混凝反应池和沉淀池设计
- 格式:doc
- 大小:53.00 KB
- 文档页数:3
高效沉淀池工作原理:高效沉淀池分为混凝区、絮凝区、预沉淀区和斜板沉淀池四个部分,原水先投加混凝剂,通过搅拌器的搅拌作用,保证一定的速度梯度,使混凝剂与原水快速混合。
进入絮凝池,再投加絮凝剂,在池内的搅拌机搅拌下,对水中悬浮固体进行剪切,重新形成更大的易于沉降的絮凝体。
进入沉淀池,沉淀池分为预沉区及斜管沉淀区,在预沉区中, 易于沉淀的絮体快速沉降,未来得及沉淀以及不易沉淀的微小絮体被斜管捕获,最终高质量的出水通过池顶集水槽收集排出。
1、混凝池对于高效沉淀池的前混凝池,在混凝池中设置快速搅拌机,使投加的混凝剂快速分散,与池内原水充分混合均匀,用以形成小的絮体。
混凝剂的投加量需通过优化烧杯试验确定适当的投加率。
2、絮凝池絮凝池分为两个部份,由慢速搅拌反应区和推流反应区组成串联反应单元,絮凝过程,经过混凝的原水从搅拌反应器的底部进入絮凝池内源性导流筒的底部,絮凝剂加在涡轮的底部,原水、回流污泥和助凝剂由导流筒内的搅拌桨由下至上混合均匀。
在导流筒周边区域,主要是推流使絮凝以较慢的速度进行,并分散低能量以确保絮凝物增大致密。
获得较大的絮体,到达沉淀区内快速沉淀。
其中推流反应区混合液进入预沉区域的速度,即要保证矶花不在此处沉积。
同时,从反应池到预沉池的转移速度仍需限制在低于0.056米/s的范围内,以保证矶花不会发生破损。
3、沉淀池斜板(管)沉淀池是根据浅池沉淀理论设计出的一种高效组合式沉淀池;水沿斜板或斜管上升流动,分离出的泥渣在重力作用下沿着斜板(管)向下滑至池底。
沉淀效率仅为沉淀池表面积的函数,而与水深无关。
当沉淀池容积为定值时,池子越浅则A值越大,沉淀效率越高。
斜板冲洗系统为了保持长期运行过程中的功能效果,需要定期对进行反冲洗。
影响因素:1、进出水水量进水量控制均匀稳定的进水量,配水均匀性对沉淀效果的影响很大,表面负荷在高峰流量不超过20m/m2?h。
2、水力停留时间HRT混凝池停留时间一般2.min〜5min,絮凝停留时间一般5min〜10min3、加药量药剂配置经验浓度PAC 10%r 20% PAM 0.1%〜0.3%。
絮凝沉淀池1. 混凝沉淀原理在混凝剂的作用下,使废水中的胶体和细微悬浮物凝聚成絮凝体,然后予以分离除去的水处理法。
混凝澄清法在给水和废水处理中的应用是非常广泛的,它既可以降低原水的浊度、色度等水质的感观指标,又可以去除多种有毒有害污染物。
2.工艺设计2.1隔板絮凝池设计要点(1)絮凝时间一般宜为20~30min;(2)絮凝池廊道的流速,应按由大到小渐变进行设计,起端流速宜为0.5~0.6m/s,末端流速宜为0.2~0.3m/s;(3)隔板间净距宜大于0.5m。
2.2 机械絮凝池设计要点(1)絮凝时间宜为15~20min;(2)池内设3~4挡搅拌机;(3)搅拌机的转速应根据浆板边缘处的线速度通过计算确定,线速度宜自第一档的0.5m/s逐渐变小至末档的0.2m/s;(4)池内宜设防止水体短流的设施。
2.3 折板絮凝池设计要点(1)絮凝时间一般宜为12~20min;(2)絮凝过程中的速度应逐段降低,分段数不宜少于三段,各段的流速可分别为:第一段:0.25~0.35 m/s;第二段:0.15~0.25 m/s;第三段:0.10~0.15 m/s;(3)折板夹角采用90°~120°;(4)第三段宜采用直板。
2.4 栅条(网格)絮凝池设计要点(1)絮凝池宜设计成多格竖流式;(2)絮凝时间一般宜为12~20min,用于处理低温低浊水时,絮凝时间可适当延长。
