当前位置:文档之家› 用于光纤电流传感器SLD光源的温度控制系统

用于光纤电流传感器SLD光源的温度控制系统

第43卷第3期红外与激光工程2014年3月Vol.43No.3Infrared and Laser Engineering Mar.2014

用于光纤电流传感器SLD光源的温度控制系统

曹辉1,2,杨一凤1,刘尚波1,徐金涛1,赵卫1

(1.中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室,陕西西安710119;

2.中国科学院大学,北京100049)

摘要:为减小高压电网中光纤电流传感器超辐射发光二极管(super luminescent diode,SLD)光源温度特性对测量准确度的影响,提出了一种模拟温度控制系统对光源温度进行恒温控制。根据设计要求,介绍了各重要环节的设计过程。分析了通过搭建合适的温度采集电桥,可以得到与温度近似成线性关系的输出差分信号。在频域上建立了系统的数学模型,计算了系统的传递函数,得到了比例-积分-微分(proportional鄄integral鄄derivative,PID)控制器各参数对时域上输出的影响。在实验室中搭建了用于光纤电流传感器SLD光源的温控系统,对温控系统进行了定温与温度循环实验,实验结果表明:该控制系统可以实现对温度的实时控制,使光纤电流传感器测量准确度满足0.2级工业要求。

关键词:光纤电流传感器;超辐射发光二极管光源;实时温度控制;传递函数;PID控制器中图分类号:TN21文献标志码:A文章编号:1007-2276(2014)03-0920-07

Temperature control system for SLD optical source of FOCS

Cao Hui1,2,Yang Yifeng1,Liu Shangbo1,Xu Jintao1,Zhao Wei1

(1.State Key Laboratory of Transient Optics and Photonics,Xi′an Institute of Optics and Precision Mechanics,Chinese Academy

of Sciences,Xi′an710119,China;2.University of Chinese Academy of Sciences,Beijing100049,China)

Abstract:To lower the influence of optical source temperature property on the precision of fiber optic current sensor(FOCS)in high voltage grid,an analog temperature control system was proposed to control the optical source working temperature.According to the designed goal,design process of each key section was introduced.A proper temperature signal bridge was analyzed which could obtain a linear relationship between the output differential voltage and temperature.The mathematical model of the system was established in the frequency domain;the transfer function of the system was calculated;and the parameters of proportional鄄integral鄄derivative(PID)controller were analyzed in the time domain.A temperature controller used for FOCS super luminescent diode(SLD)optical source was designed,which was verified by fixed temperature test and temperature cycle test.The results show that by means of the real time temperature control,the accuracy of FOCS is up to0.2level which reaches industry requirements.

Key words:fiber optic current sensor(FOCS);super luminescent diode(SLD)optical source;

real time temperature control;transfer function;PID controller

收稿日期:2013-07-09;修订日期:2013-08-23

作者简介:曹辉(1989-),男,硕士生,主要从事光电测量技术及其在电力系统中的应用。Email:caohui@https://www.doczj.com/doc/167635165.html,

导师简介:徐金涛(1979-),男,副研究员,硕士,主要从事光纤电流互传感器的研制及其在智能电网中的应用研究。

Email:xujintao@https://www.doczj.com/doc/167635165.html,

光纤温度传感器工作原理及实际应用分析

光纤温度传感器工作原理及实际应用分析 摘要:文章在分析DTS分布式光纤传感器系统的逻辑组成和工作原理后,详细介绍了基于分布式光纤温度传感器和光纤光栅温度传感器测温系统对在电力系统各重要电气设备进行温度安全监测中的应用。 关键词:光纤温度传感器;DTS;电力温度监测 温度是工程应用领域中重要的检测和监控对象,对于一个内部结构复杂、涉及点面较多的复杂系统而言,要获得一个准确且具有一定监测对象范围跨度的实时温度信息(或监测对象分布的应用应变特性),采用常规的单点移动式或由多个独立单点相互结合组成的准分布式温度传感器侧空虚体统,不仅会由于数据采集的延时性降低温度测量数据的准确度,同时还会由于复杂的接线使整个系统布线变得非常困难,这时选用分布式光纤温度传感系统(Distributed Temperature Sensing,DTS)就是一种非常有效的方法,非常适合冶金、化工、电力等恶劣环境场合中的实时温度测量和监控,具有相当大的研究意义。 1DTS分布式光纤传感器系统 DTS 分布式光纤传感器系统是一款结构较为复杂的工业应用领域温度在线检测和控制产品,其非常适用于环境较为恶劣、干扰对象较多、监测范围跨度较大的重要工农业应用产生中的温度实时准确检测和控制。 1.1DTS系统组成 DTS分布式光纤传感器系统主要包括传感光纤、光路模块、电路模块、高级应用软件、以及一些辅助的外围集成电路设备,其逻辑组成结构如图1所示。 从图1可知,DTS系统在运行时,首先由电路模块中得控制及信号处理电路将对应的控制信号通过驱动电路驱动半导体激光器发生对应的高速脉冲信号,然后经过光路模块中得激光脉冲耦合形成对应的光纤信号,并经分光光路转换后进入到传感光纤中,再经探测器、探测电路、高速采集电路等将光纤传感器中的温度信号返回到系统的控制及信息处理电路中,完成对监测对象温度信号的采集。通过半导体激光器产生的激光脉冲在进入到传感光纤后,就会通过分光耦合特性发生背向散射光,其所产生散射光主要有三个波长的背向散射光,分别为Anti-Stokes(反斯托克斯)光、Rayleigh(瑞利)光、以及Stokes(斯托克斯)光。三种背向散射光中,Anti-Stokes具有温度敏感个性,为温度信号光;而Stokes 光对温度信号不敏感,为系统中得参考光。从系统传感光纤中返回的探测器中的背向散射光经分光光路、光滤波器滤波后,可以将Stokes光波和Anti-Stokes光波有效分离,然后再经APD 探测器接收后,经探测电路等放大电路处理后由高速数据采集模块进行自动采集,并经接口电路上传到客户PC机上,完成对系统温度信号、温度分布曲线、波动曲线等的动态显示。

