分式函数求最值班 班
- 格式:docx
- 大小:104.97 KB
- 文档页数:5
分式函数最值及函数值范围问题
在数学中,分式函数是由分子和分母分别是多项式的函数。
分式函数的最值和函数值范围问题是研究该类型函数的关键内容。
本文将介绍分式函数的最值以及如何确定函数值的范围。
1. 分式函数的最值问题
1.1 分式函数的最大值
要确定分式函数的最大值,我们可以通过以下步骤进行分析:
1. 找出函数的定义域,即使得分母不等于零的变量取值范围。
2. 找出函数的极值点,即导数为零或不存在的点,这些点可能是函数的最大值点。
3. 将定义域中的边界点和极值点一起代入函数,比较函数值,找出最大值。
1.2 分式函数的最小值
要确定分式函数的最小值,我们可以通过以下步骤进行分析:
1. 找出函数的定义域,即使得分母不等于零的变量取值范围。
2. 找出函数的极值点,即导数为零或不存在的点,这些点可能是函数的最小值点。
3. 将定义域中的边界点和极值点一起代入函数,比较函数值,找出最小值。
2. 分式函数的函数值范围问题
要确定分式函数的函数值范围,我们可以通过以下步骤进行分析:
1. 找出函数的定义域,即使得分母不等于零的变量取值范围。
2. 分析分子和分母的符号和关系,找出函数的正负性。
3. 综合考虑定义域边界点、极值点以及正负性,确定函数值的范围。
总结
分式函数的最值和函数值范围问题是研究分式函数的关键内容。
通过分析函数的定义域、极值点、边界点以及分子分母的符号和关系,我们可以确定分式函数的最值和函数值范围。
这些分析步骤可
以帮助我们更好地理解和运用分式函数。
函数最大值的求法
---------------------------------------------------------------------- 函数最值分为函数最小值与函数最大值。
简单来说,最小值即定义域中函数值的最小值,最大值即定义域中函数值的最大值,下面是求最大值和最小值的方法。
一、求函数的最大值和最小值:
f(x)为关于x的函数,确定定义域后,应该可以求f(x)的值域,值域区间内,就是函数的最大值和最小值。
一般而言,可以把函数化简,化简成为:
f(x)=k (ax+b)2+c的形式,在x的定义域内取值。
当k>0时,k(ax+b)2≥0,f(x)有极小值c。
当k<0时,k(ax+b)2≤0,f(x)有最大值c。
二、常见的求函数最值方法有:
1、配方法:形如的函数,根据二次函数的极值点或边界点的取值确定函数的最值。
2、判别式法:形如的分式函数,将其化成系数含有y的关于x的二次方程.由于, 0,求出y的最值,此种方法易产生增根,因而要对取得最值时对应的x值是否有解检验。
3、利用函数的单调性﹒首先明确函数的定义域和单调性,再求最值。
4、利用均值不等式,形如的函数,及,注意正,定,等的应用条件,即: a,b均为正数,是定值,a=b的等号是否成立。
5、换元法:形如的函数,令,反解出x,代入上式,得出关于t的函数,注意t的定义域范围,再求关于t的函数的最值。
探索探索与与研研究究分式三角函数比较常见,函数式中往往含有一个、两个,甚至多个不同名称的三角函数式,因而分式三角函数最值问题通常较为复杂,无法直接利用三角函数的单调性和有界性求得最值.此时需运用一些技巧,如运用化一法、换元、借助几何图形的性质等求解.下面结合实例进行探讨.例题:求函数f ()x =4sin xcos x +3的最小值.解法一:利用化一法若分式函数式中含有或可化为有关正弦、余弦函数的式子,则可采用化一法求函数的最值.首先令y =f ()x ,并将其化为整式;然后根据辅助角公式将函数式化为只含有一种三角函数名称的式子,如y =sin ()ωx +φ、y =cos ()ωx +φ;再根据正余弦函数的有界性和单调性来确定三角函数的最值.解:令y =4sin xcos x +3,则4sin x -y cos x =3y ,由辅助角公式得16+y 2sin ()x +φ=3y ,化简得sin ()x +φ=3y,由三角函数的有界性得()x +φ≤1,即1≤3y 16+y2≤1,得y ≥-2,所以函数f ()x 的最小值为-2.运用化一法求分式三角函数的最值,需灵活运用辅助角公式,以及正余弦函数的有界性和单调性.这就要求我们熟记辅助角公式a sin x +b cos x =a 2+b 2sin ()x +φ=a 2+b 2cos ()x +θ,熟练掌握正余弦函数的有界性和单调性.一般地,若x ∈R ,则|sin x |≤1,|cos x |≤1.解法二:利用换元法换元法是简化复杂函数式的重要方法.对于分式三角函数式,我们可以将分子、分母或频繁出现的式子用一个字母t 替换,将分式三角函数式化为简单的一元函数,根据一元函数的图象、性质进行求解,即可得到分式三角函数的最值.解:令t =cos x +3,则t ∈[]2,4,1t ∈éëùû14,12,则sin x =±1-cos 2x =±-t 2+6t -8,可得f ()x =4sin x cos x +3===,由二次函数的性质知,当1t ∈éëùû14,12时,-8æèöø1t -382+18∈éëùû0,18,则8[]0,2,所以f ()x ≥-2.令t =cos x +3,即可将分式函数式化为关于t 的一元函数式,根据一元二次函数和y =x 的性质,快速求得分式函数的最值.