(3)絮凝池竖井流速、过栅(过网)和过孔流速应逐段递减,分段数宜分三段,流速分别为:竖井平均流速:前段和中段0.14~0.12m/s,末段0.14~0.10m/s;过栅(过网)流速:前段0.30~0.25m/s,中段0.25~0.22m/s;竖井之间孔洞流速:前段0.30~0.20m/s,中段0.20~0.15m/s,末段0.14~0.10m/s。
(4)絮凝池宜布置成2组或多组并联形式。
(5)絮凝池内应有排泥设施。
高密度沉淀池高密度沉淀池是一种利用物理/化学处理和特殊的絮凝和沉淀体系,达到快速沉淀的污水处理工艺。
该工艺将快速混合、絮凝反应、沉淀分离进行综合,其核心是利用池中聚集的泥渣,通过池外回流与水中的颗粒进行相互接触、吸附,加速颗粒絮凝,促进杂质颗粒的快速分离,并结合斜管或斜板加速沉淀过程,实现高效的固液分离。
高密度沉淀池布置紧凑,节约占地,同时沉淀池启动快速,在很短的时间(通常30min)内即可完成启动并进入正常运行。
高密度沉淀池可用于原水净化也可用于污水混凝沉淀去除SS,或者用于中水回用,膜浓水等工艺的软化澄清。
(1)高效沉淀池(高密度)工作原理原水投加混凝剂,在混合池内,通过搅拌器的搅拌作用,保证一定的速度梯度,使混凝剂与原水快速混合。
高效沉淀池分为絮凝与沉淀两个部分,在絮凝池,投加絮凝剂,池内的涡轮搅拌机可实现多倍循环率的搅拌,对水中悬浮固体进行剪切,重新形成大的易于沉降的絮凝体。
沉淀池由隔板分为预沉区及斜管沉淀区,在预沉区中,易于沉淀的絮体快速沉降,未来得及沉淀以及不易沉淀的微小絮体被斜管捕获,最终高质量的出水通过池顶集水槽收集排出。
(2)高密度与传统沉淀池的比较与传统沉淀池比较,高密度沉淀池技术优势如下:1、表面负荷高:利用污泥循环及斜管沉淀,大大高于传统沉淀池。
2、污泥浓度高:高密度沉淀池产生的污泥含固率高。
3、出水水质好:高密度沉淀池因其独特的工艺设计,由于形成的絮体较大,所以更能拦截胶体物质,从而可以有效降低水中的污染物,出水更有保障。
(3)设计要点高密度沉淀池表面水力负荷宜为6m³/(㎡·h)~13m³/(㎡·h){最大可达12~15m³/(㎡·h)}。
混合时间宜为0.5~2.0min(实际设计多取3.0~5.0min),絮凝时间宜为8~15min。
污泥回流量宜占进水量3~6%(设备选型可选8%)。
(4)设计计算书①设计流量Q=400t/h=0.112m3/s①混凝反应池设有效水深取6米。
一、混凝反应池1.混凝剂投加方法选用湿法投加,适于各种形式的混凝剂,易于调节。
采用重力投配装置,操作方法简单,混凝剂在溶药箱内溶解后直接将溶液投入管中。
2. 平流式隔板反应槽由于对场地使用没有限制,故混凝反应池采用平流式隔板反应池,该池反应效果好,构造简单,施工方便。
絮凝体形成的适宜流速为15-30cm/s,时间为15-30min 左右。
取流速为20cm/s,停留时间为T=15min=900s,Q=0.012m3/s,则反应池容积为V = (m3)取水深为h = 0.5 m,则反应槽面积为S = V/h = 10.8/0.5 =21.6 (m2)分6个廊道,则每个廊道面积为S1 = S/6 =21.6/6 = 3.6 (m2)取廊道宽为0.6m,则长为6m 。
六、竖流沉淀池1. 设计参数设定设计2座竖流式沉淀池,中心进水,周边出水。
取中心管流速为v0=0.03m/s,表面负荷1.0m3/m2·h,沉淀时间为2.0h,泥斗锥角50°,池底边长0.5m,超高为h1=0.4m,缓冲层高h4=0.3。