开题报告-光纤温度传感器的研制

毕业设计(论文)开题报告题目:光纤温度传感器的研制 系别 专业 班级 姓名 学号 导师 ****年** 月*** 日

一、毕业设计(论文)综述(课题背景、研究意义及国内外相关研究情况) 本毕业设计研制的光纤温度传感器是指在光纤温度传感系统中,光纤作为光波的传输通路,设计一种光纤传感系统,测量待测物体的温度并与标准温度计的测量值、比较、定标以实现实用化的光纤温度测量系统。 光纤和光纤通信的问世和发展,引起了各界人士的关注,他们试图将这一新技术成果用到各自的领域。光纤传感器的出现正是这样。 目前,从大量文献资料中可看到光纤传感器的研究有如下动向: 1.继续深入研究传感器的理论和技术,解决实用化问题,发展新原理的光纤传感器。 光纤传感器基本原理的研究日益深入,强度、相位调制的传感器更加完善,而对波长调制和时间分辨信息的传感器亦有深入的研究。传感器用于实际测量的主要问题是长时间的漂移效应,漂移效应主要来自光纤传输线的衰减、祸合器和分束器特性不完整、光源输出不稳定及探测器的响应等。人们对此进行了深入研究,提出了许多解决办法,无论采用何种方法,在传感头上使用“比较”技术,使光纤传感器获得长时间的稳定,这样就可以使光纤传感器实用化。 2.从单一传感器进入到传感器系统的研究,并与微处理机相结合形成光纤遥测系统。 单一光纤传感器的研究一进入到实用化阶段,但它无法适用于多参数,多变量的测量。光纤传感器系统的一种形式是采用多路传输的光无源传感器系统,其核心问题是如何节省光路,寻求更有效利用的信息通道,使其能不畸变的更多的传输由各个光纤传感器取得的信号。利用光纤之间、几个无源传感器之间、数据遥测通道之间的多路传输达到此目的。 70年代中期,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来。 1977年,美国海军研究所开始执行光纤传感器系统计划,这被认为是光纤传感器问世的日子。从这以后,光纤传感器在全世界的许多实验室里出现。 从70年代中期到80年代中期近十年的时间,光纤传感器己达近百种,它

用于光纤电流传感器SLD光源的温度控制系统

第43卷第3期红外与激光工程2014年3月Vol.43No.3Infrared and Laser Engineering Mar.2014 用于光纤电流传感器SLD光源的温度控制系统 曹辉1,2,杨一凤1,刘尚波1,徐金涛1,赵卫1 (1.中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室,陕西西安710119; 2.中国科学院大学,北京100049) 摘要:为减小高压电网中光纤电流传感器超辐射发光二极管(super luminescent diode,SLD)光源温度特性对测量准确度的影响,提出了一种模拟温度控制系统对光源温度进行恒温控制。根据设计要求,介绍了各重要环节的设计过程。分析了通过搭建合适的温度采集电桥,可以得到与温度近似成线性关系的输出差分信号。在频域上建立了系统的数学模型,计算了系统的传递函数,得到了比例-积分-微分(proportional鄄integral鄄derivative,PID)控制器各参数对时域上输出的影响。在实验室中搭建了用于光纤电流传感器SLD光源的温控系统,对温控系统进行了定温与温度循环实验,实验结果表明:该控制系统可以实现对温度的实时控制,使光纤电流传感器测量准确度满足0.2级工业要求。 关键词:光纤电流传感器;超辐射发光二极管光源;实时温度控制;传递函数;PID控制器中图分类号:TN21文献标志码:A文章编号:1007-2276(2014)03-0920-07 Temperature control system for SLD optical source of FOCS Cao Hui1,2,Yang Yifeng1,Liu Shangbo1,Xu Jintao1,Zhao Wei1 (1.State Key Laboratory of Transient Optics and Photonics,Xi′an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,Xi′an710119,China;2.University of Chinese Academy of Sciences,Beijing100049,China) Abstract:To lower the influence of optical source temperature property on the precision of fiber optic current sensor(FOCS)in high voltage grid,an analog temperature control system was proposed to control the optical source working temperature.According to the designed goal,design process of each key section was introduced.A proper temperature signal bridge was analyzed which could obtain a linear relationship between the output differential voltage and temperature.The mathematical model of the system was established in the frequency domain;the transfer function of the system was calculated;and the parameters of proportional鄄integral鄄derivative(PID)controller were analyzed in the time domain.A temperature controller used for FOCS super luminescent diode(SLD)optical source was designed,which was verified by fixed temperature test and temperature cycle test.The results show that by means of the real time temperature control,the accuracy of FOCS is up to0.2level which reaches industry requirements. Key words:fiber optic current sensor(FOCS);super luminescent diode(SLD)optical source; real time temperature control;transfer function;PID controller 收稿日期:2013-07-09;修订日期:2013-08-23 作者简介:曹辉(1989-),男,硕士生,主要从事光电测量技术及其在电力系统中的应用。Email:caohui@https://www.doczj.com/doc/167635165.html, 导师简介:徐金涛(1979-),男,副研究员,硕士,主要从事光纤电流互传感器的研制及其在智能电网中的应用研究。 Email:xujintao@https://www.doczj.com/doc/167635165.html,

