当前位置:文档之家› 毕业论文 光纤温度传感器

毕业论文 光纤温度传感器

毕业论文 光纤温度传感器
毕业论文 光纤温度传感器

摘要本文从光纤和光纤传感器以及光纤温度传感器的发展历程开始详细分析国内外主要光纤温度测温方法的原理及特点,比较了不同方法的温度测量范围和性能指标以及各自的优缺点。通过研究发现了当前的光纤温度传感器的种类和特点,详细介绍了光纤温度传感器的原理,种类和各自的特点和优缺点。可以根据这些传感器各自特点将各种传感器应用到不同的领域,本文也简要分析了各种光纤温度传感器的运用范围和领域。本文还通过图文并茂的方式比较详细地分析了介绍了空调器的基本结构,工作电气原理和基本的热力学过程。本文对毕业设计主要内容和拟采用的研究方案也做出了详细地介绍分析。关键词:光纤,光纤传感器,光纤温度传感器,运用领域,空调器,空调器原理Abstract1 引言:光纤温度传感器是一种新型的温度传感器.它具有抗电磁干扰、耐高压、耐腐蚀、防爆防燃、体积小、重量轻等优点,其中几种主要的光纤温度传感器:分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器和基于弯曲损耗的光纤温度传感器更有着自己独特的优点。与传统的传感器相比具有一下优点:灵敏度高是无源器件,对被测对象不产生影响光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠频带宽,动态范围大几何形状具有多方面的适应性可以与光纤遥测技术相配合,实现远距离测量和控制体积小,重量轻等。它将在航空航天、远程控制、化学、生物化学、医疗、安全保险、电力工业等特殊环境下测温有着广阔的应用前景。在本论文中将详细分析当前光纤温度传感器的主要种类和各自的原理,特点和应用范围。2 论文要求:(1)详细分析国内外主要光纤温度测温方法的原理及特点,比较不同方法的温度测量范围和性能指标。(2)掌握空调器的工作电气原理和基本的热力学过程。3 毕业论文综述:70 年代中期,人们开始意识到光纤不仅具有传光特性,且其本?砭涂梢怨钩梢恢中碌闹苯咏换恍畔⒌幕。?无需任何中间级就能把待测的量与光纤内的导光联系起来。1977 年,美国海军研究所开始执行光纤传感器系统计划,这被认为是光纤传感器问世的日子。从这以后,光纤传感器在全世界的许多实验室里出现。从70 年代中期到80 年代中期近十年的时间,光纤传感器己达近百种,它在国防军事部门、科研部门以及制造工业、能源工业、医学、化学和日常消费部门都得到实际应用。从目前的情况看,己有一些形成产品投入市场,但大量的是处在实验室研究阶段。光纤传感器与传统的传感器相比具有一下优点:灵敏度高是无源器件,对被测对象不产生影响光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠频带宽,动态范围大几何形状具有多方面的适应性可以与光纤遥测技术相配合,实现远距离测量和控制体积小,重量轻等。目前,世界各国都对光纤传感器展开了广泛,深入的研究,几个研究工作开展早的国家情况如下:美国对光纤传感器研究共有六个方面:这些项目分别是:光纤传感系统现代数字光纤控制系统光纤陀螺核辐射监控飞机发动机监控民用研究计划。以上计划仅在1983 年就投资12-14 亿美元。美国从事光纤传感器研究的有美国海军研究所、美国宇航局、西屋电器公司、斯坦福大学等28 个主要单位。美国光纤传感器开始研制最早,投资最大,己有许多成果申请了专利。英国政府特别是贸易工业部十分重视光纤传感器技术,早在1982 年有该部为首成立了英国光纤传感器合作协会,到1985 年为止,共有26 个成员,其中包括中央电器研究所、Delta 控制公司、帝

国化学工业公司、英国煤气公司、1Taylor 仪器公司、标准电信研究所及几所主要大学。德国的光纤陀螺的研究规模和水平仅次与美国居世界第二位,西门子公司在1980 年就制成了高压光纤电流互感器的实验样机。日本制定了1979-1986 年“光应用计划控制系统”的七年规划,投资达70 亿美金。有松下、三菱、东京大学等24 家著名的公司和大学从事光纤传感器研究。从1980 年7 月到1983 年6 月,申请光纤传感器的专利464 件,涉及11个领域。主要应用于大型工厂,以解决强电磁千扰和易燃、易爆等恶劣环境中信息测量、传输和生产全过程的控制问题。我国光纤传感器的研究工作于80 年代初开始,在“七五”规划中提出15项光纤传感器项目,其中有光纤放射线探测仪、光纤温度传感器及温度测量系统、光纤陀螺、光纤磁场传感器、光纤电流、电压传感器、医用光纤传感器、分析用传感器、集成光学传感器等。预计“七五”期间的研制成果可达到美、日等国80 年代初、中期水平。半导体吸收型光纤温度传感器基本上是80 年代兴起的,其中以日本的研究最为广泛。在1981 年,Kazuo Kyuma 等四人在日本三菱电机中心实验室,首次研制成功采用GaA、和Care 半导体材料的吸收型光纤温度传感器。由于人们对半导体材料认识的不断深入,以及半导体制造和加工工艺水平的不断提高,使人们对采用半导体材料来制作各种传感器的前景十分看好。在90 年代前后,出现了研究以硅材料作为温度敏感材料的光纤温度传感器。在1988 年,Roorkee大学R.P.Agarwal 等人,采用CIrD化学气象淀积技术,在光纤端面上淀积多晶硅薄膜,试制了硅吸收型光纤温度传感器。同年,Isko Kajanto 等人采用SOI结构,以光纤反射的方式,制作了单晶硅吸收型温度传感器。目前,以GaAs 和CdTe 直接带隙半导体材料的吸收型光纤温度传感器,已接近实用化。国内对半导体吸收型光纤温度传感器的研究起步较晚,兴起于90 年代后期。主要集中在清华大学,华中理工大学,东南大学等高校。他们对该种类型的传感器结构,特性和系统结构进行了详细的分析和实践。但大量的研究只集中在GaAs半导体作为感温材料的传感器上,与国外在该领域的研究水平仍有较大差别。4 光纤温度传感器的特点:光纤温度传感器与传统的温度传感器相比具有很多优点:光波不产生电磁干扰,也不怕电磁干扰,易被各种光探测器件接收.可方便地进行光电或电光转换.易与高度发展的现代电子装置和计算机相匹配.光纤工作频率宽.动态范围大,是一种低损耗传输线,光纤本身不带电.体积小质量轻,易弯曲,抗辐射性能好,特别适合于易燃、易爆、空间受严格限制及强电磁干扰等恶劣环境下使用。国外一些发达国家对光纤温度传感技术的应用研究已取得丰富成果.不少光纤温度传感器系统已实用化.成为替代传统温度传感器的商品。所有与温度相关的光学现象或特性.本质上都可以用于温度测量.基于此.用于温度测量的现有光学技术相当丰富。对于光纤温度传感器的研究占到将近所有光纤传感器研究的20%。光?宋露却衅鞯难芯浚韵钟衅骷型獬⊙橹ぁ⑼晟坪吞岣咄猓壳坝幸韵录父龇⒄苟颍捍罅Ψ⒄共饬课露确植嫉牟饬考际酰从啥缘ジ龅愕奈露炔饬康蕉怨庀搜叵呱衔露确植迹约按竺婊砻嫖露确植嫉牟饬浚嚎ú饬课露仍谀诘亩喙δ艿拇衅鳎貉兄拼笮痛衅髡罅校迪秩庋б2狻9庀瞬馕麓衅魇怯霉庀死床饬课露鹊摹S辛街址椒墒迪帧R皇抢帽徊獗砻娣淠芩嫖露鹊谋浠浠奶

氐悖焕霉庀私淠芰看涞饺让粼希?2过转换再变成可供纪录和显示的电信号。这种方法独特之处就是可以远距离测量;另外一种方法是利用光在光导纤维内传输的相位随温度参数的改变而改变的特点,光信号的相位随温度的变化是由于光纤材料的尺寸和折射率都随温度改变而引起的。5 光纤传感器的基本原理在光纤中传输的单色光波可用如下形式的方程表示E 式中,是光波的振幅:w 是角频率;为初相角。该式包含五个参数,即强度、频率w、波长、相位

