含有分母.....,那么称BA为分式。
(对于任何一个分式,分母不为0。
如果除式B 中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
分式:分母中含有字母。
整式:分母中没有字母。
而代数式则包含分式和整式。
)定义2:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
定义3:分子和分母没有公因式的分式称为最简分式。
(化简分式时,通常要使结果成为最简分式或者整式。
)定义4:化异分母分式为同分母分式的过程称为分式的通分。
定义5:分母中含有未知数的方程叫做分式方程 定义6:在将分式方程变形为整式方程时,方程两边同乘一个含有未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种解通常称为增根。
二、基本性质:分式的基本性质:分式的分子与分母都.乘以(或除以)同.一个不等于零....的整式,分式的值不变。
三、运算法则:1、分式的乘法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;(用符号语言表示:b a ﹒d c =bdac)2、分式的除法的法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(用符号语言表示:b a ÷dc =b a ﹒cd =bcad) 分式乘除法的运算步骤:当分式的分子与分母都是单项式时: (1)乘法运算步骤是:①用分子的积做积的分子,分母的积做积的分母;②把分式积中的分子与分母分别写成分子与分母的分因式与另一个因式的乘积形式,如果分子(或分母)的符号是负号,应把负号提到分式的前面;③约分。
(2)除法的运算步骤是:把除式中的分子与分母颠倒位置后,与被除式相乘,其它与乘法运算步骤相同。
当分式的分子、分母中有多项式,①先分解因式;②如果分子与分母有公因式,先约分再计算.③如果分式的分子(或分母)的符号是负号时,应把负号提到分式的前面. 最后的计算结果必须是最简分式或整式. 3、同分母分式加减法则是:同分母的分式相加减。
八年级数学知识点:分式的运算知识点合集8篇八年级数学知识点:分式的运算知识点 1一、约分与通分:1、约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分;分式约分:将分子、分母中的公因式约去,叫做分式的约分。
分式约分的根据是分式的基本性质,即分式的分子、分母都除以同一个不等于零的整式,分式的值不变。
约分的方法和步骤包括:(1)当分子、分母是单项式时,公因式是相同因式的最低次幂与系数的最大公约数的积;(2)当分子、分母是多项式时,应先将多项式分解因式,约去公因式。
2、通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通。
分式通分:将几个异分母的分式化成同分母的分式,这种变形叫分式的通分。
(1)当几个分式的分母是单项式时,各分式的最简公分母是系数的最小公倍数、相同字母的最高次幂的所有不同字母的积;(2)如果各分母都是多项式,应先把各个分母按某一字母降幂或升幂排列,再分解因式,找出最简公分母;(3)通分后的各分式的分母相同,通分后的各分式分别与原来的分式相等;(4)通分和约分是两种截然不同的变形、约分是针对一个分式而言,通分是针对多个分式而言;约分是将一个分式化简,而通分是将一个分式化繁。
注意:(1)分式的约分和通分都是依据分式的基本性质;(2)分式的变号法则:分式的分子、分母和分式本身的符号,改变其中的任何两个,分式的值不变。
(3)约分时,分子与分母不是乘积形式,不能约分、3、求最简公分母的方法是:(1)将各个分母分解因式;(2)找各分母系数的最小公倍数;(3)找出各分母中不同的因式,相同因式中取次数最高的,满足(2)(3)的因式之积即为各分式的最简公分母(求最简公分母在分式的加减运算和解分式方程时起非常重要的作用)。
二、分式的运算:1、分式的加减法法则:(1)同分母的分式相加减,分母不变,把分子相加;(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算。
数学八下分式
八年级下册数学课程中有关分式的主题主要包括分式的运算、分式的化简、分式方程等内容。
以下是八年级下册数学中关于分式的一些常见知识点:
1. 分式的乘法和除法:学习如何进行分式的乘法和除法运算,包括分子乘法、分母乘法、分子除法和分母除法等。
2. 分式的加法和减法:掌握分式的加法和减法运算规则,包括通分、合并同类项等操作。
3. 分式的化简:学习如何化简分式,包括约分、提取公因式、分子分母同乘同除等方法,使分式的表达更简洁。
4. 分式方程:解决涉及分式的方程,包括一元一次分式方程和一元二次分式方程等,掌握解题的方法和技巧。
5. 分式的应用:了解分式在实际问题中的应用,如物品分配、比例关系、时间速度等问题,通过分式运算解决实际生活中的计算问题。
八年级下册数学中的分式知识是数学学习中的重要内容,需要通过练习和实践来加深理解和掌握。
建议学生多做练习题,加强对分式运算规则的理解和掌握,提高解决问题的能力和技巧。