分式函数求最值
- 格式:doc
- 大小:328.00 KB
- 文档页数:6
黑龙江科学HEILONGJIANG SCIENCE第12卷第7期2021年4月Vol. 12Apr. 2021分式型函数求极限的方法总结孔敏,王娟,梁登星(北京科技大学天津学院,天津301811)摘要:对分式型函数求极限的方法进行总结,以%T%和为例进行说明。
对分式型函数而言,要先判断分母的极限,再判断 分子的极限,要选择正确简单的做题方法,注意洛必达法则的使用条件。
关键词:分式型函数;极限;方法总结中图分类号:0171 -4 文献标志码:B 文章编号:1674-8646(2021 )07 -0128 -02Summary of Fraction Function Ultimate MethodKong Min , Wang Juan , Liang Dengxing(Tianjin College , University of Science and Technology Beijing, Tianjin 301811 , China)Abstract : The research summarizes the fraction function ultimate method , and explains through the example of x —%0 and . For fraction function , it is necessary to judge the extremity of the denominator first , and then judge theextremity of numerator. It is suggested to conectly select simple problem solving method , and pay attention to the service conditions of L' Hospital's rule.Key words : Fraction function ; Extremity ; Method summaiy0引言为0时,根据无穷大和无穷小的关系,取分式函数的倒 数求极限。
函数详解之分式函数30.函数xa x x f -=2)(的定义域为(0,1](a 为实数).⑴当1-=a 时,求函数)(x f y =的值域;⑵若函数)(x f y =在定义域上是减函数,求a 的取值范围;⑶求函数)(x f y =在x ∈(0,1]上的最大值及最小值,并求出函数取最值时x 的值.解:(1)显然函数)(x f y =的值域为),22[∞+;(2)若函数)(x f y =在定义域上是减函数,则任取∈21,x x ]1.0(且21x x <都有)()(21x f x f > 成立, 即0)2)((2121>+-xx ax x 只要212x x a -<即可,由∈21,x x ]1.0(,故)0,2(221-∈-x x ,所以2-≤a , 故a 的取值范围是]2,(--∞; (3)当0≥a 时,函数)(x f y =在]1.0(上单调增,无最小值, 当1=x 时取得最大值a -2;由(2)得当2-≤a 时,函数)(x f y =在]1.0(上单调减,无最大值, 当x =1时取得最小值2-a ;当02<<-a 时,函数)(x f y =在].0(22a-上单调减,在]1,[22a -上单调增,无最大值,当22a x-=时取得最小值a22-.31.已知函数21()(0,0,)ax f x a b c R bx c+=>>∈+是奇函数,当0x >时,有()f x 最小值2,其中b N ∈,且5(1)2f =.(Ⅰ)试求函数()f x 的解析式;(Ⅱ)问函数()f x 的图像上是否存在关于点(1,0)对称的两点?若存在,求出点的坐标;若不存在,请说明理由. 解 (Ⅰ)由2211()()ax ax f x f x bx cbx c++-=-⇒=--++,即bx c bx c -+=--,0c ∴= ……………………………………………2分0,0,0a b c >>= ,21()ax f x bx+∴=b a∴= ……………………4分又515(1)22a f b+<∴<,即221525202b b b b+<⇒-+<12()1,2b b N b⇒<<∈⇒=∴11abc=⎧⎪=⎨⎪=⎩……………………………6分(Ⅱ)设00(,)M x y关于点(1,0)的对称点为N,则00(2,)N x y--,………………8分00020000121122y xxx xy xx⎧=+⎪⎪∴⇒--⎨⎪-=-+⎪-⎩⇒01222xy⎧=+⎪⎨=⎪⎩或01222xy⎧=-⎪⎨=-⎪⎩…………11分∴存在两点(12,22)M+与(12,22)N--关于点(1,0)对称.………12分32.已知函数2211()af xa a x+=-,常数0>a.(1)设0m n⋅>,证明:函数()f x在[]m n,上单调递增;(2)设0m n<<且()f x的定义域和值域都是[]m n,,求常数a的取值范围.