2. 设计计算:中心管计算最大设计流量Qmax=0.018m3/s,中心管有效面积f1==0.6(m2),d==0.87(m)取缝隙流出的速度为v1=0.015m/s,喇叭口直径d1=1.35d=1.35×0.87=1.2(m)反射板直径d2=1.3d1=1.3×1.2=1.56 (m)3. 中心管喇叭口到反射板之间高度h3===0.32(m4.沉淀区有效水深取废水在沉淀池中流速v =2m/h,沉淀时间t =1.5 h;则沉淀区有效水深 h2=vt=1.5×2.0=3.0(m5.沉淀区总面积沉淀区有效断面积f2= ==32.4 (m2)沉淀区总面积A= f1 + f2 = 0.6 +32.4 =33 (m2)6.尺寸计算沉淀池直径D = ==6.48 m,取D=6.5 m;池直径与沉淀区高度比值D/ h2=6.5/3=2.2 <3 (适合7.污泥斗计算泥斗深h5=tg50°=3.6(m);泥斗容积为V=×3.6×(0.52+6.52+0.5×6.5=55 (m3沉淀池总高度H=h1+h2+h3+h4+h5=0.4+2.0+0.32+0.3+3.6=6.52 (m8.出水方式(1)出流堰出流堰采用水平薄壁堰,出流槽设于池外,堰沿池内壁设置,故堰长L = 20.41 (m每池各由20块钢板堰拼接,则每块堰板长度为L1=20.41/20=1.021 (m单宽流量q为q =Q/L= 0.018/20.41 = 0.000882 m3/m2·s =0.882L /m·s〈1.11 L /m·s 符合要求堰上水头h0为h0 = (m(2)出流槽出流槽设一出水总管,故出流槽分成2半,均匀接纳经堰口流来澄清水,槽为平底,向出水口方向坡度取0.01,槽中水流为非均匀稳定性。
三种沉淀池设计计算设计参数沉淀池是废水处理系统中的一种关键设备,用于分离悬浮颗粒物和悬浮物质附着的生物膜,使废水中的悬浮物质沉淀到底部并进行进一步处理。
设计沉淀池时需要考虑多个参数,包括池体尺寸、池体形状、进出水流量、沉淀物质比例等。
本文将介绍三种常见的沉淀池设计计算和参数。
1.水力停留时间法(HRT)水力停留时间法是一种基于水体在沉淀池内的滞留时间来确定沉淀池尺寸的方法。
在该方法中,需要确定沉淀池的水力停留时间(HRT)以及进出水流量。
水力停留时间是指水体在沉淀池内停留的平均时间,通常以小时为单位计算。
根据不同的废水处理要求,选取合适的水力停留时间,常见的数值范围为1-4小时。
沉淀池的尺寸可以通过以下公式计算:V=Q×HRT其中,V表示沉淀池的体积,Q表示进水流量,HRT表示水力停留时间。
2.有效沉淀区面积法(ASA)有效沉淀区面积法是通过确定沉淀池的有效沉淀区面积来设计沉淀池尺寸的方法。
沉淀池内的有效沉淀区指的是沉淀物质大致排列的区域,通常位于池底。
为了保持沉淀物质的沉降效果,有效沉淀区面积应足够大。
沉淀池的有效沉淀区面积可以通过以下公式计算:A=Q×f×C其中,A表示有效沉淀区面积,Q表示进水流量,f表示收窄因数,C表示沉淀物质的浓度。
3.斜板混凝沉淀池设计斜板混凝沉淀池是一种常见的用于混凝沉淀的沉淀池设计。
在这种沉淀池中,废水通过斜板槽向下流动,在槽内与混凝剂发生反应并形成絮凝物,最后沉淀到池底。
斜板混凝沉淀池的设计涉及到斜板槽的长度、宽度、角度等参数。
一般来说,斜板槽的长度应足够长,以确保废水在槽内有足够的时间与混凝剂反应。
斜板槽的角度应根据混凝剂类型以及废水特性进行调整,一般在45-60度之间。
总结起来,设计沉淀池时需要考虑水力停留时间法、有效沉淀区面积法以及斜板混凝沉淀池设计等多个参数。
根据不同的废水特性和处理要求,选择合适的设计方法和参数,可以有效提高沉淀池的处理效果和性能。