解法三:借助几何图形的性质形如y =a sin x +bc cos x +d的分式三角函数式与直线的斜率公式的结构类似,可将三角函数式看作单位圆上的点()cos x ,sin x 与点æèöøb a ,dc 连线的斜率.结合圆的性质以及两点的连线与单位圆的位置关系,寻找直线的斜率取得最值时的情形,即可解题.解:由题意得f ()x =4sin xcos x +3=4∙sin x -0cos x -()-3,可将该式看作圆上的点()cos x ,sin x 与点()-3,0连线的斜率k 的4倍,由图可知,当过定点()-3,0的直线y =k ()x +3与单位圆相切时直线的斜率k最小.由点到直线的距离公式可得||3k 1+3k2=1,解得k =,所以函数f ()x 的最小值为4׿èçø=-2.将函数式f ()x =4∙sin x -0cos x -()-3看作圆上的点()cos x ,sin x 与点()-3,0连线的斜率k 的4倍,即可将问题转化定点()-3,0的直线y =k ()x +3与单位圆的位置关系问题,利用圆的性质和点到直线的距离公式进行求解即可.(作者单位:西华师范大学)51Copyright ©博看网. All Rights Reserved.。
函数详解之分式函数30.函数xa x x f -=2)(的定义域为(0,1](a 为实数).⑴当1-=a 时,求函数)(x f y =的值域;⑵若函数)(x f y =在定义域上是减函数,求a 的取值范围;⑶求函数)(x f y =在x ∈(0,1]上的最大值及最小值,并求出函数取最值时x 的值.解:(1)显然函数)(x f y =的值域为),22[∞+;(2)若函数)(x f y =在定义域上是减函数,则任取∈21,x x ]1.0(且21x x <都有)()(21x f x f > 成立, 即0)2)((2121>+-xx ax x 只要212x x a -<即可,由∈21,x x ]1.0(,故)0,2(221-∈-x x ,所以2-≤a , 故a 的取值范围是]2,(--∞; (3)当0≥a 时,函数)(x f y =在]1.0(上单调增,无最小值, 当1=x 时取得最大值a -2;由(2)得当2-≤a 时,函数)(x f y =在]1.0(上单调减,无最大值, 当x =1时取得最小值2-a ;当02<<-a 时,函数)(x f y =在].0(22a-上单调减,在]1,[22a -上单调增,无最大值,当22a x-=时取得最小值a22-.31.已知函数21()(0,0,)ax f x a b c R bx c+=>>∈+是奇函数,当0x >时,有()f x 最小值2,其中b N ∈,且5(1)2f =.(Ⅰ)试求函数()f x 的解析式;(Ⅱ)问函数()f x 的图像上是否存在关于点(1,0)对称的两点?若存在,求出点的坐标;若不存在,请说明理由. 解 (Ⅰ)由2211()()ax ax f x f x bx cbx c++-=-⇒=--++,即bx c bx c -+=--,0c ∴= ……………………………………………2分0,0,0a b c >>= ,21()ax f x bx+∴=b a∴= ……………………4分又515(1)22a f b+<∴<,即221525202b b b b+<⇒-+<12()1,2b b N b⇒<<∈⇒=∴11abc=⎧⎪=⎨⎪=⎩……………………………6分(Ⅱ)设00(,)M x y关于点(1,0)的对称点为N,则00(2,)N x y--,………………8分00020000121122y xxx xy xx⎧=+⎪⎪∴⇒--⎨⎪-=-+⎪-⎩⇒01222xy⎧=+⎪⎨=⎪⎩或01222xy⎧=-⎪⎨=-⎪⎩…………11分∴存在两点(12,22)M+与(12,22)N--关于点(1,0)对称.………12分32.已知函数2211()af xa a x+=-,常数0>a.(1)设0m n⋅>,证明:函数()f x在[]m n,上单调递增;(2)设0m n<<且()f x的定义域和值域都是[]m n,,求常数a的取值范围.解:(1)任取1x,],[2nmx∈,且12x x<,12122121()()x xf x f xa x x--=⋅,因为12x x<,1x,],[2nmx∈,所以12x x>,即12()()f x f x<,故)(xf在],[nm上单调递增.或求导方法.(2)因为)(xf在],[nm上单调递增,)(xf的定义域、值域都是⇔],[nm(),()f m m f n n==,即nm,是方程2211aa a xx+=-的两个不等的正根1)2(222=++-⇔xaaxa有两个不等的正根.所以04)2(222>-+=∆aaa,222a aa+>⇒12a>33.已知定义域为R的函数abxfxx++-=+122)(是奇函数.(1)求a,b的值;(2)若对任意的Rt∈,不等式0)2()2(22<-+-ktfttf恒成立,求k的取值范围.