(wt )和偏振态。光纤传感器的工作原理就是用被测量的变化调制传输光光波的某一参数,使其随之变化,然后对已知调制的光信号进行检测,从而得到被测量。当被测物理量作用于光纤传感头内传输的光波时,使的强度发生变化,就称为强度调制光纤传感器;当作用的结果使传输光的波长、相位或偏振态发生变化时,就相应的称为波长、相位或偏振调制型光纤传感器。5.1 强度调制5.1.1 发光强度调制传感器的调制原理光纤传感器中发光强度的调制的基本原理可简述为,以被测量所引起的发光强度变化,来实现对被测对象的检测和控制。其基本原理如图所示。光源S 发出的发光强度为的光柱入传感头,在传感头内,光在被测物理量的作用下强度发生变化,即受到了外场的调制,使得输出发光强度产生与被测量有确定对应关系的变化。由光电探测器检测出发光强度的信号,经信号处理解调就得到了被测信号。5.1.2 发光强度调制的方式利用光纤微弯效应;利用被测量改变光纤或者传感头对光波的吸收特性来实现发光强度调制;通过与光纤接触的介质折射率的改变来实现发光强度调制;在两根光纤间通过倏逝波的耦合实现发光强度调制;利用发送光纤和接收光纤作相对横向或纵向运动实现发光强度调制,这是当被测物理量引起接收光纤位移时,改变接收发光强度,从而达到发光强度调制的目的。这种位移式发光强度调制的光纤传感器是一种结构简单,技术较为成熟的光纤传感器。35.1.3 发光强度调制型传感器分类根据其调制环节在光纤内部还是在光纤外部可以分为功能型和非功能型两种。强度调制式光纤传感器的特点解调方法简单、响应快、运行可靠、造价低。缺点是测量精度较低,容易产生偏移,需要采取一些自补偿措施。5.2 相位调制光纤传感器的基本原理通过被测量的作用,使光纤内传播的光相位发生变化,再利用干涉测量技术把相位转换为光强变化,从而检测出待测的物理量。如图5-40 其中图a、b、c 分别为迈克尔逊、马赫-泽得和法布里-珀罗式的全光纤干涉仪结构。5.3 波长调制光纤传感器的基本原理波长调制传感器的基本结构如图5-41。6 光纤温度传感器6.1几种光纤温度传感器的原理和研究现状光纤温度传感器按其工作原理可分为功能型和传输型两种。功能型光纤温度传感器是利用光纤的各种特性f 相位、偏振、强度等随温度变换的特点,进行温度测定。这类传感器尽管具有”传”、”感”合一的特点.但也增加了增敏和去敏的困难。传输型光纤温度传感器的光纤只是起到光信号传输的作用.以避开测温区域复杂的环境.对待测对象的调制功能是靠其他物理性质的敏感元件来实现的。这类传感器由于存在光纤与传感头的光耦合问题.增加了系统的复杂性,且对机械振动之类的干扰较敏感.下面介绍几种主要的光纤温度传感器的原理和研究现状。6.1.1 分布式光纤温度传感器分布式光纤测温系统是一种用于实时测量空间温度场分布的传感器系统。分布光纤传感器系统最早是在1981 年由英国南安普

敦大学提出的.1983 年英国的Hartog 用液体光纤的拉曼光谱效应进行了分布式光纤温度传感器原理性实验.1985 年英国的Dakin 在实验4室用氩离子激光器作为光源进行了用石英光纤的拉曼光谱效应的分布光纤温度传感器测温实验.同年Hartog 和Dakin 分别独立地用半导体激光器作为光源,研制了分布光纤温度传感器实验装置:此后。分布光纤温度传感器得到了很大的发展.研究出了多种传感机理.有的还使用了特种光纤。分布式光纤温度传感器是基于瑞利散射、布里渊散射、喇曼散射三种分布式温度传感器。分布式光纤传感器从最初提出的基于光时域散射fOTDRl 的瑞利散射系统开始.经历了基于0TDR 的喇曼散射系统和基于0TDR 的布里渊散射系统.使得测温精度和范围大幅提高。光频域散射fOFDR的提出也很早,但只有到了近期.伴随着喇曼散射和布里渊散射研究的深入.使OFDR 和它们结合才显示出了它的优越性。基于0TDR和OFDR 的分布式温度光纤传感器已经显示出了很大的优越性.所以基于OTDR0FDR 的分布式温度光纤传感器仍将是研究的热点.尤其是基于OFDR 的新的分布式光纤传感器将是一个重要的发展方向。土耳其Gunes Yilmaz 研制出10km、温度分辨率为1℃、空间分辨率为1.22m 的分布式光纤温度传感器。在国内,中国计量学院、重庆大学、浙江大学等单位根据应用的需要.先后开展了分布式光纤温度传感器的研究。中国计量学院1997 年研制了一种用于煤矿、隧道温度自动报警的分布式光纤温度传感器系统,该系统光纤长为2km.测温范围为一50℃~150℃.测温精度为2℃.温度分辨率为O.1℃:2005 年设计制造出31km远程分布式光纤温度传感器.测温范围0℃~100℃,温度测量不确定度为2℃.温度分辨率为0.1℃,测量时间为432s.空间分辨率为4m。6.1.2 光纤光栅温度传感器光纤光栅温度传感技术主要研究Bmgg 光纤传感技术。根据Bragg 光纤光栅反射波长会随温度的变化而产生”波长移位”的原理制成光纤光栅温度传感器。1978年.加拿大渥太华通信研究中心的K.O.HiU 等人首先发现掺锗石英光纤的光敏效应.采用注入法制成世界上第一只光纤光栅FBG,1989 年,Morev 首次报导将其用于传感。英国T.A1lsoD 利用椭圆纤芯突变型光纤研制出温度分辨率为O.9℃、05 曲率分辨率为0.的长周期光纤光栅曲率温度传感器。意大利A.Iadicicco利用非均匀的稀疏布拉格光纤光栅fThFBGsl 同时测量折射率和温度.该传感器的温度分辨率为0.1℃.45、33 在折射率1.1.附近的折射率分辨率分别为10-s、104。中科院上海光机所利用光纤光栅的金属槽封装技术将光纤光栅温度传感器的灵敏度提高到O.02℃:哈尔滨工业大学把光纤光栅粘贴在金属半管上.使其分辨率达到0.04℃:黑龙江大学光纤技术研究所提出了一种光纤光栅fFBGl 的Ti 合金片封装工艺,使温度灵敏度达到0.05℃。6.1.3 光纤荧光温度传感器光纤荧光温度传感器是目前研究比较活跃的新型温度传感器。荧光测温的工作机理是建立在光致发光这一基本物理现象上。所谓光致发光是一种光发射现象.就是当材料由于受紫外、可见光或红外区的光激发.所产生的发光现象。出射的荧光参数与温度有一一对应关系.通过检测其荧光强度或荧光寿命来得到所需的温度的。强度型荧光光纤传感器受光纤的微弯曲、耦合、散射、背反射影响,造成强度扰动,很难达到高精度:荧光寿命型传感器可以避免上述缺点,因此是采用