混合和絮凝池设计1.机械搅拌混合池的设计设计基本要求浆板式搅拌器的设计参数搅拌所需功率例1-1 机械搅拌混合池计算2.机械搅拌絮凝池设计设计基本要求设计规定设计计算搅拌器转速计算搅拌器功率计算例 2-1 水平轴式浆板搅拌絮凝池计算例 2-2 垂直轴式浆板搅拌絮凝池计算混合和絮凝池设计存在于水和废水中的胶体物质一般都具有负的表面电荷,胶体的尺寸约在0.01~1.0μm,颗粒间的吸引力大大小于同性电荷的相斥力,在稳定的条件下,由于布朗运动使颗粒处于悬浮状态,为了除去水中的胶体颗粒,在水处理工艺中通常使用投加化学药剂---混凝剂,使胶体颗粒脱稳并形成絮体,这一过程称之为“混凝”;为促使“混凝”过程产生的细而密的絮体颗粒间的接触碰撞凝聚成较大的絮体颗粒,这一过程称之为“絮凝”。
只有当胶体颗粒获得完善的絮凝过程产生稠密的大颗粒絮体之后,才能在后序的沉淀池中藉重力被有效地除去。
絮凝作用有两种形式:⑴微絮凝和⑵大絮凝。
两种絮凝的基本区别在于涉及的粒子尺寸。
微絮凝的粒子范围为0.001~1.0μm,其颗粒的絮凝是基于布朗运动或随机热运动而完成的;大絮凝系指大于1-2μm粒子的絮凝,则是通过诱发的速度梯度和粒子沉降速度差来完成。
为了强化絮凝过程,可投加絮凝剂,絮凝剂可为天然的或有机合成的聚合物。
由于“混凝”和“絮凝”两个过程所要求的水力条件是不相同的,在设计中常被置于混合池和絮凝池两个不同的单元内去完成。
1.机械搅拌混合池的设计设计基本要求对混合池设计的基本要求是使投加的化学混凝剂与水体达到快速而均匀的混合,要在水流造成剧烈紊动的条件下投入混凝剂,一般混合时时间5~30秒,不大于2分钟。
但对于高分子絮凝剂而言,只要达到均匀混合即可,并不苛求快速。
混合池的设计以控制池内水流的平均速度梯度G值为依据,G值一般控制在500~1000秒-1范围,过度的(G值超过1000S-1)和长时间的搅拌,会给后序的絮凝过程带来负面的影响。
磁混凝沉淀池简介及计算一、基本介绍磁混凝沉淀池的原理是利用磁粉在混凝沉淀工艺中与污染物絮凝结合成一体,以加强混凝、絮凝的效果,使生成的絮体密度更大、更结实,从而达到高速沉降的目的。
磁粉可以通过磁鼓回收循环使用。
这种工艺的停留时间很短,具有速度快、效率高、占地面积小、投资小等诸多优点。
磁混凝沉淀池的工艺流程包括以下步骤:污水从磁粉加载区流向絮凝区,在浆凝区中投加高分子架凝剂,使细小颗粒逐渐结成较大体。
磁混凝沉淀池使用磁粉可以通过磁鼓回收循环使用,具有极高的经济性。
设计计算的话,需要考虑到水质水量、絮凝剂投加量、停留时间、污泥产量等因素。
具体的设计计算应该根据实际情况进行,以确保磁混凝沉淀池的效果。
二、设计计算公式如下:磁粉投加量计算:M1= 300Qβ1α1/ρmη1;絮凝剂投加量计算:M2= 300Qβ2α2/ρmη2;快速混合池长度计算:L=(nVQ) 1/2;快速混合池宽度计算:B=4Q/(πD m(nV)1/2);快速混合池面积计算:F=Q/nV;快速混合池高度计算:H=4Q/(πD m(nV)1/2)。
其中,M1为磁粉投加量,Q为设计流量,β1为磁粉吸附率,α1为磁粉投加点浓度,ρm为磁粉密度,η1为磁粉回收率;M2为絮凝剂投加量,β2为絮凝剂吸附率,α2为絮凝剂投加点浓度,ρm为磁粉密度,η2为絮凝剂回收率;L为快速混合池长度,Q为设计流量,n为混合池个数,V为单个混合池体积;B为快速混合池宽度,D m为混合池直径;F为快速混合池面积,H为快速混合池高度。
(一)磁粉投加量的计算参数取值范围及其依据如下:磁粉吸附率:磁粉吸附率是指磁粉对污染物的吸附能力,通常在60%-95%之间。
吸附率的取值依据主要是磁粉的吸附性能实验结果。
磁粉投加点浓度:磁粉投加点浓度是指磁粉在水中达到饱和吸附状态时的浓度,通常在100-200mg/L之间。
浓度的取值依据主要是磁粉的吸附性能实验结果和实际运行经验。
磁粉密度:磁粉密度是指单位体积内磁粉的质量,通常在1.2-1.5g/cm³之间。
一、 ?