新型光纤电流传感器及其应用

新型光纤电流传感器及其应用 电流测量在很多领域均有着广泛的应用,如工业中的电力传输、军事上的船舰全电推进以及科研应用中的超短脉冲电流监测等,都会涉及到电流测量。随着科技的发展,对各类电流信号的测量需求也在不断提升,传统的电磁式电流互感器暴露出瞬态响应差、易饱和、绝缘困难以及随着电压等级提高而产生的运行成本过高等缺陷,而基于法拉第磁光效应的光学电流传感器可以很好的克服这些缺陷,表现出的很大的应用潜力,其中尤以光纤电流传感器(Fiber Optical Current Sensor,简称FOCS)优势最为明显,它采用闭合光路设计,其相比于传统的电流互感器不仅具有不受外界电磁干扰的特性,而且兼具测量动态范围大、电气绝缘性好、体积小、重量轻等优势,可覆盖不同领域的电流测量需求,已受到越来越受到广泛地关注。结合国内外研究发展现状,分析了各类电流传感器的优缺点,并提出一种基于偏振调制型原理的新型全光纤电流传感器,它采用与干涉型光纤电流传感器相同的闭合光路设计,但无需额外的光信号调制,其测量精度可满足一般工程应用要求,因此有很大的成本优势。文中对其光路和算法设计进行了阐述并搭建了试验样机。 立足实际工程应用,并以工频电流测量和雷电防护两个应用方向为研究对象展开工作,首先对通过调整反射镜的位置和对系统进行零偏补偿使其闭环误差和系统零偏误差满足应用需求,随后以解决全光纤电流传感器实际工程应用的典型技术难点——易受温度影响为目的,对其复杂的非线性温度特性做了详细分析,并通过BP神经网络强大的非线性映射性能对变温实验中传感光纤线圈的变比系数与对应温度数据进行非线性拟合,利用获得的温度补偿曲线对其进行在线温度补偿,使这种新型的全光纤电流传感器在-5℃~+50℃温度范围内达到国标中规定的0.5级要求。最后,从实际工程应用出发,结合该传感器的快速响应优势,将其应用于雷电防护测量。试验中以Pearson电流传感器测量结果作为参考基准,使用新型全光纤电流传感器对8/20μs雷电流进行准确、快速的全波实时波形测量,通过软件及硬件优化,使其在2kA~1500kA雷电流范围内满足工业应用需求。

光纤温度传感器在电力系统中的应用现状综述

光纤温度传感器在电力系统中的应用现状综述 摘要:首先介绍了光纤温度传感器的优点及发展现状,并重点介绍了应用最为广泛的分布式光纤温度传感器与光纤光栅温度传感器的基本原理。概述了当前光纤温度传感器在电力系统中基本的应用模式,并综述了光纤温度传感器对电力系统主要设备进行温度监测的现状与意义。针对光纤温度传感器在电力系统中应用存在的问题与不足,提出了相应的解决方案并对其前景进行了展望。 关键词:分布式光纤温度传感器;光纤光栅;温度监测;故障诊断;电力系统 Application situation of temperature monitoring of optic fiber sensor in power system LI Qiang1,WANG Yan-song2,LIU Xue-min2 (https://www.doczj.com/doc/167635165.html,OC Research Center, Beijing 100027, China; 2.College of Information and Control Engineering, China University of Petroleum,Dongying 257061,China) Abstract:The advantages and development of temperature monitoring of optic fiber sensor is presented, and the working principle of fiber optic distributed temperature sensor,f iber grating sensor are respectively introduced,which are most popular in industry use .I n the paper, the basic application model of temperature monitoring of optic fiber in power system are presented.

光纤温度传感器的设计

设计性实验报告 实验课程:医用传感器设计实验学生姓名:程胜雄 学号: 080921037 专业班级:08医工医疗器械方向 2010年12月8日

光纤温度传感器的设计 摘要:介绍了金属热膨胀式光纤温度传感器的设计,利用金属件的热膨胀的原理,通过绕制在金属件上的光纤损耗产生变化,当光源输出光功率稳定的情况下,探测器接收光功率受温度调制,通过光电转换,信号处理,完成温度的换算。传感器以光纤为传输手段,以光作为信号载体,抗干扰能力强,测量结果稳定、可靠, 灵敏度咼。 关键词:光纤,传感器,光纤传感器,光纤温度传感器 在光通信系统中,光纤是用作远距离传输光波信号的媒质。在实际光传输过程中,光纤易受外界环境因素的影响;如温度、压力和机械扰动等环境条件的变化引起光波量,如发光强度、相位、频率、偏振态等变化。因此,人们发现如果 能测出光波量的变化,就可以知道导致这些光波量变化的物理量的大小,于是出

现了光纤传感技术。 一:光纤传感器的基本原理 在光纤中传输的单色光波可用如下形式的方程表示 E=错误!未找到引用源。 式中,错误!未找到引用源。是光波的振幅:w是角频率;■为初相角。 该式包含五个参数,即强度错误!未找到引用源。、频率w、波长错误!未找到引用源。、相位(wt+ J和偏振态。光纤传感器的工作原理就是用被测量的变化调制传输光光波的某一参数,使其随之变化,然后对已知调制的光信号进行检测,从而得到被测量。当被测物理量作用于光纤传感头内传输的光波时,使的强度发生变化,就称为强度调制光纤传感器;当作用的结果使传输光的波长、相位或偏振态发生变化时,就相应的称为波长、相位或偏振调制型光纤传感器。 (一)强度调制 1.发光强度 调制传感 器的调制 原理光 纤传感器 中发光强度的调制的基本原理可简述为,以被测量所引起的发光强度变化,来 实现对被测对象的检测和控制。其基本原理如图 5-39所示。光源S发出的发 光强度为错误!未找到引用源。的光柱入传感头,在传感头内,光在被测物理 量的作用下强度发生变化,即受到了外场的调制,