解(1)因为)(xf是R上的奇函数,所以1,021,0)0(==++-=babf解得即从而有.212)(1axfxx++-=+又由aaff++--=++---=1121412)1()1(知,解得2=a(2)解法一:由(1)知,121212212)(1++-=++-=+xx xx f由上式易知)(x f 在R 上为减函数,又因)(x f 是奇函数,从而不等式0)2()2(22<-+-k t f t t f 等价于).2()2()2(222k t f k t f t t f +-=--<-因)(x f 是R 上的减函数,由上式推得.2222k t t t +->- 即对一切,0232>--∈k t t R t 有从而31,0124-<<+=∆k k 解得解法二:由(1)知,2212)(1++-=+x xx f又由题设条件得0221222121221222222<++-+++-+--+--k t kt t t tt即0)12)(22()12)(22(2222212212<+-+++-+-+--+-kt t t tt k t整理得12232>--kt t,因底数2>1,故0232>--k t t上式对一切R t ∈均成立,从而判别式.31,0124-<<+=∆k k 解得34.已知函数()a f x x x =-.(1)若13log [8()]y f x =-在[1,)+∞上是单调减函数,求实数a 的取值范围;(2)设1,a x y k =+=,若不等式22()()()2k f x f y k≥-对一切,(0,)x y k ∈恒成立,求实数k的取值范围.解: (1)令8a t x x=-+,则要使13log [8()]y f x =-在[1,)+∞上是单调减函数,则/21080a t xa t x x ⎧=-≥⎪⎪⎨⎪=-+>⎪⎩在[1,)+∞上恒成立,则21180a x a ⎧≥-≥-⎨-+>⎩所以, 19a -≤< (7)分 (2) 2222111()()()()()x y x yf x f y x y x y xy-++=--=222221212(0)4k xy x yk kxy xy xyxy-++-==++<≤. (10)分 令u xy=,则221()()2,(0,]4k kf x f y u u u-=++∈当2214kk -≥即0252k <≤-时,21()()2k f x f y u u -=++在2(0,]4ku ∈上为减函数,所以 2222min22142[()()]22()4424kk kk f x f y kkk-=++=+-=-即当0252k <≤-时,22()()()2k f x f y k≥-……………………………12分 当2214kk -<,222min 242[()()]2122()42kk f x f y k kk=-+<+-=-与题意不合.所以,所求的k 的取值范围为 : 0252k <≤-. ………………………14分35.(本小题满分14分)设关于x 的方程2x 2-ax -2=0的两根为α、β(α<β),函数14)(2+-=x a x x f .(Ⅰ)求f (α)·f (β)的值;(Ⅱ)证明f (x )是[α,β]上的增函数;(Ⅲ)当a 为何值时,f (x )在区间[α,β]上的最大值与最小值之差最小? 解:(Ⅰ)由题意知α+β=2a ,α·β=-1,∴α2+β2=242+a,∴f (α)·f (β)=1)(41614142222222+++++-=+-⋅+-ββαβααβββααa aa a a41241216222-=++++--=aa a .……………………………………………………… 4分(Ⅱ)证明:当α≤x ≤β时,22\22\\)1()1)(4()1()4()(++--+-=xx a x xa x x f222222)1()22(2)1(2)4()1(4+---=+⋅--+=x ax x x xa x x ………… 6分∵α、β是方程2x 2-ax -2=0的两根, ∴当α≤x ≤β时,恒有2x 2-ax -2≤0, ∴)(\x f ≥0,又)(x f 不是常函数,∴)(x f 是[α,β]上的增函数.……………………………………………… 9分 (Ⅲ)f (x )在区间[α,β]上的最大值f (β)>0,最小值f (α)<0,又∵| f (α)·f (β) |=4, ……………………………………………………… 10分 ∴f (β)-f (α)=| f (β)|+| f (α)|≥4)()(2=⋅βαf f当且仅当| f (β)|=| f (α)|=2时取“=”号,此时f (β)=2,f (α)=-2 …… 11分∴⎪⎩⎪⎨⎧=--=+-)2(022)1(21422 ββββa a……………………………………… 13分由(1)、(2)得0)16(2=+a a ,∴a =0为所求.…………………………………………………… 14分 36.已知函数)0()(>+=t xt x x f 和点)0 , 1(P ,过点P 作曲线)(x f y =的两条切线PM 、PN ,切点分别为M 、N .(Ⅰ)设)(t g MN =,试求函数)(t g 的表达式;(Ⅱ)是否存在t ,使得M 、N 与)1 , 0(A 三点共线.若存在,求出t 的值;若不存在,请说明理由.(Ⅲ)在(Ⅰ)的条件下,若对任意的正整数n ,在区间]64 , 2[nn +内总存在1+m 个实数m a a a ,,,21 ,1+m a ,使得不等式)()()()(121+<+++m m a g a g a g a g 成立,求m 的最大值.解:(Ⅰ)设M 、N 两点的横坐标分别为1x 、2x ,21)(xt x f -=', ∴切线PM 的方程为:))(1()(12111x x x t x t x y --=+-,又 切线PM 过点)0,1(P , ∴有)1)(1()(012111x x t x t x --=+-,即02121=-+t tx x , ………………………………………………(1) …… 2分同理,由切线PN 也过点)0,1(P ,得02222=-+t tx x .