的主要模式.荧光寿命的测量是测温系统的关键。美国密西西比州立大学用一种商用的环氧胶做温度指示f 含有多环芳烃化合物:PAHs。PAHs 在用紫外光激发时发荧光.荧光的强度随环氧胶周围温度的升高而减小.该传感器可监测20℃~100℃范围内的温度。日本东洋大学根据Tb:Si0,和Tb:YAG 的光致发光PL 谱与温度有关.将其制成光纤温度传感器。在300~1200K 的温度下.Tb:Si0,5的PL 峰值在540nm 时的光强随温度的升高单调减小.Tb:YAG 晶体的PL 谱的形状随温度变化。E 韩国汉城大学发现lOcm 长的Ybn、一双掺杂光纤在915nm 处.两荧光强度的比值在20℃~300℃间与温度成指数关系.这种双掺杂系统对于测量苛刻环境的温度非常有用。清华大学电子工程系利用半导体GaAs 材料对光的吸收随温度变化的原理。研制出测温范围:O℃~150℃;分辨率:0.5℃的光纤温度传感器。燕山大学设计了一种利用荧光波分和时分多路传输技术.通过检测红宝石晶体的荧光强度实现温度测量的系统.该系统的测温范围:30℃~160℃:分辨率:0.5℃。海南大学用激光加热基座法生长出端部掺Cr 的蓝宝石荧光光纤传感头.该传感器的测温范围:20℃~450℃:分辨率:1℃。中北大学用一种镀有陶瓷薄膜的蓝宝石光纤作为传感器的瞬态高温测试系统.该系统的测温范围:1200℃~2000℃。分辨率:1℃。6.1.4 干涉型光纤温度传感器干涉型光纤温度传感器是一种相位调制型光纤传感器。它是利用温度改变Mach—Zehnder 干涉仪、Fabry—Perot 干涉仪、Sagnac 干涉仪等一些干涉仪的干涉条纹来外界测量温度。英国的Samer K.Abi Kaed Bev 用长周期光纤光栅做成Mach—Zehnder 干涉型光纤温度传感器.其温度分辨率为O.7℃。燕山大学研制出基于白光干涉的Fabrv—Perot 光纤温度传感器.其测温范围为一40℃~100℃.分辨率为0.01℃。哈尔滨工程大学研制出数字式Mach—Zehnder 干涉型光纤传感器.其测温范围为35cC~80℃,压力、温度、位移分辨率分别为0.03kPa、0.07℃、2.5 斗m。干涉式光纤温度传感器工作示意图6.1.5 基于弯曲损耗的光纤温度传感器基于弯曲损耗的光纤温度传感器利用硅纤芯和塑料包层折射率差随温度变化引起光纤孔径的变化、光纤的突然弯曲引起的局部孔径的变化的原理测量温度。乌克兰采用EBOC 伍ngIish—Bickford Optics Com—pany生产的多模阶跃塑料包层硅纤芯光纤HCN~H,已做出基于弯曲损耗的光纤温度传感器.其测温范围一30℃~70℃.灵敏度达到O.5℃。法国研究出测温范围一20℃~60℃。灵敏度为0。2℃的基于弯曲损耗的光纤温度传感器。国内主要是对光纤的弯曲损耗与入射波长、弯曲半径、弯曲角度、弯曲长度、光纤参量和温度等的关系做了一些研究。实验装置图如图1 所示。66.2 几种光纤温度传感器的特点及各自的研究方向分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器和基于弯曲损耗的光纤温度传感器分别具有独特的优点和一定的不足,因此它们的研究方向不同。6.2.1 分布式光纤温传感器分布式光纤温传感器具有其他温度传感器不可比拟的优点。它能够连续测量光纤沿线所在处的温度.测量距离在几千米范围.空间定位精度达到米的数量级。能够进行不问断的自动测量.特别适用于需要大范围多点测量的直用场合。目前对分布式光纤温度传感器研究的重点:实现单根光纤上多个物理参数或化学参数的同时测量:提高信号接

收和处理系统的检测能力.提高系统的空间分辨率和测量不确定度:提高测量系统的测量范围.减少测量时间:基于二维或多维的分布式光纤温度传感器网络。6.2.2 光纤光栅温度传感器光纤光栅温度传感器除了具有普通光纤温度传感器的许多优点外.还有一些明显优于其它光纤温度传感器的方面。其中最重要的就是它的传感信号为波长调制。这一传感机制的好处在于:测量信号不受光源起伏、光纤弯曲损耗、连接损耗和探测器老化等因素的影响:避免了一般干涉型传感器中相位测量的不清晰和对固有参考点的需要:能方便地使用波分复用技术在一根光纤中串接多个布喇格光栅进行分布式测量:很容易埋人材料中对其内部的温度进行高分辨率和大范围地测量。尽管光纤光栅温度传感器有很多优点.但在应用中还需考虑很多因素:波长微小位移的检测;宽光谱、高功率光源的获得;光检测器波长分辨率的提高;交叉敏感的消除;光纤光栅的封装;光纤光栅的可靠性;光纤光栅的寿命。6.2.3 光纤荧光温度传感器光纤荧光温度传感器于其它光纤温度传感器相比有自己独特的优点:由于荧光寿命与温度的关系从本质上讲是内在的.与光的强度无关.这样就可以制成自较准的光纤温度传感器.而一般的基于光强度检测的光纤温度传感器f 如辐射型1则因为系统的光传输特性往往与传输光纤和光纤耦合器等相关而需经常校准:测量范围广,特别在高温情况下多用光纤荧光温度传感器。目前国外的研究主要围绕着荧光源的选择.主要为下面几个方面:蓝宝石和红宝石发光、稀土发光及半导体吸收。6.2.4 干涉型光纤温度传感器7干涉型光纤温度传感器的温度分辨率高:动态响应宽:结构灵巧。研究干涉型光纤温度传感器的主要工作放在减小噪声干扰和信号解调上。6.2.5 基于弯曲损耗的光纤温度传感器基于弯曲损耗的光纤温度传感器具有结构简单、体积小、成本低、测量方便不需要解调等优点。但是它还存在着很多的不足:测量精度低;由于它是强度调制型光纤传感器,光源的稳定性对其影响很大;使用寿命短等缺点。在今后的研究中主要从光纤的选择、测量条件的提高等方面开展工作。7 光纤温度传感器的应用光纤温度传感自问世以来.主要应用于电力系统、建筑、化工、航空航天、医疗以至海洋开发等领域,并已取得了大量可靠的应用实绩。7.1.1 光纤温度传感器在电力系统有着重要的应用电力电缆的表面温度及电缆密集区域的温度监测监控;高压配电装置内易发热部位的监测;发电厂、变电站的环境温度检测及火灾报警系统;各种大、中型发电机、变压器.

光纤温度传感器工作原理及实际应用分析

光纤温度传感器工作原理及实际应用分析 摘要:文章在分析DTS分布式光纤传感器系统的逻辑组成和工作原理后,详细介绍了基于分布式光纤温度传感器和光纤光栅温度传感器测温系统对在电力系统各重要电气设备进行温度安全监测中的应用。 关键词:光纤温度传感器;DTS;电力温度监测 温度是工程应用领域中重要的检测和监控对象,对于一个内部结构复杂、涉及点面较多的复杂系统而言,要获得一个准确且具有一定监测对象范围跨度的实时温度信息(或监测对象分布的应用应变特性),采用常规的单点移动式或由多个独立单点相互结合组成的准分布式温度传感器侧空虚体统,不仅会由于数据采集的延时性降低温度测量数据的准确度,同时还会由于复杂的接线使整个系统布线变得非常困难,这时选用分布式光纤温度传感系统(Distributed Temperature Sensing,DTS)就是一种非常有效的方法,非常适合冶金、化工、电力等恶劣环境场合中的实时温度测量和监控,具有相当大的研究意义。 1DTS分布式光纤传感器系统 DTS 分布式光纤传感器系统是一款结构较为复杂的工业应用领域温度在线检测和控制产品,其非常适用于环境较为恶劣、干扰对象较多、监测范围跨度较大的重要工农业应用产生中的温度实时准确检测和控制。 1.1DTS系统组成 DTS分布式光纤传感器系统主要包括传感光纤、光路模块、电路模块、高级应用软件、以及一些辅助的外围集成电路设备,其逻辑组成结构如图1所示。 从图1可知,DTS系统在运行时,首先由电路模块中得控制及信号处理电路将对应的控制信号通过驱动电路驱动半导体激光器发生对应的高速脉冲信号,然后经过光路模块中得激光脉冲耦合形成对应的光纤信号,并经分光光路转换后进入到传感光纤中,再经探测器、探测电路、高速采集电路等将光纤传感器中的温度信号返回到系统的控制及信息处理电路中,完成对监测对象温度信号的采集。通过半导体激光器产生的激光脉冲在进入到传感光纤后,就会通过分光耦合特性发生背向散射光,其所产生散射光主要有三个波长的背向散射光,分别为Anti-Stokes(反斯托克斯)光、Rayleigh(瑞利)光、以及Stokes(斯托克斯)光。三种背向散射光中,Anti-Stokes具有温度敏感个性,为温度信号光;而Stokes 光对温度信号不敏感,为系统中得参考光。从系统传感光纤中返回的探测器中的背向散射光经分光光路、光滤波器滤波后,可以将Stokes光波和Anti-Stokes光波有效分离,然后再经APD 探测器接收后,经探测电路等放大电路处理后由高速数据采集模块进行自动采集,并经接口电路上传到客户PC机上,完成对系统温度信号、温度分布曲线、波动曲线等的动态显示。

文献综述——光纤振动传感器

中国计量学院 毕业设计(论文)文献综述 学生姓名:徐婷学号: 0800403238 专业:光电信息工程 班级: 08光电2 设计(论文)题目: 光纤振动传感器的设计 指导教师:李裔 二级学院:光学与电子科技学院 2011年 3 月07日