光纤温度传感器在电力电缆监测中的应用研究

光纤温度传感器在电力电缆监测中的应用研究 发表时间:2018-01-10T10:12:31.343Z 来源:《电力设备》2017年第27期作者:郑瑜 [导读] 摘要:针对电力电缆运行特征的监测与控制始终是电力技术研究的重要内容,准确高效的线路故障定位能够提升线路运行管理与故障预警及处理的实际效率,为电网的稳定运行提供有效支持。 (国网上海浦东供电公司 200122) 摘要:针对电力电缆运行特征的监测与控制始终是电力技术研究的重要内容,准确高效的线路故障定位能够提升线路运行管理与故障预警及处理的实际效率,为电网的稳定运行提供有效支持。光纤温度传感器作为一种更为高效精确的测温装置,在当前的电力电缆监控中得到了有效的应用。本文在阐述光纤温度传感器工作原理的基础上,分析了相应系统的整体功能,并提出了实际情况下的具体的应用,旨在提供一定的参考与借鉴。 关键词:电力电缆;监测;光纤温度传感器 1光纤温度传感器工作原理 电传导是以电流作为传导媒介,同理光纤传感器是以光作为媒介进行的传导的,只不过它的传导过程比电传导更加复杂。它是将变化的能量转化成变化的光信号,光是一种相干性特别好的物质,这便让它更具特点,比传统的传感器都稳定,而又因为光的抗电磁干扰能力强,这也使光纤传感器受外界影响更小。同时具备以上特点的光纤传感器还特别轻小、柔韧,所以也便可以到处可用,解决了传统传感器无法再高压、强电流无法使用的窘境。 在目前的光纤传感器中大多应用了光纤光栅和拉曼散射等原理,光纤光栅是利用布拉格波长的温度依赖性进行监控温度的变化。每当有光线通过光栅时,电脑就会记录下一系列的波长、温度等数据,然后根据事先编写好的程序计算出光纤传感器附近的温度。而对于其他原理也可以计算出温度,如拉曼传感器的原理就和光纤光栅传感器不同,但并不意味着就无法保证了数据的准确性,拉曼传感器测出的温度同样准确,它使用了光时域反射的原理。同样在传感器中也有用到了光纤的后向拉曼散射原理,这种原理是基于光在不同种介质中会产生非弹性漫射,而这传感器主要就是利用产生了不同的非弹性漫射波进行对温度计算,最终得到精确的温度数据。 2电力电缆温度在线监测系统功能分析 根据电缆接头数量多、集中性差的特点,系统采用“分散-集中-再集中”结构,系统硬件结构如图1所示,系统由温度传感器、测控单元、数据传输设备及上位PC机组成。 图1电力电缆温度在线监测系统结构 温度传感器安装在电缆中间接头处,测控单元从各温度传感器读出电缆接头的实际温度,处理后存入外部存储器SRAM中,上位PC机定时向各测控单元发出读取电缆接头温度数据的命令,各测控单元收到命令后,将存在SRAM中的数据上传给PC机。当SRAM中的数据被PC机读取后,各测控单元会重新读取各温度传感器当前数据,进行温度数据更新。 PC机收到各测控单元温度数据后,即对数据进行分析处理、判断、显示、保存及打印等,并在温度越限时报警,提示相应电缆接头位置,以便运行人员及时排除故障。 2.1温度传感器的选择 温度传感器选用单总线数字温度传感器。每个传感器有唯一的系列号,多个传感器可在同一条总线上。具有独特的单线接口方式,支持多节点。传感器测温时无需任何外部元件,使分布式测温系统电路结构和硬件大为简化,具有通过数据线供电、超低功耗工作方式的特点。 2.2测控单元 测控单元是整个系统最重要的部分,根据实际需求,系统可以包括1个或多个测控单元。系统的测控单元采用单片机构成,用来完成传感器输出数据的采集、序列号的注册及与上位PC机的通信等。 由于1个测控单元要与多个温度传感器连接,且距离较远,为提高测控单元的抗干扰能力和可靠性,测控单元与传感器之间的连接由光电隔离和驱动电路组成。 每个测控单元还设计了1个登记注册端口并接至单片机,每个传感器在投入使用前必须事先进行注册,并将其惟一的序列号存入SRAM 中,以便使用。这是当发生温度越限报警后快速定位的重要依据。该系统内部每条总线连接不同单片机单片机分别进行单总线温度采集,采集到的数据和传感器的序列号通过GPRS网络传送到上位PC机中。 2.3数据传输 各测控单元与上位PC机之间的通信采用GPRS。GPRS是在现有GSM网络基础上通过软件升级实现的,GPRS网络的出现克服了GSM 网络在数据应用方面的缺点。采用分组交换技术,并增加2个服务节点。提供无线系统上的数据业务,可以无缝接入Internet,具有永远在线、按流量计费、覆盖范围广及无需铺线等优点。 3光纤温度传感器在电力电缆监测中的具体应用 3. 1实时监控电力电缆表面温度 通过光纤温度传感器对电力电缆表面温度实时检测,可以实现对工作电缆的问题及时处理,防止在电厂站工作时出现重大的电力电缆由于温度过高出现的重大事故。可以对电力电缆工作中出现的电力电缆事故进行定位,从而及时告诉工作人员事故位置可以更好的修护,

基于法拉第效应的光纤电流传感器

基于法拉第效应的光纤电流传感器 摘要:光纤电流传感器是一种新型的电流传感器,与电磁式电流互感器相比,基于光学、微电子、微机技术的光纤式电流传感器(OFCT),具有无铁心、绝缘结构简单可靠,体积小、重量轻、线性度好、动态范围大、无饱和现象,输出信号可直接与微机化计量及保护设备接口等优点。这些优点既满足、推动了电力系统的发展,而且应用前景十分广阔。光纤电流传感器是以法拉第磁光效应为基础、以光纤为介质的新兴电力计量装置,它通过测量光波在通过磁光材料时其偏振面由于电流产生的磁场的作用而发生旋转的角度来确定被测电流的大小。传感头是光纤电流传感器最为重要和关键的部件。分析了全光纤型和混合型光纤电流传感器传感头的结构和工作原理,对改进光纤电流传感器的设计,提高光纤电流传感器的性能具有重要的指导作用。 关键词:光纤电流传感器、光纤回转仪、法拉第磁光效应