…………(2) 由(1)、(2),可得21,x x 是方程022=-+t tx x 的两根,⎩⎨⎧-=⋅-=+∴. ,22121t x x t x x ………………( * ) ……………………… 4分22211221)()(x t x x t x x x MN --++-=])1(1[)(221221x x t x x -+-=])1(1][4)[(22121221x x t x x x x -+-+=,把( * )式代入,得t t MN 20202+=,因此,函数)(t g 的表达式为)0( 2020)(2>+=t t t t g . ……………………5分(Ⅱ)当点M 、N 与A 共线时,NA MA k k =,∴1111--+x x t x =1222--+x x t x ,即21121x x t x -+=22222x x t x -+,化简,得0])()[(211212=-+-x x x x t x x ,21x x ≠ ,1212)(x x x x t =+∴. ………………(3) …………… 7分把(*)式代入(3),解得21=t .∴存在t ,使得点M 、N 与A 三点共线,且 21=t . ……………………9分(Ⅲ)解法1:易知)(t g 在区间]64,2[nn +上为增函数,∴)64()()2(nn g a g g i +≤≤)1,,2,1(+=m i ,则)64()()()()2(21n n g m a g a g a g g m m +⋅≤+++≤⋅ .依题意,不等式)64()2(nn g g m +<⋅对一切的正整数n 恒成立, …………11分)64(20)n6420(n 22022022nn m +++<⋅+⋅,即)]64()n64[(n 612nn m +++<对一切的正整数n 恒成立,.1664≥+nn , 3136]1616[61)]64()n64[(n 6122=+≥+++∴nn ,3136<∴m .由于m 为正整数,6≤∴m . ……………………………13分 又当6=m 时,存在221====m a a a ,161=+m a ,对所有的n 满足条件. 因此,m 的最大值为6. ……………………………14分 解法2:依题意,当区间]64,2[nn +的长度最小时,得到的m 最大值,即是所求值.1664≥+nn ,∴长度最小的区间为]16,2[, …………………11分当]16,2[∈i a )1,,2,1(+=m i 时,与解法1相同分析,得)16()2(g g m <⋅,解得3136<m .37.已知函数xa x y +=有如下性质:如果常数a >0,那么该函数在(0,a ]上是减函数,在[a ,+∞)上是增函数.(1)如果函数y =x +x b2(x >0)的值域为[6,+∞),求b 的值; (2)研究函数y =2x +2xc(常数c >0)在定义域内的单调性,并说明理由;(3)对函数y =x +xa 和y =2x +2xa (常数a >0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数)(x F =nx x )1(2++nx x)1(2+(n 是正整数)在区间[21,2]上的最大值和最小值(可利用你的研究结论).(理)解:(1)函数2(0)by x x x=+>的最小值是2b2,则226b=,∴2log 9b =(2)设120x x <<,222221212122222112()(1)c c c y y x x x x xxx x-=+--=--⋅.当412c x x <<时,21y y >,函数22c y x x=+在[4c ,+∞)上是增函数;当4120x x c <<<时,21y y <,函数22c y x x=+在(0,4c ]上是减函数.又22c y x x=+是偶函数,于是,该函数在(-∞,-4c ]上是减函数, 在[-4c ,0)上是增函数;(3)可以把函数推广为(0)n na y x a x=+>,其中n 是正整数.当n 是奇数时,函数n na y x x=+在(0,n a 2]上是减函数,在[n a 2,+∞) 上是增函数,在(-∞,-na 2]上是增函数, 在[-n a 2,0)上是减函数;当n 是偶数时,函数n na y x x=+在(0,n a 2]上是减函数,在[n a 2,+∞) 上是增函数, 在(-∞,-na 2]上是减函数, 在[-n a 2,0)上是增函数;21()()nF x x x=++nx x)1(2+=)1()1()1()1(323232321220nnn n rn rn r n n n n nnn xx C xx C xxC xxC ++++++++----因此()F x 在 [21,1]上是减函数,在[1,2]上是增函数.所以,当12x =或2x =时,()F x 取得最大值9924nn⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭;当1x =时,()F x 取得最小值12n +.38已知函数()()2211xf x x R x x-=∈++.(Ⅰ)求函数()f x 的单调区间和极值; (Ⅱ)若()2220t t t e x e x e +++-≥对满足1x ≤的任意实数x恒成立,求实数t 的取值范围(这里e 是自然对数的底数);(Ⅲ)求证:对任意正数a 、b 、λ、μ,恒有2222a b a b a b f f λμλμλμλμλμλμ⎡⎤⎛⎫⎛⎫⎛⎫+++-⎢⎥ ⎪ ⎪ ⎪+++⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦≥22a b λμλμ+-+.