光纤振动传感器的设计 文献综述 一、概述: 光纤传感器的历史可追溯到上世纪70 年代,那时,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来。由于其具有常规传感器所无法比拟的优点和广阔的发展前景,很多国家不遗余力地加大对光纤传感器的研究力度,也涌现出许多成果。但它仍存在诸如价格昂贵、技术不够成熟等瓶颈,这使得它在工程上的应用较少。最近涌现的很多成果无论是在价位上还是技术上都有了新的突破。随着新方法、新工艺不断被引入,大量低价位高性能光纤传感器面世,而光纤与其他学科理论相结合,不仅使光纤传感器在信号检测精度、传输减损、信号处理方面有了很大的提高,而且其应用领域也越加广阔。 光纤传感器作为一种优势明显的新型传感器不但在高、精、尖领域得到应用,而且在传统的工业领域被迅速推广,其本身产品也不断推层出新,显示出强大的生命力。可以预见随着制作技术的日益成熟和器件性能的不断提高,不久的将来光纤传感器必将在海洋、化工、土木工程、水利电力等各个领域显示其应用活力。 二、光纤传感器的特点和工作原理: a。光纤结构和种类: 光纤是一种光信号的传输媒介。 光纤的结构:最内层的纤芯是一种截面积很小、质地脆、易断裂的光导纤维,制造材料可以是石英、玻璃或塑料。纤芯的外层由折射率比纤芯小的材料制成。由于纤芯与包层之间存在着折射率的差异,光信号得以通过全反射在纤芯中不断向前传播。光纤的最外层是起保护作用的外套。通常是将多根光纤扎成束并裹以保护层制成多芯光缆。 图一光纤结构 光纤的种类:1)按纤芯和包层的材质:玻璃光纤、塑料光纤。2)按折射率的变化:阶跃型、渐变型(聚焦光纤)。3)按传播模式:单模光纤、多模光纤。 b。光纤传感器的特点 近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程

开题报告-光纤温度传感器的研制

毕业设计(论文)开题报告题目:光纤温度传感器的研制 系别 专业 班级 姓名 学号 导师 ****年** 月*** 日

一、毕业设计(论文)综述(课题背景、研究意义及国内外相关研究情况) 本毕业设计研制的光纤温度传感器是指在光纤温度传感系统中,光纤作为光波的传输通路,设计一种光纤传感系统,测量待测物体的温度并与标准温度计的测量值、比较、定标以实现实用化的光纤温度测量系统。 光纤和光纤通信的问世和发展,引起了各界人士的关注,他们试图将这一新技术成果用到各自的领域。光纤传感器的出现正是这样。 目前,从大量文献资料中可看到光纤传感器的研究有如下动向: 1.继续深入研究传感器的理论和技术,解决实用化问题,发展新原理的光纤传感器。 光纤传感器基本原理的研究日益深入,强度、相位调制的传感器更加完善,而对波长调制和时间分辨信息的传感器亦有深入的研究。传感器用于实际测量的主要问题是长时间的漂移效应,漂移效应主要来自光纤传输线的衰减、祸合器和分束器特性不完整、光源输出不稳定及探测器的响应等。人们对此进行了深入研究,提出了许多解决办法,无论采用何种方法,在传感头上使用“比较”技术,使光纤传感器获得长时间的稳定,这样就可以使光纤传感器实用化。 2.从单一传感器进入到传感器系统的研究,并与微处理机相结合形成光纤遥测系统。 单一光纤传感器的研究一进入到实用化阶段,但它无法适用于多参数,多变量的测量。光纤传感器系统的一种形式是采用多路传输的光无源传感器系统,其核心问题是如何节省光路,寻求更有效利用的信息通道,使其能不畸变的更多的传输由各个光纤传感器取得的信号。利用光纤之间、几个无源传感器之间、数据遥测通道之间的多路传输达到此目的。 70年代中期,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来。 1977年,美国海军研究所开始执行光纤传感器系统计划,这被认为是光纤传感器问世的日子。从这以后,光纤传感器在全世界的许多实验室里出现。 从70年代中期到80年代中期近十年的时间,光纤传感器己达近百种,它

光纤温度传感器的设计

设计性实验报告 实验课程:医用传感器设计实验学生姓名:程胜雄 学号: 080921037 专业班级:08医工医疗器械方向 2010年12月8日

光纤温度传感器的设计 摘要:介绍了金属热膨胀式光纤温度传感器的设计,利用金属件的热膨胀的原理,通过绕制在金属件上的光纤损耗产生变化,当光源输出光功率稳定的情况下,探测器接收光功率受温度调制,通过光电转换,信号处理,完成温度的换算。传感器以光纤为传输手段,以光作为信号载体,抗干扰能力强,测量结果稳定、可靠, 灵敏度咼。 关键词:光纤,传感器,光纤传感器,光纤温度传感器 在光通信系统中,光纤是用作远距离传输光波信号的媒质。在实际光传输过程中,光纤易受外界环境因素的影响;如温度、压力和机械扰动等环境条件的变化引起光波量,如发光强度、相位、频率、偏振态等变化。因此,人们发现如果 能测出光波量的变化,就可以知道导致这些光波量变化的物理量的大小,于是出

现了光纤传感技术。 一:光纤传感器的基本原理 在光纤中传输的单色光波可用如下形式的方程表示 E=错误!未找到引用源。 式中,错误!未找到引用源。是光波的振幅:w是角频率;■为初相角。 该式包含五个参数,即强度错误!未找到引用源。、频率w、波长错误!未找到引用源。、相位(wt+ J和偏振态。光纤传感器的工作原理就是用被测量的变化调制传输光光波的某一参数,使其随之变化,然后对已知调制的光信号进行检测,从而得到被测量。当被测物理量作用于光纤传感头内传输的光波时,使的强度发生变化,就称为强度调制光纤传感器;当作用的结果使传输光的波长、相位或偏振态发生变化时,就相应的称为波长、相位或偏振调制型光纤传感器。 (一)强度调制 1.发光强度 调制传感 器的调制 原理光 纤传感器 中发光强度的调制的基本原理可简述为,以被测量所引起的发光强度变化,来 实现对被测对象的检测和控制。其基本原理如图 5-39所示。光源S发出的发 光强度为错误!未找到引用源。的光柱入传感头,在传感头内,光在被测物理 量的作用下强度发生变化,即受到了外场的调制,

光纤式温度传感器的设计

J I A N G S U U N I V E R S I T Y 学院名称: 专业班级: 学生姓名: 学生学号: 2011 年 6 月

光纤式温度传感器的设计 一、设计的目的 通过利用水银的遮光性,以及水银的热胀冷缩性能,当水银达到一定的液位时,从而遮住光纤的传输路线。这达到光纤传输跳跃,通过信号的终断输出到到外输接口的,以达到预期目的。 二、光纤导光的原理 光是一种电磁波,一般采用波动理论来分析导光的基本原理。然而根据光学理论中指出的:在尺寸远大于波长而折射率变化缓慢的空间,可以用“光线”即几何光学的方法来分析光波的传播现象,这对于光纤中的多模光纤是完全适用的。为此,我们采用几何光学的方法来分析。 由图2-1可以看出:入射光线AB 与纤维轴线OO 相交为θi 入射后折射(折射角为θj ) 至纤芯与包层界面C 点,与C 点界面法线DE 成θk 角,并由界面折射至包层,CK 与DE 夹角为θr 。 图2-1 光纤导光示意图 由图2-1可得出 j i n n θθsin sin 10= (2-1) r k n n θθs i n s i n 21= (2-2) 由(2-1)式可推出 j i n n θθs i n )(s i n 01= 因k j θθ-=090 所以

k k k i n n n n n n θθθθ2 1010 01sin 1cos )90sin()(sin -==-= (2-3) 由(2-2)式可推出 r k n n θθs i n )(s i n 12=并代入(2-3)式得 21 201)s i n (1s i n r i n n n n θθ-= k n n n θ2 22210 s i n 1-= (2-4) (2-4)式中n 0为入射光线AB 所在空间的折射率,一般皆为空气,故10≈n ;n 1为纤芯折射率,n 2为包层折射率。当叫n 0=1,由(2-4)式得 = i θs i n r n n θ2 2221s i n - (2-5) 当090=r θ的临界状态时,0i i θθ= 2 2210s i n n n i -=θ (2-6) 纤维光学中把(2-6)式中0sin i θ定义为“数值孔径”NA(Numerical Aperture )。由于n 1与n 2相差较小,即n 1+n 2≈2n 1,故(2-6)式又可因式分解为 ?≈2s i n 10n i θ (2-7) 式中121)(n n n -=?称为相对折射率差。 由(2-5)式及图2-1可以看出: 090=r θ时, NA i =0sin θ或NA i arcsin 0=θ,聚光能力的容量。 090>r θ时,光线发生全反射,由图2-1夹角关系可以看出NA i i arcsin 0 =<θθ。 090θsin ,NA i arcsin >θ,光线消失。 这说明NA arcsin 是一个临界角,凡入射角i θ>NA arcsin 的那些光线进人光纤后都不能传播而在包层消失;相反,只有入射角i θ<NA arcsin 的那些线才可以进入光纤被全反射传播。