二、 混凝反应池
1.混凝剂投加方法
选用湿法投加,适于各种形式的混凝剂,易于调节。
采用重力投配装置,操作方法简单,混凝剂在溶药箱内溶解后直接将溶液投入管中。
2. 平流式隔板反应槽
由于对场地使用没有限制,故混凝反应池采用平流式隔板反应池,该池反应效果好,构造简单,施工方便。
絮凝体形成的适宜流速为15-30cm/s ,时间为15-30min 左右。
取流速为20cm/s ,停留时间为T=15min=900s ,Q=0.012m 3/s ,则反应池容积为
V = 8.10900012.0=⨯=Qt (m 3)
取水深为h = 0.5 m ,则反应槽面积为
?
S = V/h = = (m 2)
分6个廊道,则每个廊道面积为
S1 = S/6 =6 = (m 2)
取廊道宽为0.6m ,则长为6m 。
六、竖流沉淀池
1. 设计参数设定
设计2座竖流式沉淀池,中心进水,周边出水。
取中心管流速为v 0=0.03m/s ,
表面负荷1.0m 3/m 2·h ,沉淀时间为,泥斗锥角50°,池底边长0.5m ,超高为h 1=0.4m ,缓冲层高h 4=。
^
2. 设计计算:
中心管计算
最大设计流量Qmax=0.018m 3/s ,
中心管有效面积f 1=0
max v Q =(m 2), d=0
max 4v Q π=(m )
取缝隙流出的速度为v 1=0.015m/s,
喇叭口直径d 1==×=(m )
反射板直径d2==×= (m )
;
3. 中心管喇叭口到反射板之间高度
h 3=π11max d v Q =π
⨯⨯2.1015.0018.0=(m) 4.沉淀区有效水深
取废水在沉淀池中流速v =2m/h,沉淀时间t = h ;
则沉淀区有效水深 h 2=vt=×=(m)
5.沉淀区总面积
沉淀区有效断面积
f 2=
v Q max =3600/2018.0= (m 2) ·
沉淀区总面积A= f 1 + f 2 = + =33 (m 2)
6.尺寸计算
沉淀池直径 D = πA
4=π33
4⨯=6.48 m ,取D=6.5 m ;
池直径与沉淀区高度比值D/ h 2=3= <3 (适合)
7.污泥斗计算
泥斗深h5=
2
5.05.6-tg50°=(m ); 泥斗容积为V=3
1××++×=55 (m 3) 。
沉淀池总高度 H=h 1+h 2+h 3+h 4+h 5=++++= (m)
8.出水方式
(1)出流堰
出流堰采用水平薄壁堰,出流槽设于池外,堰沿池内壁设置,故堰长 L = =⨯=5.614.3D π (m)
每池各由20块钢板堰拼接,则每块堰板长度为
L 1=20= (m)
?
单宽流量q为
q =Q/L= = 0.000882 m3/m2·s =0.882L /m·s〈1.11 L /m·s 符合要求堰上水头h
为
h
0 =
=
⎪
⎭
⎫
⎝
⎛
3
2
86
.1
q
05
.0
045
.0
86
.1
018
.0
3
2
=
=
⎪
⎭
⎫
⎝
⎛
(m)
(2)出流槽
出流槽设一出水总管,故出流槽分成2半,均匀接纳经堰口流来澄清水,槽为平底,向出水口方向坡度取,槽中水流为非均匀稳定性。
设池壁厚为0.3m,槽宽b为0.5m,则槽的起端处水深为
h 0 =
()
=
3
2
2
5.1
gb
Q()12.0
5.0
8.9
018
.0
5.1
3
2
2
=
⨯
⨯
(m)
取槽超端处水深为0.12m,为使澄清水自堰后自由跌落,取槽深为0.4m,堰板高出池壁2cm,墙外另加保护高度0.4m,详见附图。
9.污泥管设计
采用重力流排泥方式,取排泥管直径为150mm。
管径150mm。