正文: 近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能;绝缘、无感应的电气性能;耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。 1、光纤传感器概述 光纤传感器的基本工作原理是将来自光源的光经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏正态等)发生变化,称为被调制的信号光,在经过光纤送入光探测器,经解调后,获得被测参数。 光纤传感器灵敏度较高;几何形状具有多方面的适应性,可以制成任意形状的光纤传感器;可以制造传感各种不同物理信息(声、磁、温度、旋转等)的器件;可以用于高压、电气噪声、高温、腐蚀、或其它的恶劣环境;而且具有与光纤遥测技术的内在相容性。所以说光纤传感器可以很好的用于磁、声、压力、温度、加速度、陀螺、位移、液面、转矩、光声、电流和应变等物理量的测量。 2、光纤电流传感器 2.1光纤电流传感器概述 光纤电流传感器是一种新型的电流传感器,与电磁式电流互感器相比,基于光学、微电子、微机技术的光纤式电流传感器(OFCT),具有无铁心、绝缘结构简单可靠,体积小、重量轻、线性度好、动态范围大、无饱和现象,输出信号可直接与微机化计量及保护设备接口等优点。这些优点既满足、推动了电力系统的发展,而且应用前景十分广阔。 当线偏振光(见光的偏振)在介质中传播时,若在平行于光的传播方向上加一强磁场,则光振动方向将发生偏转,偏转角度ψ与磁感应强度B和光穿越介质的长度l 的乘积成正比,即ψ=VBl,比例系数V称为费尔德常数,与介质性质及光波频率有关。偏转方向取决于介质性质和磁场方向。上述现象称为法拉第效应。1845年由M.法拉第发现。 由于光在光纤中,一边反射,一边行进,偏振波相应于曲线的形状会出现旋转。针对此现象,在光纤的一端设置一块镜面导致光纤中光线的往返,借助光的来回往返,成功补偿和解决了偏振波的旋转问题。将铅玻璃光纤用于传感器元件,并结合利用镜面的方法,只需把光纤卷绕在载流导体上,用于电流计测的反射型传感器就基本完成。其次,开发了调制程度的平均处理与信号处理方式,这有利于特性的稳定及噪音的抑制。此外,对光源、受光元件、信号传输光纤等种类与传感器特性的关系进行了研究,

光纤温度传感器

光纤温度传感器 电子092班 张洪亮 2009131041

光纤温度传感器 摘要 本文从光纤和光纤传感器以及光纤温度传感器的发展历程开始详细分析国内外 主要光纤温度测温方法的原理及特点,比较了不同方法的温度测量范围和性能指标以及各自的优缺点。通过研究发现了当前的光纤温度传感器的种类和特点,详细介绍了光纤温度传感器的原理,种类和各自的特点和优缺点。可以根据这些传感器各自特点将各种传感器应用到不同的领域,本文也简要分析了各种光纤温度传感器的运用范围和领域。本文还通过图文并茂的方式比较详细地分析了介绍了空调器的基本结构,工作电气原理和基本的热力学过程。本文对毕业设计主要内容和拟采用的研究方案也做出了详细地介绍分析。 关键词:光纤传感器,光纤温度传感器,运用领域,空调器,空调器原理 1 引言: 光纤温度传感器是一种新型的温度传感器.它具有抗电磁干扰、耐高压、耐腐蚀、防爆防燃、体积小、重量轻等优点,其中几种主要的光纤温度传感器:分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器和基于弯曲损耗的光纤温度传感器更有着自己独特的优点。与传统的传感器相比具有一下优点:灵敏度高;是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。它将在航空航天、远程控制、化学、生物化学、医疗、安全保险、电力工业等特殊环境下测温有着广阔的应用前景。在本论文中将详细分析当前光纤温度传感器的主要种类和各自的原理,特点和应用范围。70 年代中期,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来。1977 年,美国海军研究所开始执行光纤传感器系统计划,这被认为是光纤传感器问世的日子。从这以后,光纤传感器在全世界的许多实验室里出现。从70 年代中期到 80 年代中期近十年的时间,光纤传感器己达近百种,它在国防军事部门、科研部门以及制造工业、能源工业、医学、化学和日常消费部门都得到实际应用。从目前的情况看,己有一些形成产品投入市场,但大量的是处在实验室研究阶段。光纤传感器与传统的传感器相比具有一下优点:灵敏度高; 是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。目前,世界各国都对光纤传感器展开了广泛,深入的研究,几个研究工作开展早的国家情况如下:美国对光纤传感器研究共有六个方面:这些项目分别是: 光纤传感系统;现代数字光 纤控制系统;光纤陀螺;核辐射监控;飞机发动机监控; 民用研究计划。以上计划仅在 1983 年就投资 12-14 亿美元。美国从事光纤传感器研究的有美国海军研究所、美国宇航局、西屋电器公司、斯坦福大学等 28 个主要单位。美国光纤

光纤光栅温度传感器 报告

光纤光栅温度传感器报告 ( 波长调制型光纤温度传感器 《 《光纤传感测试技术》 课 课程作业报告 提交时间: 2011年10月 27 日 1 研究背景 (执笔人: ) 被测场或参量与敏感光纤相互作用,引起光纤中传输光的波长改变,进而通过测量光波长的变化来确定北侧参量的传感方法即为波长调制型光纤传感器。 光纤光栅传感器是一种典型的波长调制型光纤传感器。基于光纤光栅的传感过程是通过 ,B外界参量对布拉格中心波长的调制来获取传感信息,其数学表达式为: ,,,2nBeff neff,式中:为纤芯的有效折射率;是光栅周期。 这是一种波长调制型光纤温度传感器,它具有一下明显优势: (1)抗干扰能力强。由于光纤传感器是利用光波传输信息,而光纤又是电绝缘、耐腐蚀的传输介质,因而不怕强电磁干扰,也不影响外界的电磁场,并且安全可靠。这使它在各种大型机电、石油化工、冶金高压、强电磁干扰、易燃、易爆、强腐蚀环境中能方便而有效地传感,具有很高的可靠性和稳定性。