国内外光纤传感器的发展现状

国内外光纤传感器的发展现状 2011-6-29 8:25:44 讯石光通讯咨询网作者:iccsz 摘要:本文将分析光纤传感器国内外发展的现状。主要介绍了两方面的情况:光纤传感器原理性研究的发展现状和光纤传感器产品的应用与开发的现状。 本文将分析光纤传感器国内外发展的现状。主要介绍了两方面的情况:光纤传感器原理性研究的发展现状和光纤传感器产品的应用与开发的现状。前者报道了光纤光栅、分布式光纤传感技术以及光纤传感网的发展,这些是目前的研究热点;后者介绍了光层析成像技术、智能材料、光纤陀螺及惯性导航系统、工业工程类传感器(其中包括电力工业用高电压、大电流传感器,利用光纤的弹光效应和FBG器件的应力传感器等)。最后介绍了新型光纤材料与器件、氟化物玻璃光纤,碳涂覆光纤、以及正在研究中的蜂窝型波导光纤、液晶光纤等。 一、引言 随着密集波分复用DWDM技术、掺铒光纤放大器EDFA技术和光时分复用OTDR技术的发展和成熟,光纤通信技术正向着超高速、大容量通信系统的方向发展,并且逐步向全光网络演进。在光通信迅猛发展的带动下,光纤传感器作为传感器家族中年轻的一员,以其在抗电磁干扰、轻巧、灵敏度等方面独一无二的优势,已迅速成长为年成交额超过10亿美金,并预计将于2010年拥有超过50亿美金市场的产业。每年由美国光学工程师学会(OSA)主办的光纤传感国际会议(OFS)及时报道着光纤传感领域的最新进展,并对光纤传感及其相应技术进行有益的研讨。 当前,世界上光纤传感领域的发展可分为两大方向:原理性研究与应用开发。随着光纤技术的日趋成熟,对光纤传感器实用化的开发成为整个领域发展的热点和关键。由于光纤传感技术并未如光纤通信技术那样迅速地获得产业化,许多关键技术仍然停留在实验室样机阶段,距商业化有一定的距离,因此光纤传感技术的原理性研究仍处于相当重要的位置。由于很多光纤传感器的开发是以取代当前已相当成熟,可靠性和成本已得到公认,并已经被广泛采用的传统机电传感系统为目的,所以尽管这些光纤传感器具有如电磁绝缘、高灵敏度、易复用等诸多优势,其市场渗透所面临的困难和挑战是可想而知的。而那些具有前所未有全新功能的光纤传感器则在竞争中占有明显优势,FBG和其它的光栅类传感器就是一个最好的例证。当前的原理性研究热点集中于光纤光栅(FBG和LPG)型传感器和分布式光纤传感系统两大板块。 FBG型光纤传感器自发明之日起,已走过了原理性研究和实验论证的百家争鸣阶段。目前成熟的FBG制作工艺已可形成小批量生产能力,而研究的焦点也转向解决高精度应用,完善解调和复用技术,以及降低成本等几个方向上。另一方面,由于光纤传感器具有将传输与传感媒质合而为一的特性,使得沿布设路径上的光纤可全部成为敏感元件,因此,分布式传感成为光纤传感器与生俱来的优点。 对于光纤传感技术的应用研究主要有以下四大类:光(纤)层析成像技术(OCT,OPT)、智能材料(SMART MATERIALS)、光纤陀螺与惯导系统(IFOG,IMIU )和常规工业工程传感器。另外,由于光纤通信市场需求的带动以及传感技术的特殊要求,新型器件和特种光纤的研究成果也层出不穷。 目前,我国的光纤传感器研究大多数集中于大专院校和科研单位,仍然未完成由实验室向产品化的过渡。其中,比较成熟的技术包括:清华大学光纤传感中心与总后合作研制开发的光纤油罐液位与温度测量系统,已经安装运行数年;北京航空航天大学与总装合作研制的光纤陀螺系统,目前指标为0.2°/hr ;中国计量学院研制的分布式光纤传感系统,已有产品报道;华中理工大学与广东某公司联合研制的强电压、大电流传感系统。此外,在广东、深圳等地,还建立了许多光纤无源器件生产厂

光纤温度传感器在电力电缆监测中的应用研究

光纤温度传感器在电力电缆监测中的应用研究 发表时间:2018-01-10T10:12:31.343Z 来源:《电力设备》2017年第27期作者:郑瑜 [导读] 摘要:针对电力电缆运行特征的监测与控制始终是电力技术研究的重要内容,准确高效的线路故障定位能够提升线路运行管理与故障预警及处理的实际效率,为电网的稳定运行提供有效支持。 (国网上海浦东供电公司 200122) 摘要:针对电力电缆运行特征的监测与控制始终是电力技术研究的重要内容,准确高效的线路故障定位能够提升线路运行管理与故障预警及处理的实际效率,为电网的稳定运行提供有效支持。光纤温度传感器作为一种更为高效精确的测温装置,在当前的电力电缆监控中得到了有效的应用。本文在阐述光纤温度传感器工作原理的基础上,分析了相应系统的整体功能,并提出了实际情况下的具体的应用,旨在提供一定的参考与借鉴。 关键词:电力电缆;监测;光纤温度传感器 1光纤温度传感器工作原理 电传导是以电流作为传导媒介,同理光纤传感器是以光作为媒介进行的传导的,只不过它的传导过程比电传导更加复杂。它是将变化的能量转化成变化的光信号,光是一种相干性特别好的物质,这便让它更具特点,比传统的传感器都稳定,而又因为光的抗电磁干扰能力强,这也使光纤传感器受外界影响更小。同时具备以上特点的光纤传感器还特别轻小、柔韧,所以也便可以到处可用,解决了传统传感器无法再高压、强电流无法使用的窘境。 在目前的光纤传感器中大多应用了光纤光栅和拉曼散射等原理,光纤光栅是利用布拉格波长的温度依赖性进行监控温度的变化。每当有光线通过光栅时,电脑就会记录下一系列的波长、温度等数据,然后根据事先编写好的程序计算出光纤传感器附近的温度。而对于其他原理也可以计算出温度,如拉曼传感器的原理就和光纤光栅传感器不同,但并不意味着就无法保证了数据的准确性,拉曼传感器测出的温度同样准确,它使用了光时域反射的原理。同样在传感器中也有用到了光纤的后向拉曼散射原理,这种原理是基于光在不同种介质中会产生非弹性漫射,而这传感器主要就是利用产生了不同的非弹性漫射波进行对温度计算,最终得到精确的温度数据。 2电力电缆温度在线监测系统功能分析 根据电缆接头数量多、集中性差的特点,系统采用“分散-集中-再集中”结构,系统硬件结构如图1所示,系统由温度传感器、测控单元、数据传输设备及上位PC机组成。 图1电力电缆温度在线监测系统结构 温度传感器安装在电缆中间接头处,测控单元从各温度传感器读出电缆接头的实际温度,处理后存入外部存储器SRAM中,上位PC机定时向各测控单元发出读取电缆接头温度数据的命令,各测控单元收到命令后,将存在SRAM中的数据上传给PC机。当SRAM中的数据被PC机读取后,各测控单元会重新读取各温度传感器当前数据,进行温度数据更新。 PC机收到各测控单元温度数据后,即对数据进行分析处理、判断、显示、保存及打印等,并在温度越限时报警,提示相应电缆接头位置,以便运行人员及时排除故障。 2.1温度传感器的选择 温度传感器选用单总线数字温度传感器。每个传感器有唯一的系列号,多个传感器可在同一条总线上。具有独特的单线接口方式,支持多节点。传感器测温时无需任何外部元件,使分布式测温系统电路结构和硬件大为简化,具有通过数据线供电、超低功耗工作方式的特点。 2.2测控单元 测控单元是整个系统最重要的部分,根据实际需求,系统可以包括1个或多个测控单元。系统的测控单元采用单片机构成,用来完成传感器输出数据的采集、序列号的注册及与上位PC机的通信等。 由于1个测控单元要与多个温度传感器连接,且距离较远,为提高测控单元的抗干扰能力和可靠性,测控单元与传感器之间的连接由光电隔离和驱动电路组成。 每个测控单元还设计了1个登记注册端口并接至单片机,每个传感器在投入使用前必须事先进行注册,并将其惟一的序列号存入SRAM 中,以便使用。这是当发生温度越限报警后快速定位的重要依据。该系统内部每条总线连接不同单片机单片机分别进行单总线温度采集,采集到的数据和传感器的序列号通过GPRS网络传送到上位PC机中。 2.3数据传输 各测控单元与上位PC机之间的通信采用GPRS。GPRS是在现有GSM网络基础上通过软件升级实现的,GPRS网络的出现克服了GSM 网络在数据应用方面的缺点。采用分组交换技术,并增加2个服务节点。提供无线系统上的数据业务,可以无缝接入Internet,具有永远在线、按流量计费、覆盖范围广及无需铺线等优点。 3光纤温度传感器在电力电缆监测中的具体应用 3. 1实时监控电力电缆表面温度 通过光纤温度传感器对电力电缆表面温度实时检测,可以实现对工作电缆的问题及时处理,防止在电厂站工作时出现重大的电力电缆由于温度过高出现的重大事故。可以对电力电缆工作中出现的电力电缆事故进行定位,从而及时告诉工作人员事故位置可以更好的修护,