【解】(Ⅰ)()()()()()()()()22222223232121111x x x x xx x f x x x x x ⎡⎤⎡⎤---+⋅----++-+-⎣⎦⎣⎦'==++++∴()f x 的增区间为()23,23---+,()f x 减区间为(),23-∞--和()23,-++∞.极大值为()23233f -+=,极小值为()23233f --=-.…………4′(Ⅱ)原不等式可化为()22211t x e x x-++≥由(Ⅰ)知,1x ≤时,)(x f 的最大值为332.∴()22211xx x-++的最大值为433,由恒成立的意义知道433t e ≥,从而433t ln≥…8′(Ⅲ)设()()()22101xg x f x x x x x x-=-=->++则()()()()()243222224124621111x x x x x x g x f x x x x x -++++++''=-=-=-++++.∴当0x >时,()0g x '<,故()g x 在()0,+∞上是减函数,又当a 、b 、λ、μ是正实数时,()()222220a b a b a bλμλμλμλμλμλμ-⎛⎫++-=- ⎪+++⎝⎭≤ ∴222a b a bλμλμλμλμ⎛⎫++ ⎪++⎝⎭≤. 由()g x 的单调性有:222222a b a b a b a b f f λμλμλμλμλμλμλμλμ⎡⎤⎛⎫⎛⎫⎛⎫++++--⎢⎥⎪ ⎪ ⎪++++⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦≥, 即222222a b a b a b a bf f λμλμλμλμλμλμλμλμ⎡⎤⎛⎫⎛⎫⎛⎫++++--⎢⎥ ⎪ ⎪ ⎪++++⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦≥.…………12′ 39.(本题12分) 已知函数()1bx c f x x +=+的图象过原点,且关于点(-1,1)成中心对称.(Ⅰ)求函数()f x 的解析式;(Ⅱ)若数列{}n a (*)n N ∈满足:()2110,1,()n n n a a a f a +>==,求数列{}n a 的通项n a ; (Ⅲ)若数列{}n a 的前n 项和为n S ,判断n S 与2的大小关系,并证明你的结论. 解 (Ⅰ) 因为函数()1bx c f x x +=+ 的图象过原点,所以c =0,即()1bx f x x =+.又函数()11bx bf x b x x ==-++的图象关于点(-1,1)成中心对称,所以1,()1xb f x x ==+。
1平均值不等式平均值不等式是一类重要的不等式,通常用来证明最大值和最小值及求解最大值和最小值等相关问题。
简单说,平均值不等式一般式如下:$$\begin{align*}\frac{x_1+x_2+x_3+.....+x_n}{n}\geqq\sqrt[n]{x_1x_2x_3....x_n}\end{align*}$$上式中$n$为等式右边的$x_i$($i=1,2,3,...,n$)的个数。
2分式二次函数求最值分式二次函数的定义为:$$f(x)=\frac{a_1x^2+a_2x+a_3}{b_1x^2+b_2x+b_3}$$其中$a_1,a_2,a_3,b_1,b_2,b_3$均为常数。
求函数$f(x)$的极值点,通常有两种方法:一种是求函数$f(x)$的导函数$f'(x)$并解出导函数等于0的解;另一种就是使用平均值不等式求函数$f(x)$的极值。
在此使用平均值不等式来证明分式二次函数求最值。
$$\begin{align*}\frac{a_1x^2+a_2x+a_3}{b_1x^2+b_2x+b_3}\geqq\sqrt[2]{(a_1x^2+a_2x+a_3)\ast(b_1x^2+b_2x+b_3)}\end{align*}$$根据平均值不等式,令两边取对数:$$\begin{align*}\ln(a_1x^2+a_2x+a_3)-\ln(b_1x^2+b_2x+b_3)\geqq0 \end{align*}$$再令$y=a_1x^2+a_2x+a_3$,将以上等式转化为:$$\begin{align*}f''(y)=(a_1-b_1)y+(a_2-b_2)\geqq0\end{align*}$$因此,等式右边单调递增,此时$y$取最大或最小时,则等式右边$x$可取得最大值或最小值,即:$$\begin{align*}\frac{a_1x^2+a_2x+a_3}{b_1x^2+b_2x+b_3}\end{align*}$$也可取得极大值或极小值,证毕。
圆锥曲线解题中几种分式型函数最值的求法在圆锥曲线解题中,我们常常会遇到各种分式型函数,并需要求出函数的最值。
本文将介绍几种常见的分式型函数最值求解方法,帮助读者更好地解决相关问题。
一、分式函数求极值的常见方法在解析几何中,我们常常遇到形如f(x) = P(x) / Q(x) 的分式函数,其中P(x)和Q(x)分别是x的多项式函数。
要求解该分式函数的最值,可以使用以下几种方法:1. 利用导数法求解导数法是最常用的方法之一。
通过求解函数的导数,再通过导数的性质来确定函数的最值点。