(2)传感探头结构简单,体积小,重量轻,外形可变,适合埋入大型结构中测量结构内部的应力、应变及结构损伤,稳定性、重复性好,适用于许多应用场合,尤其是智能材料和结构。 (3)测量结果具有良好的重复性。 (4)便于构成各种形式的光纤传感网络。 (5)可用于外界参量的绝对测量。 (6)光栅的写入技术已经较为成熟,便于形成规模生产。 (7)轻巧柔软,可以在一根光纤中写入多个光栅,构成传感阵列,与波分复用和时分复用系统相结合,实现分布式传感。 由于以上优点,光纤光栅传感器在大型土木工程结构、航空航天等领域的健康检测以及能源化工等领域得到了广泛的应用。但是它也存在一些不足之处。因为光纤光栅传感的关键技术在于对波长漂移的检测,而目前对波长漂移的检测需要用较复杂的技术和较昂贵的仪器或光纤器件,需大功率的宽带光源或可调谐光源,其检测的分辨率和动态范围也受到一定的限制等。 光纤布拉格光栅无疑是一种优秀的光纤传感器,尤其在测量应力和应变的场合,具有其它一些传感器无法比拟的优点,被认为是智能结构中最有希望集成在材料内部,作为检测材 料的结构和载荷,探测其损伤的传感器。 2.传感设计与可行性论证(执笔人:) 根据耦合模理论,光纤布拉格光栅的中心反射波长可以表示为: ,,,2nBeff n,effB,式中为导模的有效折射率,为光栅的周期。由(1)式可以看出,中心反射波长

光纤电流传感器

引言 近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能;绝缘、无感应的电气性能;耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。 1 光纤电流传感器 1.1 光纤电流传感器概述 光纤电流传感器是一种新型的电流传感器,与电磁式电流互感器相比,基于光学、微电子、微机技术的光纤式电流传感器(OFCT),具有无铁心、绝缘结构简单可靠,体积小、重量轻、线性度好、动态范围大、无饱和现象,输出信号可直接与微机化计量及保护设备接口等优点。这些优点既满足、推动了电力系统的发展,而且应用前景十分广阔。 当线偏振光(见光的偏振)在介质中传播时,若在平行于光的传播方向上加一强磁场,则光振动方向将发生偏转,偏转角度ψ与磁感应强度B和光穿越介质的长度l的乘积成正比,即ψ=VBl,比例系数V 称为费尔德常数,与介质性质及光波频率有关。偏转方向取决于介质性质和磁场方向。上述现象称为法拉第效应。1845年由M.法拉第发现。 由于光在光纤中,一边反射,一边行进,偏振波相应于曲线的形状会出现旋转。针对此现象,在光纤的一端设置一块镜面导致光纤中光线的往返,借助光的来回往返,成功补偿和解决了偏振波的旋转问题。将铅玻璃光纤用于传感器元件,并结合利用镜面的方法,只需把光纤卷绕在载流导体上,用于电流计测的反射型传感器就基本完成。其次,开发了调制程度的平均处理与信号处理方式,这有利于特性的稳定及噪音的抑制。此外,对光源、受光元件、信号传输光纤等种类与传感器特性的关系进行了研究,而且,慎重选择了旨在降低成本和实现小型化的传感器制作技术。目前,光纤传感器技术正朝实用化的方向进展,以适应电力系统的广泛需求。 1.2 光纤电流传感器的结构 光纤电流传感器主要由传感头、输送与接收光纤、电子回路等三部分组成,如图1所示。传感头包含载流导体,绕于载流导体上的传感光纤,以及起偏镜、检偏镜等光学部件。电子回路则有光源、受光元件、信号处理电路等。从传感头有无电源的角度,可分为无源式和有源式两类。

详细剖析光纤温度传感器的工作原理和应用场景

详细剖析光纤温度传感器的工作原理和应用场景 温度是度量物体冷热程度的物理量,许多物理现象和化学过程都是在一定温度下进行,人们的日常生活也和温度密切相关。随着科学技术的迅猛发展,对温度的测量也提出了更多更高的要求。以电信号为工作基础的传统的光纤温度传感器特点光纤测温传感器测量温度的方法光纤传感器的基本原理几种光纤温度传感器的原理基于布里渊散射的分布式光纤传感技术基于布里渊光频域分析(BOFDA)技术的分布式光纤传感器光纤温度传感器的应用 光纤温度传感自问世以来, 主要应用于电力系统、建筑、化工、航空航天、医疗以至海洋开发等领域,并已取得了大量可靠的应用实绩。 1、光纤温度传感器在电力系统有着重要的应用,电力电缆的表面温度及电缆密集区域的温度监测监控; 高压配电装置内易发热部位的监测; 发电厂、变电站的环境温度检测及火灾报警系统; 各种大、中型发电机、变压器、电动机的温度分布测量、热动保护以及故障诊断; 火力发电厂的加热系统、蒸汽管道、输油管道的温度和故障点检测; 地热电站和户内封闭式变电站的设备温度监测等等。 2、光纤温度传感特别是光纤光栅温度传感器很容易埋入材料中对其内部的温度进行高分辨率和大范围地测量, 因而被广泛的应用于建筑、桥梁上。美国、英国、日本、加拿大和德国等一些发达国家早就开展了桥梁安全监测的研究, 并在主要大桥上都安装了桥梁安全监测预警系统, 用来监测桥梁的应变、温度加速度、位移等关键安全指标。1999 年夏, 美国新墨西哥Las Cruces 10 号州际高速公路的一座钢结构桥梁上安装了120 个光纤光栅温度传感器,创造了单座桥梁上使用该类传感器最多的记录。 3、航空航天业是一个使用传感器密集的地方,一架飞行器为了监测压力、温度、振动、燃料液位、起落架状态、机翼和方向舵的位置等, 所需要使用的传感器超过100 个, 因此传感器的尺寸和重量变得非常重要。光纤传感器从尺寸小和重量轻的优点来讲, 几乎没有其他传感器可以与之相比。 4、传感器的小尺寸在医学应用中是非常有意义的, 光纤光栅传感器是现今能够做到最小的