光纤温度传感器

光纤温度传感器 电子092班 张洪亮 2009131041

光纤温度传感器 摘要 本文从光纤和光纤传感器以及光纤温度传感器的发展历程开始详细分析国内外 主要光纤温度测温方法的原理及特点,比较了不同方法的温度测量范围和性能指标以及各自的优缺点。通过研究发现了当前的光纤温度传感器的种类和特点,详细介绍了光纤温度传感器的原理,种类和各自的特点和优缺点。可以根据这些传感器各自特点将各种传感器应用到不同的领域,本文也简要分析了各种光纤温度传感器的运用范围和领域。本文还通过图文并茂的方式比较详细地分析了介绍了空调器的基本结构,工作电气原理和基本的热力学过程。本文对毕业设计主要内容和拟采用的研究方案也做出了详细地介绍分析。 关键词:光纤传感器,光纤温度传感器,运用领域,空调器,空调器原理 1 引言: 光纤温度传感器是一种新型的温度传感器.它具有抗电磁干扰、耐高压、耐腐蚀、防爆防燃、体积小、重量轻等优点,其中几种主要的光纤温度传感器:分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器和基于弯曲损耗的光纤温度传感器更有着自己独特的优点。与传统的传感器相比具有一下优点:灵敏度高;是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。它将在航空航天、远程控制、化学、生物化学、医疗、安全保险、电力工业等特殊环境下测温有着广阔的应用前景。在本论文中将详细分析当前光纤温度传感器的主要种类和各自的原理,特点和应用范围。70 年代中期,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来。1977 年,美国海军研究所开始执行光纤传感器系统计划,这被认为是光纤传感器问世的日子。从这以后,光纤传感器在全世界的许多实验室里出现。从70 年代中期到 80 年代中期近十年的时间,光纤传感器己达近百种,它在国防军事部门、科研部门以及制造工业、能源工业、医学、化学和日常消费部门都得到实际应用。从目前的情况看,己有一些形成产品投入市场,但大量的是处在实验室研究阶段。光纤传感器与传统的传感器相比具有一下优点:灵敏度高; 是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。目前,世界各国都对光纤传感器展开了广泛,深入的研究,几个研究工作开展早的国家情况如下:美国对光纤传感器研究共有六个方面:这些项目分别是: 光纤传感系统;现代数字光 纤控制系统;光纤陀螺;核辐射监控;飞机发动机监控; 民用研究计划。以上计划仅在 1983 年就投资 12-14 亿美元。美国从事光纤传感器研究的有美国海军研究所、美国宇航局、西屋电器公司、斯坦福大学等 28 个主要单位。美国光纤

光纤光栅温度传感器 报告

光纤光栅温度传感器报告 ( 波长调制型光纤温度传感器 《 《光纤传感测试技术》 课 课程作业报告 提交时间: 2011年10月 27 日 1 研究背景 (执笔人: ) 被测场或参量与敏感光纤相互作用,引起光纤中传输光的波长改变,进而通过测量光波长的变化来确定北侧参量的传感方法即为波长调制型光纤传感器。 光纤光栅传感器是一种典型的波长调制型光纤传感器。基于光纤光栅的传感过程是通过 ,B外界参量对布拉格中心波长的调制来获取传感信息,其数学表达式为: ,,,2nBeff neff,式中:为纤芯的有效折射率;是光栅周期。 这是一种波长调制型光纤温度传感器,它具有一下明显优势: (1)抗干扰能力强。由于光纤传感器是利用光波传输信息,而光纤又是电绝缘、耐腐蚀的传输介质,因而不怕强电磁干扰,也不影响外界的电磁场,并且安全可靠。这使它在各种大型机电、石油化工、冶金高压、强电磁干扰、易燃、易爆、强腐蚀环境中能方便而有效地传感,具有很高的可靠性和稳定性。

(2)传感探头结构简单,体积小,重量轻,外形可变,适合埋入大型结构中测量结构内部的应力、应变及结构损伤,稳定性、重复性好,适用于许多应用场合,尤其是智能材料和结构。 (3)测量结果具有良好的重复性。 (4)便于构成各种形式的光纤传感网络。 (5)可用于外界参量的绝对测量。 (6)光栅的写入技术已经较为成熟,便于形成规模生产。 (7)轻巧柔软,可以在一根光纤中写入多个光栅,构成传感阵列,与波分复用和时分复用系统相结合,实现分布式传感。 由于以上优点,光纤光栅传感器在大型土木工程结构、航空航天等领域的健康检测以及能源化工等领域得到了广泛的应用。但是它也存在一些不足之处。因为光纤光栅传感的关键技术在于对波长漂移的检测,而目前对波长漂移的检测需要用较复杂的技术和较昂贵的仪器或光纤器件,需大功率的宽带光源或可调谐光源,其检测的分辨率和动态范围也受到一定的限制等。 光纤布拉格光栅无疑是一种优秀的光纤传感器,尤其在测量应力和应变的场合,具有其它一些传感器无法比拟的优点,被认为是智能结构中最有希望集成在材料内部,作为检测材 料的结构和载荷,探测其损伤的传感器。 2.传感设计与可行性论证(执笔人:) 根据耦合模理论,光纤布拉格光栅的中心反射波长可以表示为: ,,,2nBeff n,effB,式中为导模的有效折射率,为光栅的周期。由(1)式可以看出,中心反射波长

布里渊散射分布式光纤传感器综述

基于布里渊散射的分布式光纤传感器综述 一引言 光纤传感器具有无辐射干扰、抗电磁干扰性好、化学稳定性好等优点,受到越来越多的重视。其中分布式光纤传感器(DOFS)不仅具有一般光纤传感器的优点,而且可以在沿光纤的路径上同时得到被测量场在时间和空间上的连续分布信息。能做到对大型基础工程设施的每一个部位都象人的神经系统一样进行远程监控。因此具有广范的应用前景,在民用和国防诸如城市煤气管道、城市输电/通信缆线、海底输油气管道、海底电缆、水库水坝、桥梁、隧道、高速公路、大型设施等建筑物的应力温度检测方面有独特的优势,因此受到越来越多的重视。 由于分布式光纤传感器具有其它传感技术无法比拟的优点,因此成为目前传感技术研究领域的热点之一。目前对它的研究主要集中在以下三个方面:(1) 基于瑞利散射的分布式光纤传感技术; (2) 基于拉曼散射的分布式光纤传感技术; (3) 基于布里渊散射的分布式光纤传感技术。 瑞利散射是入射光与介质中的微观粒子发生弹性碰撞所引起的,散射光的频率与入射光的频率相同.在利用后向瑞利散射的光纤传感技术中,一般采用光时域反射(OTDR)结构来实现被测量的空间定位,基于瑞利散射的研究已经趋于成熟, 并逐步走向实用化。基于后向瑞利散射的传感技术是现代分布式光纤传感技术的基础,它在80年代初期得到了广泛的发展.然而由于该技术难以克服测量精度低、传感距离短的缺陷,目前在这方面的研究已鲜有报道.拉曼散射DOFS利用的是光纤中的自发拉曼散射光,信号微弱,较自发布里渊散射信号约低一个数量级,因此传感性能较低且难以实现几十公里以上的长距离传感;另外拉曼散射只对温度敏感,难以用于地质、建筑结构等的健康检测。而光纤的布里渊散射对温度和应变都敏感,通过检测来自传感光纤的布里渊散射光的频移和强度,布里渊散射DOFS得到沿光纤分布的温度或应变信息;并且工作于1.55μm波长附近的布里渊散射DOFS,光信号受到的衰减和色散较小,从而使得布里渊散射DOFS适合于长距离(大于几十千米)分布式传感。 虽然基于布里渊散射的分布传感技术的研究起步较晚, 但由于它在温度、应变测量上达到的测量精度、测量范围以及空间分辨率均高于其他传感技术, 因此这种技术目前得到广泛关注与研究。 布里渊散射DOFS主要有布里渊光时域反射计(BOTDR)、布里渊光时域分析(BOTDA)、布里渊光频域分析(BOFDA)三种,由于具有不同的光信号处理结构和布里渊散射作用机制,因此他们具有不同的性能特点和适用场合。另外日本的保利和夫教授提出的基于基于布里渊相关域分析(BOCDA、BOCDR)的光纤传感技术也有自己独到的地方。 基于自发布里渊散射的BOTDR,拥有单端光信号处理的优点,但由于自发布里渊散射光较微弱,传感器的分辨率和响应时间受到很大的制约。 基于受激布里渊散射的BOTDA,具有检测信号较强的优点,相对于BOTDR,传感器的分辨率和响应时间可得到有效的改善,但BOTDA一般需要对传感光纤的两端进行光信号处理,使用场合受到一定的限制。 基于布里渊光频域分析的BOFDA,和BOTDR、BOTDA相比,BOFDA同