具体步骤如下:(1)求出函数f(x)的导数f'(x);(2)求解f'(x)=0的解,即为函数f(x)的驻点;(3)将驻点和函数的定义域的端点进行比较,找出函数的最值。
2. 利用等价变形法求解有时,我们可以通过等价变形将分式函数转化为新的形式,从而更容易求解最值。
常见的等价变形方法有:(1)分子分母同乘以相同的因式,从而将分式函数简化成更简单的形式;(2)将分式函数展开为多项式,然后通过求解多项式的最值来求解分式函数的最值;(3)将分式函数分解成若干个部分,然后通过分别求解每个部分的最值,再综合得出总的最值。
二、若干种分式型函数的最值求法1. 高斯型函数高斯型函数是一种形如f(x) = e^(-ax^2 + bx + c)的分式函数。
其中a, b, c为常数。
对于这种类型的函数,我们可以通过以下步骤来求解最值:(1)求出函数的导数f'(x);(2)求解f'(x) = 0的解,即为函数的驻点;(3)将驻点与函数定义域的端点进行比较,找出函数的最值。
2. 有理分式型函数有理分式型函数是指分子和分母都是多项式函数的函数。
对于这种类型的函数,我们可以使用以下方法来求解最值:(1)对函数进行等价变形,将分子分母简化为最简形式;(2)找出函数的定义域以及分母为零的点,剔除无定义的点;(3)求解导数f'(x)=0的解,即为函数的驻点;(4)将驻点与函数定义域的端点进行比较,找出函数的最值。
二次分式函数最值的求解—-根判别式法函数最值的求解方法有:反函数、单调性、导数等方法.针对二次分式函数的最值求解适用于判别式的方法.二次分式函数的形式为:ax2+bx+cpx2+qx+r(px2+qx+r=0).若要运用根判别式法,要求定义域D为R,然后分式函数整理成整式,利用根判别式,注意二次项系数的讨论.否则(定义域不为R),则要分离参数.如果函数中有根式,一般先换元(包括三角换元,所有换元的前提是不能改变变量的范围).在圆锥曲线中,根判别式法还有应用.假设直线和圆锥曲线有交点,意味两者联立消元得到后的二次函数有实数解.即, ≥0.还有在圆锥曲线中的“点差法”的应用1.根的判别式只适用于判断实系数一元二次方程根的情况.复数不适用.注意,不能忽视对方程ax2+bx+c=0中a的讨论.1.求函数y=2x+√1−2x的最值2.1.1求函数y=x+4√1−x的值域.1.2求函数y=x+√1−x2的值域.解析:已知某两数的平方和大于、小于或者等于某数,或已知定义域区间为对称的,可以用三角换元.比如下面这2题:1.3设x2+y2≤2,求函数f(x,y)=|x2−2xy−y2|的最大值.1.4已知x2+4(y−1)2=4,求x2+y2的最值.1.5(平方法化简为二次函数)已知函数y=√1−x+√x+3,求y的最大值和最小值.1.6求函数y=x+x(2−x)的最大值和最小值.1.7求函数y=√x+√1−x的最大值和最小值.2.实数x,y满足4x2−5xy+4y2=5.设s=x2+y2,求s的最大值和最小值3.3.(2010江苏14)将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记S=(梯形边长)2/(梯形面积),则S的最小值是?4.已知p3+q3=2,其中p,q是实数,求p+q的最大值.4解析和总结:凡是题目中出现或者隐含两个变量p+q,pq的形式,都可以转化为二次函数利用根判别式进行求解最值.1点差法是由弦的两端点坐标代入圆锥曲线的方程,得到两个等式相减,可得一个与弦的斜率及中点相关的式子,再结合有关条件来求解.当题目涉及弦的中点、斜率或借助曲线方程中变量的取值范围求其他变量的范围时,一般都可以用“点差法”来求解.这种方法对有关点的坐标设而不求,充分发挥整体思想25/43化简成关于x/y的二次函数,利用根判别式方法.10/3;10/134此题关键在于构建二次函数,设s=p+q,立方和展开表示成p+q的二次函数,得到pq=f(s),则利用韦达定理构建关于s的二次函数,p,q为两个根,再利用根判别式定理.5.求函数y =x 2−x +12x 2−2x +3的值域.类似的题型:求函数y =x 2−x x 2−x +1的值域.5.1求函数y =ax 2+x +1x +1(x >−1,a >0)的最小值.解析:分子分母分离系数,利用均值不等式.注意条件的验证.6.当实数t 为何值时,一元二次方程x 2+3ix +t 2−2=0,(i 为虚数单位)有实数根?5解析:因为根判别式不适用于复数方程.进行参变分类,转化为x 2+3ix =2−t 2,方程右边为实数,则左边的复数项为0,得到2−t 2=0.7.已知方程sin 2x +2cosx −2m −1=0有实数根,求m 的取值范围6.8∗.已知直线y =(a +1)x −1与曲线y 2=ax 恰有一个公共点,求实数a 的值.解析:直线与二次曲线只有一个交点并不一定相切.不能等价转化为二次函数的根存在问题. =0只是该问题的一个充分不必要条件.可以转化为方程组解的个数模型,实质就为参数a =0?;a +1=0?的讨论问题,要求达到的条件是只有一个根-1,0,-4/5.9.已知函数y =log 2(x 2+ax +2);(1)当函数的定义域为R 时,求a 的取值范围.(2)当函数的值域为R 时,求a 的取值范围.解析:判别式的几何意义是函数与x 轴的交点个数.(1)通过 <0转化为恒成立的问题.(2)利用反证法来理解.x 2+ax +2能取到一切正数,等价于 ≥0.10.已知函数f (x )=ax 2−2x (0≤x ≤1).