光纤温度传感器简介

光纤温度传感器 摘要:本文分析了光纤温度传感器在温度探测中的优势,分别介绍了分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器的工作原理,最后综述了光纤温度感器在现代工业及生活的应用。 关键字:光纤传感温度应用 1引言 在科研和生产中,有很多温度测量问题,传统的温度传感器有热电偶,热电阻温度传感器,热敏电阻温度传感器,半导体温度传感器等等。光纤温度传感器是20世纪70年代发展起来的一种新型传感器。与传统的温度传感器相比,它具有灵敏度高,体积小,质量轻,易弯曲,不产生电磁干扰,不受电磁干扰,抗腐蚀性好等等优点,特别适用于易燃,易爆,空间狭窄和具有腐蚀性强的气体,液体以及射线污染等苛刻环境下的温度检测。 2光纤温度传感器分类 光纤温度传感器按照调制机理可分为相位调制,振幅调制,偏振态调制;按工作原理分,光纤温度传感器可分为功能性和传输型两种。功能型温度传感器中光纤作为传感器的同时也是光信号的载体,而传输型温度传感器中光纤则只传输光信号。传光型与传感型相比,虽然灵敏度稍差,但可靠性高,实用的传感器大多是这种类型。 目前主要的光纤温度传感器包括分布式光纤温度传感器、光纤光栅温度传感器、光纤荧光温度传感器、干涉型光纤温度传感器等。 2.1光纤光栅温度传感器 光纤光栅温度传感器是利用光纤材料的光敏性在光纤纤芯形成的空间相位光栅来进行测温的。光纤光栅以波长为编码,具有传统传感器不可比拟的优势,近年来光纤光栅成为发展最为迅速,最具代表性的光纤无源器件之一,已广泛用于建筑、航天、石油化工、电力行业等。 光纤光栅温度传感器主要有Bragg光纤光栅温度传感器和长周期光纤光栅传感器。Bragg光纤光栅是指单模掺锗光纤经紫外光照射成栅技术而形成的全新光纤型Bragg光栅,成栅后的光纤纤芯折射率呈现周期性分布条纹并产生Bragg 光栅效应,其基本光学特性就是以共振波长为中心的窄带光学滤波器,满足如下光学方程: =2nA 式中:为Bragg波长,A为光栅周期,n为光纤模式的有效折射率。 长周期光纤光栅是一种特殊的光纤光栅,其传光原理是将前向传输的基模耦合到前向传输的包层模中。由于其宽带滤波、极低的背景发射等特点引起人们的重视,是一种新型的宽带带阻滤波器。 光纤温度监测系统主要由光纤光栅传感器、传输信号用的光纤和光纤光栅解调器组成。光纤光栅解调器用于对光纤光栅传感器的信号检测和数据处理,以获得测量结果,传输光纤用于传输光信号,光纤光栅传感器则主要用于反射随温度变化中心波长的窄带光,如图1所示:

光纤温度传感器的研究

光纤温度传感器的研究 毕业生:夏正娜 指导老师:王兆民孟瑜 摘要:光纤温度传感器是20世纪70年代发展起来的一种新型传感器,与传统的温度传感器相比,它具有灵敏度高、体积小、质量轻、易弯曲、抗电磁干扰等优点;特别适用于易爆、易燃、腐蚀性强等苛刻环境下的温度检测。因此,光纤温度传感器得到迅速发展。 本文根据双光束干涉原理,自行构成了一个干涉型光纤温度传感器,观察干涉图样,对其进行了实验研究,阐述了它的原理,实验步骤,将得到的数据进行了分析处理,验证了本实验测量温度的可行性,并对实验装置进行了改造。 关键词:光导纤维光纤温度传感器干涉原理干涉型光纤温度传感器 Abstract :Optical fiber temperature sensor is a new developed type of sensor in the 70s of the Twentieth Century. Compared with the traditional temperature sensors,it owns a lot of advantages,such as higher sensitivity,smaller volume,slighter mess ,easier to bend and stronger capacity of Shielding the electro-magnetic interference. Particularly,it can be applied to detect the temperature of the explosive,flammable and corrosive matters in harsh environment. Therefore, optical fiber sensor developed rapidly in recent years. This paper bases on the interference principle, it construct a interference optical fiber temperature sensor. Observing the interference fringe, analyzing the experiment result, detailing its principle and experiment steps, then I can get some data to deal with the data. The data copes the theory perfectly. At last, I propose some advices to improve this experiment. Key word :Optical fiber Optical fiber temperature sensor Interference principle interference optical fiber temperature sensor. 1. 引言 温度是度量物理冷热程度的物理量,许多物理现象和化学现象都是在一定的温度下进行的。温度是作为衡量客观物质世界运动及其存在状态的一个重要物理量,温度信息的获得,可以使人们能够更好地掌握客观世界的内在规律。随着科学技术的发展,各个领域对测温元件的性能和效率提出了越来越高的要求,特别是工业、医学、电力等领域,在有强电磁干扰或易燃易爆的场合下,传统温度传感器便受到很大的限制。 光纤传感器是上世纪70年代中期发展起来的一种新型的传感器,是光纤和光纤通信技术发展的产物。由于光纤具有体积小、重量轻、电绝缘性好、柔性弯曲、耐腐蚀、灵敏度高等特点,能完成传统的传感器很难完成或者不能完成的任务。光纤传感技术用于温度测量,除了具有以上特点外,与传统的温度测量仪器相比,还具有响应快、频带宽、防爆、抗电磁干扰等优点,因此,光纤温度传感器是光纤传感器发展的一个