光纤测温系统说明

光纤测温系统原理光纤测温系统构成 图4 光纤测温系统构成 光纤测温系统设计说明:采用点式测温,由于解调体积较小,可每台**每组件近安装一个温度解调仪,测温主机安装在控制室,多路感温光纤分别对监控区域进行温度监测,通过RJ45上传实时温度数据,报警时通过继电器输出报警信息给上位机,实现报警联动。

系统特点 ?不降低电气设备的安全等级:测温式电气火灾监控探测器体积小,直径,没有任何金属材质、电子元器件,绝缘性好,20cm耐10万伏电压。 ?最准确的预报技术:不受电磁场干扰的监测方式,≤10S的响应时间充分将火灾隐患消灭在萌芽阶段。 ?全年、全天侯安全守护:至少25年,每年365天,全天候24小时实时监测和分析。 ?高性价比:初期造价经济合理,后期运行免维护。 ?减少了监测盲区、提高了设备安全性:定位精度1mm。 ?节省成本:直接安装于温升部位,实时记录、显示监测点数据,实现无人值守监测站目标。 ?建立了维修依据:全面掌握设备运行情况,可以预测、预知设备老化,从而根据设备运营状况提出检修时间、检修计划。 ?智能判断性:能够对被测对象的正常温度、异常温度、火灾进行快速的判断和分析。 ?参数设置的方便性:可设置多级的预报警、报警阀值;报警方式有声、光、不同颜色的图形界面、继电器输出等形式。可在任何时间准确显示任何一点监测的温度,在事故发生前早期预警。 ?网络性:该系统具有开放式、网络化、单元化及组态方便等优点,以实现信息化的管理。?兼容性:系统可以通过RS232/RS485、RJ45、内置继电器等输出形式与消防报警系统,提供信号进行声、光报警,信号输出准确、完整。 ?安全性:具有多级权限设置功能,授权管理,确保系统的安全。 ?数据管理性:能够对不同类型的数据进行统计、保存、查询、打印、复制。数据类型有:

光纤传感器的综述

现代传感器论文 题目:光纤传感器综述 姓名:张艳婷 学院:物理与机电工程学院 系:机电系 专业:精密仪器与机械 年级:2013级 学号:19920131152905 指导教师:吴德会老师 2014 年2月18日

光纤传感器综述 [摘要] 光纤传感器是一种有广泛应用前景的新型传感器。本文对光纤传感器的原理、特点、分类和发展历程进行了详细综述,介绍了光纤温度传感器、光纤陀螺仪这两种典型光纤传感器的应用,指出了这类光纤传感器在应用过程中存在的问题,并提出光纤传感器今后的发展趋势, 为光纤传感器的深入研究提供了有益参考。 [关键词]:光纤传感器原理特点发展历程发展趋势 一、引言 传感器在当代科技领域及实际应用中占有十分重要的地位,各种类型的传感器早已广泛应用于各个学科领域。近年来,传感器朝着灵敏、精巧、适应性强、智能化和网络化方向发展。光纤传感技术是20世纪70年代末新兴的一项技术[1],在全世界成了研究热门,已与光纤通信并驾齐驱。光纤传感器作为传感器家族的一名新成员,由于其优越的性能而备受青睐,其具有体积小、质量轻、抗电磁干扰、防腐蚀、灵敏度高、测量带宽、检测电子设备与传感器可以间隔很远等优点,优良的性能使得光纤传感器具有广泛的应用前景。本文从光纤传感器的基本原理及特点、光纤传感器的发展历程、光纤传感器的分类及应用原理、光纤传感器的应用及存在问题以及光纤传感器的发展趋势五大方面对光纤传感器进行介绍。 二、光纤传感器的基本原理及特点 光纤( Optical Fiber) 是光导纤维的简称,光纤的主要成份为二氧化硅,由折射较高的纤芯、折射率较低的包层及保护层组成。纤芯为直径大约0.1 mm 左右的细玻璃丝,把光封闭在其中并沿轴向进行传播的导波结构。光纤传感器的发现起源于探测光纤外部扰动的实践,在实践中,人们发现当光纤受到外界环境的变化时,会引起光纤内部传输光波参数的变化,而这些变化与外界因素成一定规律,由此发展出光纤传感技术。

光纤传感器的应用及发展

文章编号:10044736(2004)02006304 光纤传感器的应用及发展 杨春曦,胡中功3,戴克中 (武汉化工学院电气信息工程学院,湖北武汉430073) 摘 要:简要介绍了光纤传感器的特点,综述了光纤传感器的发展以及近期国际上光纤传感器的研究和应用情况,最后描述了其前景和主要研究方向. 关键词:光纤传感器;应用;光纤布拉格光栅;温度测量中图分类号:TQ 174.75+9 文献标识码:A 收稿日期:20031013 作者简介:杨春曦(1976),男,贵州铜仁人,硕士研究生.3通讯联系人. 0 引 言 光纤传感器的历史可追溯到上世纪70年代, 那时,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来.1977年,美国海军研究所(N RL )开始执行由查尔斯?M ?戴维斯(Charles M .D avis )博士主持的Fo ss (光纤传感器系统)计划[1],这被认为是光纤传感器问世的日子.从这以后,光纤传感器在世界的许多实验室里出现.由于其具有常规传感器所无法比拟的优点和广阔的发展前景,很多国家不遗余力地加大对光纤传感器的研究力度,也涌现出许多成果[2].但它仍存在诸如价格昂贵、技术不够成熟等瓶颈,这使得它在工程上的应用较少.最近涌现的很多成果无论是在价位上还是技术上都有了新的突破.随着新方法、新工艺不断被引入,大量低价位高性能光纤传感器面世,而光纤与其他学科理论相结合,不仅使光纤传感器在信号检测精度、传输减损、信号处理方面有了很大的提高,而且其应用领域也越加广阔.本文简要地介绍了光纤传感器的特点,并对光纤传感器近期的发展动态进行简要地概述. 1 光纤传感器的特点 光纤传感器由光源、传输光纤、传感元件或调制区、光检测等部分组成.众所周知,描述光波特征的参量很多(如光强、波长、振幅、相位、偏振态和模式分布等),这些参量在光纤传输中都可能会受外界影响而发生改变.如当温度、压力、加速度、电压、电流、位移、振动、转动、弯曲、应变以及化学量和生物化学量等对光路产生影响时,均会使这 些参量发生相应变化.光纤传感器就是根据这些参量随外界因素的变化关系来检测各相应物理量的大小.一般光纤传感器按其作用不同可分为两种类型:传光型和敏感型.而按其检测方法不同主要又可分为两种类型:强度型和相位型.图1是光纤传感器的结构框图 . 图1 光纤传感器的结构框图 F ig .1 Structu ral diagram of fiber op tic sen so r 与传统的传感器相比,光纤传感器具有抗电磁干扰、灵敏度高、耐腐蚀、本质安全及测量对象广泛等特点,而且在一定条件下可任意弯曲,可根据被测对象的情况选择不同的检测方法,再加上它对被测介质影响小,非常有利于在医药卫生等具有复杂环境的领域中应用. 2 光纤传感器在研究和工程中的应 用近况 2.1 光纤传感器的工程应用 光纤的优点和具体学科理论相结合,产生一大批应用范围更广、性能更好、价格相对低廉的各具特色的光纤传感器,在传统领域和新兴领域都得到很好的应用. 2.1.1 光纤传感器在化学和生物学中的应用 当前,在国外研究得比较多的化学和生物光纤传感器主要有光吸收型传感器,荧光型传感器和衰减波形光纤传感器三种. a .光吸收型传感器的工作原理是根据测定被测物对特定波长的光产生吸收以及吸收的强度来确 第26卷第2期 武 汉 化 工 学 院 学 报 V o l .26 N o.22004年6月 J. W uhan In st . Chem. T ech . Jun. 2004