求f (x )的最小值g (a ).11(利用反函数法).讨论函数y =10x +10−x10x −10−x的定义域和值域.利用反函数的方法表示102x 求解值域y .127.求函数y =x 2(1−3x )在[0,13]时的最大值.12.1求函数f (x )=2x 3+3x 2−12x +14在[-3,4]上的最大值和最小值.13.若实数x ,y 满足|x |+|y |=5,求t =x 2+y 2−2x 的最值.解析:利用数形结合+线性规划.t =x 2+y 2−2x 可以认为是圆的方程.它表示一个同心圆簇,半径为√t +1.13.1求函数v =sinucosu +sinu +cosu 的最大值.解析:利用换元法,令cosu =x ,sinu =y ,有x 2+y 2=1.则转化为点(x ,y )在单位圆x 2+y 2=1上运动,xy +x +y −v =0在y 轴上的截距v 的最大值.(v 视为常数)13.2已知x 2+y 2−2x +4y −20=0,求x 2+y 2的最值.14.已知正数x ,y ,满足x +2y =1,求1x +1y的最小值.5注意根判别式法适用的条件,不能在复数方程中,系数不能保证都为实数.6换元后转化为二次函数注意定义域的同步变化7求导法。
专题:分式函数值域求法数值域问题中的一个重要内容,它不仅是一个难点、重点,而且是解决解析几何有关最值问题的一个重要工具. 首先我们给出分式函数的定义:形如()()()p x f x q x =的函数叫做分式函数,其中)(x p 、()q x 是既约整式且()q x 的次数不低于一次.下面就)(x p 、()q x 的次数不超过二次的分式函数进行分类讨论.1、一次分式函数:(1)定义:()p x 、()q x 的次数不高于一次的分式函数叫做一次分式函数,即形如(),,0ax b f x x A c cx d+=∈≠+的函数. (2)求法:一次分式函数值域的通常求法是逆求法,即改写成1()x f y -=,由于x A ∈,则A y f ∈-)(1,解出y 的取值范围,即函数f(x)的值域.例1、求函数232x y x +=-,[]3,8x ∈的值域. 解:改写成232y x y +=-,因为[]3,8x ∈,所以23382y y +≤≤-, 解得1996y ≤≤,即原函数的值域是19,96⎡⎤⎢⎥⎣⎦.2、二次分式函数:(1)定义:()p x 、()q x 至少有一个的次数是二次的分式函数叫做二次分式函数, 即形如22(),,ax bx c f x x A a d dx ex f++=∈++、不全为零的函数. (2)解法:若A=2|0x dx ex f ++≠{},则可采用根的判别式法求值域.例2、求函数224544x x y x x ++=++的值域. 解:化为关于x 的方程2(1)4(1)450y x y x y -+-+-=.若1y =,则方程无解,即1y ≠.因为R x ∈,所以0∆≥,解得1y ≥,即原函数的值域是(1,+∞)。
若A 2|0x dx ex f ++≠{},则再分类讨论。
2.1.(1)定义:形如2()c f x dx ex f=++,,0x A d ∈≠且0c ≠的函数. (2)解法:先利用二次函数的性质求出分母的值域,再利用复合函数的单调性求出函数()f x 的值域.例3、求函数21(),[3,5]23f x x x x =∈---的值域. 解:令[)(]22()23(1)4,3,33,5g x x x x x =--=--∈-⋃,则[)(]()4,00,12g x =-⋃,所以函数()f x 的值域是11(,][,)412-∞-⋃+∞.2.2.(1)定义:形如2()bx c f x dx ex f+=++,,0x A d ∈≠且0b ≠ (*) 或2()ax bx c f x ex f++=+,,0x A a ∈≠且0e ≠的分式函数. (2)解法:下面就形式(*)讨论解法.≠ ⊂2.2.1.若c=0,则分子分母同除以x ,得()f x =b f dx e x++. 只要讨论函数(),f g x dx x A x=+∈且0x ≠的值域. 不妨设0d >.若0f <,则函数()g x 在(,0)-∞和(0,)+∞上分别是增函数;若0f >,则函数()g x在和[上分别是减函数,在)+∞和(,-∞上分别是增函数.这样利用函数()g x 的单调性,先求出()g x 的值域,从而求出函数()f x 的值域.例4、求函数2(),[1,)24x f x x x x =∈+∞++的值域. 解:1(),142f x x x x=≥++.令4(),1g x x x x =+≥,则()4g x ≥, 所以函数()f x 的值域是1(0,]6.2.2.2.若0c ≠,则换元,令t bx c =+,转化为2.2.1.形式的分式函数.例5、求函数21(),(1,1)(1,3)23x f x x x x +=∈-⋃+-的值域. 解:令1t x =+,则21,(0,2)(2,4)44t y t t t t==∈⋃--. 因为4(,0)(0,3)t t -∈-∞⋃,所以函数()f x 的值域是1(,0)(,)3-∞⋃+∞.2.3.(1)定义:形如22(),,0ax bx c f x x A a dx ex f++=∈≠++且0d ≠的分式函数. (2)解法:2.3.1.若0b c ==或0e f ==,则分子分母同除以2x ,转化为求关于1x的二次函数的值域,从而求出函数()f x 的值域.