光纤温度传感器在微波场测温中的应用

光纤温度传感器在微波场测温中的应用 邹 建 饶 程 顾兴志 (重庆大学光电技术及系统教育部重点实验室,重庆 400044) 提要:处于强电磁场的环境下,在微波场中温度的测量依然是一个技术难题。介绍了适用于微波场测温的各类光纤温度传感器,阐述了光纤光栅用于温度传感的原理及在微波场中测温的前景与应用。对微波场中测温技术的进一步发展具有一定的参考价值。 关键词:微波场,温度测量,光纤传感,光纤光栅 The application of FOS for temperature measurement in microw ave field Zou Jian Rao Cheng Gu Xingzhi (The K ey Laboratory for Optoelectronic T echnology&Systems,M inistry of Education,Chongqing 400044) Abstract:The development of fiber optic sens or(FOS)technology provides a lot of new methods used in tem perature measurement in a microwave(MW)field. This paper presents a systematic review of FOS utilized to measure tem perature in MWfields and analyses the application and development foreground of fiber Bragg grating(F BG)for tem perature measurement in a MW field. K ey w ords:microwave field,tem perature measurement,FOS,F BG 1 引言Ξ 微波是指波长范围为1m到1mm对应频率范围为300MH z到300G H z的电磁辐射,在电磁波谱中属超高频电磁波。处在这一频率范围的电磁波被成功的用于电视广播、微波通讯、雷达以及卫星通讯,取得了很大的成就。20世纪60年代以后,微波作为一种新型能源在工业上得到了广泛的应用,拓展成了一个分支技术〔1〕。如化学研究中的应用,有催化领域,有机合成,合成某些放射性药剂以及干燥等方面;食品加工方面有食品的熟化,杀菌,干燥及解冻等方面;在医疗方面,各种微波治疗仪的成功研制与应用,显示出微波医学具有不可估量的潜在生命力;基于微波的材料热处理方面的技术发展也是日新月异,如陶瓷烧结,木材干燥,微波染色等等。 尽管微波作为一种新型能源在上述领域中得到广泛应用,由于强电磁场的存在,在微波场下的温度测量依然是个技术难题。而温度显然是个重要的参数,如微波诱导催化反应的机理以及微波参催化剂作用的机理的研究还不是很深入,主要原因之一就是微波场中的温度无法准确测量;微波治疗仪中加热治疗温度以在42~44℃范围内为宜,而将45℃作为安全上限〔2〕。因此,微波场中温度测量技术的发展将进一步推动微波在其他工业领域的应用。 2 微波场测温的传统方法概述 2.1 热电偶、热敏晶体管及集成电路温度传感器 由于温度参数在微波热处理中的重要性,人们已经在各类微波炉,微波反应釜,微波治疗仪等很多存在微波场的领域实现了对温度的检测。这些温度检测技术中有常规的如热电偶温度传感器,也有热敏晶体管及集成电路温度传感器。然而在微波场中,由于强电磁场存在,金属材料制作的测温探头及导线在高频电磁场下产生感应电流,由于集肤效应和涡流效应,使其自身温度升高,对温度测量造成严重干扰,使温度示值产生很大的误差或者无法进行稳定的温度测量。 2.2 热敏电阻———高阻导线温度传感器 热敏电阻———高阻导线温度传感器是采用高阻值的半导体热敏电阻作测温探头,用特制的高阻值导线作信号的传输线,再配以简单的测量电路构成的温度传感器。热敏电阻、高阻导线以及金属传输线间的连接采用导电胶粘贴。这种温度传感器有一定的优点,如抗电磁干扰、灵敏度高、体积小、反应快以及价格低廉等,不足之处在于稳定性、互换性和线性度较差,以及高阻导线的机械强度差。对高精度测量很难达到要求。 3 可用于微波场测温的各类光纤温度传感器 3.1 光纤温度传感技术 光纤传感技术是20世纪70年代伴随光纤通信技术的发展而迅速发展起来的。作为被测量信号载体的光波和作为光波传播媒介的光纤,具有一系列独特的,其他载体和媒介难以比拟的优点:光波不产生电磁干扰,也不怕电磁干扰,易为各种光探测器件接收,可方便的进行光电或电光转换,易与高度发展的现代电子装置和计算机相匹配;光纤工作频率宽,动态范围大,是一种低损耗传输线,光纤本身不带电,体小质轻,易弯曲,抗电磁干扰,抗辐射性能好,特别适合于易燃、易爆、空间受严格限制及强电磁干扰等恶劣环境下使用。国外一些发达国家对光纤传感技术的应用研究已取得丰富成果,不少光纤传感器系统已实用化,成为替代传统传感器的商品。 光纤温度传感是光纤传感的一个重要分支。所有与温度相关的光学现象或特性,本质上都可以用于温度测量,基于此,用于温度测量的现有光学技术相当丰富。已产品化的光纤温度传感器占到将近所有光纤传感产品的20%〔3〕。由于光纤温度传感技术的先天抗电磁干扰等特性,被众多研究者用来对微波场进行温度传感。 3.2 各类光纤温度传感器 光纤温度传感器按其工作原理分为功能型光纤温度传 27 《激光杂志》2003年第24卷第5期 LASER JOURNA L(V ol.24.N o.5.2003) Ξ2003年3月21日收稿 作者简介:邹建(1960年)男,重庆市人。副研究员,博士。长 期从事光电技术及应用方面的科研项目,尤其是在光纤传感 器方面经验丰富,先后参加或主持多项国家自然科学基金,国 家七五、八五攻关项目。获国家教委科技进步二、三等奖各一 项,发表论文30余篇,出版专著一部。

相关主题
文本预览
相关文档 最新文档