光纤温度传感器简介

光纤温度传感器 摘要:本文分析了光纤温度传感器在温度探测中的优势,分别介绍了分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器的工作原理,最后综述了光纤温度感器在现代工业及生活的应用。 关键字:光纤传感温度应用 1引言 在科研和生产中,有很多温度测量问题,传统的温度传感器有热电偶,热电阻温度传感器,热敏电阻温度传感器,半导体温度传感器等等。光纤温度传感器是20世纪70年代发展起来的一种新型传感器。与传统的温度传感器相比,它具有灵敏度高,体积小,质量轻,易弯曲,不产生电磁干扰,不受电磁干扰,抗腐蚀性好等等优点,特别适用于易燃,易爆,空间狭窄和具有腐蚀性强的气体,液体以及射线污染等苛刻环境下的温度检测。 2光纤温度传感器分类 光纤温度传感器按照调制机理可分为相位调制,振幅调制,偏振态调制;按工作原理分,光纤温度传感器可分为功能性和传输型两种。功能型温度传感器中光纤作为传感器的同时也是光信号的载体,而传输型温度传感器中光纤则只传输光信号。传光型与传感型相比,虽然灵敏度稍差,但可靠性高,实用的传感器大多是这种类型。 目前主要的光纤温度传感器包括分布式光纤温度传感器、光纤光栅温度传感器、光纤荧光温度传感器、干涉型光纤温度传感器等。 2.1光纤光栅温度传感器 光纤光栅温度传感器是利用光纤材料的光敏性在光纤纤芯形成的空间相位光栅来进行测温的。光纤光栅以波长为编码,具有传统传感器不可比拟的优势,近年来光纤光栅成为发展最为迅速,最具代表性的光纤无源器件之一,已广泛用于建筑、航天、石油化工、电力行业等。 光纤光栅温度传感器主要有Bragg光纤光栅温度传感器和长周期光纤光栅传感器。Bragg光纤光栅是指单模掺锗光纤经紫外光照射成栅技术而形成的全新光纤型Bragg光栅,成栅后的光纤纤芯折射率呈现周期性分布条纹并产生Bragg 光栅效应,其基本光学特性就是以共振波长为中心的窄带光学滤波器,满足如下光学方程: =2nA 式中:为Bragg波长,A为光栅周期,n为光纤模式的有效折射率。 长周期光纤光栅是一种特殊的光纤光栅,其传光原理是将前向传输的基模耦合到前向传输的包层模中。由于其宽带滤波、极低的背景发射等特点引起人们的重视,是一种新型的宽带带阻滤波器。 光纤温度监测系统主要由光纤光栅传感器、传输信号用的光纤和光纤光栅解调器组成。光纤光栅解调器用于对光纤光栅传感器的信号检测和数据处理,以获得测量结果,传输光纤用于传输光信号,光纤光栅传感器则主要用于反射随温度变化中心波长的窄带光,如图1所示:

光纤传感器的文献综述

ZIGBEE路由分析 摘要 ZIGBEE作为新一代无线通信技术的命名,是一种高可靠的无线数传网络技术,是基于IEEE802.15.4标准的一种具有强大组网能力的新型无线个域网,所以其稳定可靠的路由就成了研发工作的重点。本文重点综述了ZIGBEE无线传感网的网络结构,协议网络层的路由算法,分析了Z-AODV路由和Cluster-Tree路由的协议并在此基础上提出了ZIGBEE的基于Mesh路由的路由选择机制,该机制在网络性能和低功耗方面有明显的优势,适合未来通信网络发展的方向。 关键词:ZIGBEE协议;路由算法;Z-AODV路由

ZIGBEE路由分析 1前言 无线传感网络采用了微小型的传感节点来获取信息,它们的节点之间具有自动组网和协调工作的能力,网络内部采用了无线的方式来采集和处理信息。 基于ZIGBEE网络技术是一种短距离,低成本的无线网络技术,在监控领域,以及传感和自动工业控制得到普片的应用,因此是国家安全还是国民经济等方面均有着广泛的应用前景。最终将成为数字世界和现实世界的接口并深入到人们的生活中,它有着广阔前景,将像互联网一样改变着人们的生活。 因而对ZIGBEE无线传感网络协议的层路由分析计算,以及链路控制在实际应用中显得非常重要,且意义重大。经过多年的研发讨论,ZIGBEE联盟于2004年12月,在IEEE 802.15.4 定义的物理层(PHY)和媒体接入层(MAC)的基础上定义了网络层和应用层,正式发布了基于IEEE 802.15.4的ZIGBEE标准协议,它将推动物联网的飞速发展,加速无线数传的更新进步[1]。 2 ZIGBEE网络层的结构 在ZIGBEE网络中将终端的设备分为两类:一类是全功能设备(FFD),它的空间很大,用来处理和存放路由信息,它就是网络中的协调者,可以同网络中的任何设备进行通信,切实用于任何一种网络拓扑结构,起到网关的作用;另一类设备就是就是简化功能设备(RFD),这种设备功耗很低、内存空间较小,它在网络中的功能就是与(FFD)通信,应用范围受一定的限制,只能用于星型拓扑结构中,在网络中作为基本的传感节点来采集信息并将其信息传给相应的网关节点,他们的通信关系如下图。 图1 两种设备的组网结构

荧光式光纤温度传感器

北京普罗迪科技有限公司 描述 不同于传统的温度传感器,荧光式光纤温度传感器是利用纯光学原理进行参数量测的温度传感器,抗电磁干扰、高压绝缘、尺寸微小、稳定可靠、灵敏度高、寿命长、本质安全,具有传统传感技术所无法比拟的优势(见附表1)。 根据上述特点,荧光式光纤温度传感器的细分市场定位于:高压电气设备监控(如发电机、变压器、开关柜、互感器等)、工业微波(如食品加工、硫化工艺、微波消解/萃取仪、消毒/干燥设备等)、磁医疗设备(如核磁设备、肿瘤热疗仪等)、石油化工/煤炭等防爆工业环境、航空/舰船/高端科研等具有高压、电磁干扰环境的温度监控市场。 荧光式光纤温度传感器性能稳定,可靠性高,在工业应用中受到普遍青睐。它的出现突破了高压、电磁场环境对电子元器件的束缚,填补了工业微波、大型电力设备等高压、电磁环境中安全温度监控和检测的技术空白,目前,光纤传感技术已成为智能电网建设的关键技术之一。其发展已经进入摆脱进口、实现技术和服务本地化,通过规模化生产大幅降低成本、进入工业化应用推广的关键阶段。 北京普罗迪科技有限公司荧光式温度传感器技术参数一览表: 测温范围:-40℃~+200℃ 精度:±1.0℃ 分辨率:0.1℃ 光纤长度:1、3、6、9M可选 采样频率:1s 光纤耐温:-50℃~+250℃ 数据传输方式:GPRS/CDMA 电源电流:<500mA(24V DC) 电源电压:24V±20%VDC 额定功率:36W 安全标准:EN61010-1:1993/A2:1995 震动:IEC68-2-6:3G;11-200Hz,任意轴向 冲击:IEC68-2-27:50G;11ms,任意轴向 电磁兼容标准:61326-1 电磁干扰:89/336/EWG 环境等级:IP65(NEMA-4) 系统工作温度:-20℃~+65℃ 系统储存温度:-40℃~+85℃ 相对湿度:10~95%,无冷凝 尺寸:TBD 重量:TBD

相关主题
文本预览
相关文档 最新文档