例6、求函数221(),[,1]413x f x x x x =∈-+的值域. 解:22111(),[1,3]1411(2)3f x xx x x==∈-+--.因为函数 211()(2)3,[1,3]g x x x =--∈的值域是[3,2]--,所以函数()f x 的值域是11[,]23--.2.3.2.若分子分母有一个是完全平方式,不妨设22()(),,0a x m f x x A a dx ex f+=∈≠++且0d ≠,则可令t x m =+,转化为2.3.1形式的分式函数.例7、求函数2244(),[1,0]45x x f x x x x ++=∈-++的值域. 解:令2t x =+,则222111,[,1]1121t y t t t==∈++.因为2151[,2]4t +∈, 所以函数()f x 的值域是14[,]25.2.3.3.若都不是前两种形式的分式函数,则改写成部分分式,即:2()()ae af b x c a d d f x d dx ex f-+-=+++,转化为2.2形式的分式函数. 例8、求函数2245(),[0,2]43x x f x x x x ++=∈++的值域. 解:2222()11,[0,2]43(2)1f x x x x x =+=+∈+++-,所以函数()f x 的值域是175[,]153.。
分式函数的图象及性质和值域(4,13班) 耿9.2 在近几年的高考和模拟考试题目中,经常会出现求解模型函数为分式函数值域的题目,而分式函数的值域求法有共同的规律,本节课给大家介绍解法并总结出通法! 【知识要点】 1.函数(0,)ax b
y c ad bc cx d
+=
≠≠+
(1)定义域:{|}d x x c
≠-(2)值域:{y 调性:单调区间为(,),(,+)d d
c c -∞--∞(4中心:渐近线为直线,
d a x y c c =-=,(5)奇偶性:当0a d ==时为奇函数。
(6)图象:如图所示。
2.函数(0,0)
b
y ax a b x
=+>>的图象和性质:
(1)定义域:{|0}x x ≠(2){|y y y ≥≤-或(3
单调性:在区间+),(,∞-∞间上是减函数(5直线y ax =为渐近线(6)图象:如图所示。
3.函数(0,0)b
y ax a b x
=+><的图象和性质:
(1)定义域:{|0}x x ≠(2)值域:R (3)奇偶性:奇函数(4)单调性:在区间(0,+)∞和(,0)-∞上是增函数。
(5)渐近线:以y 轴和直线y ax =为渐近线(6)图象:如图所示。
4.函数(0)b
y ax a x
=+<的图象(如图所示)和性质(略):
类型一:(,,,)ax b
y a b c d R cx d
+=
∈+(
“一次比一次”型) 备注:本质上一定是反比例函数上下或左右平移而来,所以一定是中学对称函数,可以从图像观察出其值域范围。
例1。
函数1
1
+-
=x y 的图象是 ( )
A B C D
例2、画出函数21
1
x y x -=-的图像,依据函数图像,指出函数的单调区间、值域、对称中心。
【分析】212(1)112111x x y x x x --+=
==+---,
即函数211x y x -=-的图像可以经由函数1
y x
=的图像向右平移1个单位,再向上平移2个单位得到。
如下表所示:
由此可以画出函数21
1
x y x -=
-的图像,如下: 单调减区间:(,1),(1,)-∞+∞;
值域:(,2)(2,)-∞+∞;
对称中心:(1,2)。
例3.不等式14x x
>的解集为
( )
1111111. (,0)(,) . (-,)(,) . (,0)(0,,+) .(,0)(0,)2222222
A B C D -+∞∞-+∞-∞-
类型二:22,bx c dx ex f
y or y dx ex f bx c
+++==+++,(“一次比二次”或“二次比一次”型)
备注:处理这种分式函数时主要用换元法,即“照着低次配高次”,然后在分离变形。
例
4、设1x >,求函数221
1
x x y x -+=-的最小值.
例5、 求2710
(1)1
x x y x x ++=
>-+的值域。
例6:1
43442122+-=⋅=∆k k PQ d S OPQ
,求面积函数的取值范围 例7、求函数2
y =
的值域。
例8.已知函数2
()ax b
f x x c
+=
+的图象如图所示,则,,a b c 的大小关系为
( )
. . . .A a b c B a c b C b a c Db c a >>>>>>>>
类型三:22ax bx c y dx ex f
++=++,(“二次比二次”型)
备注:处理这种分式函数时主要是先分离,再用类型二的方法去处理。
例9:函数221
x x
y x x -=-+的值域是
例10、求函数22
45
(),[0,2]43
x x f x x x x ++=∈++的值域. 类型四:“二次比四次型”
备注:处理这种分式函数时,若二次仅有二次项,则直接将其换元后分离,若二次项比较复杂时,则先将二次转化为完全平方因式,再用换元法拆分后变形
例11.求4221x x y x -=+的值域
例12.求
24
2
2
2e e e λ-=-.的值域, 类型五:“四次比四次型”:
例13
:2()1)ABC S f k k ∆==
>,求面积函数的取值范围
例14求四边形PMQN面积S=
)2
()
1(2 4
2
2
2
2 +
+
k k k
的取值范围。