解:(1)任取1x,],[2nmx∈,且12x x<,12122121()()x xf x f xa x x--=⋅,因为12x x<,1x,],[2nmx∈,所以12x x>,即12()()f x f x<,故)(xf在],[nm上单调递增.或求导方法.(2)因为)(xf在],[nm上单调递增,)(xf的定义域、值域都是⇔],[nm(),()f m m f n n==,即nm,是方程2211aa a xx+=-的两个不等的正根1)2(222=++-⇔xaaxa有两个不等的正根.所以04)2(222>-+=∆aaa,222a aa+>⇒12a>33.已知定义域为R的函数abxfxx++-=+122)(是奇函数.(1)求a,b的值;(2)若对任意的Rt∈,不等式0)2()2(22<-+-ktfttf恒成立,求k的取值范围.解(1)因为)(xf是R上的奇函数,所以1,021,0)0(==++-=babf解得即从而有.212)(1axfxx++-=+又由aaff++--=++---=1121412)1()1(知,解得2=a(2)解法一:由(1)知,121212212)(1++-=++-=+xx xx f由上式易知)(x f 在R 上为减函数,又因)(x f 是奇函数,从而不等式0)2()2(22<-+-k t f t t f 等价于).2()2()2(222k t f k t f t t f +-=--<-因)(x f 是R 上的减函数,由上式推得.2222k t t t +->- 即对一切,0232>--∈k t t R t 有从而31,0124-<<+=∆k k 解得解法二:由(1)知,2212)(1++-=+x xx f又由题设条件得0221222121221222222<++-+++-+--+--k t kt t t tt即0)12)(22()12)(22(2222212212<+-+++-+-+--+-kt t t tt k t整理得12232>--kt t,因底数2>1,故0232>--k t t上式对一切R t ∈均成立,从而判别式.31,0124-<<+=∆k k 解得34.已知函数()a f x x x =-.(1)若13log [8()]y f x =-在[1,)+∞上是单调减函数,求实数a 的取值范围;(2)设1,a x y k =+=,若不等式22()()()2k f x f y k≥-对一切,(0,)x y k ∈恒成立,求实数k的取值范围.解: (1)令8a t x x=-+,则要使13log [8()]y f x =-在[1,)+∞上是单调减函数,则/21080a t xa t x x ⎧=-≥⎪⎪⎨⎪=-+>⎪⎩在[1,)+∞上恒成立,则21180a x a ⎧≥-≥-⎨-+>⎩所以, 19a -≤< (7)分 (2) 2222111()()()()()x y x yf x f y x y x y xy-++=--=222221212(0)4k xy x yk kxy xy xyxy-++-==++<≤. (10)分 令u xy=,则221()()2,(0,]4k kf x f y u u u-=++∈当2214kk -≥即0252k <≤-时,21()()2k f x f y u u -=++在2(0,]4ku ∈上为减函数,所以 2222min22142[()()]22()4424kk kk f x f y kkk-=++=+-=-即当0252k <≤-时,22()()()2k f x f y k≥-……………………………12分 当2214kk -<,222min 242[()()]2122()42kk f x f y k kk=-+<+-=-与题意不合.所以,所求的k 的取值范围为 : 0252k <≤-. ………………………14分35.(本小题满分14分)设关于x 的方程2x 2-ax -2=0的两根为α、β(α<β),函数14)(2+-=x a x x f .(Ⅰ)求f (α)·f (β)的值;(Ⅱ)证明f (x )是[α,β]上的增函数;(Ⅲ)当a 为何值时,f (x )在区间[α,β]上的最大值与最小值之差最小? 解:(Ⅰ)由题意知α+β=2a ,α·β=-1,∴α2+β2=242+a,∴f (α)·f (β)=1)(41614142222222+++++-=+-⋅+-ββαβααβββααa aa a a41241216222-=++++--=aa a .……………………………………………………… 4分(Ⅱ)证明:当α≤x ≤β时,22\22\\)1()1)(4()1()4()(++--+-=xx a x xa x x f222222)1()22(2)1(2)4()1(4+---=+⋅--+=x ax x x xa x x ………… 6分∵α、β是方程2x 2-ax -2=0的两根, ∴当α≤x ≤β时,恒有2x 2-ax -2≤0, ∴)(\x f ≥0,又)(x f 不是常函数,∴)(x f 是[α,β]上的增函数.……………………………………………… 9分 (Ⅲ)f (x )在区间[α,β]上的最大值f (β)>0,最小值f (α)<0,又∵| f (α)·f (β) |=4, ……………………………………………………… 10分 ∴f (β)-f (α)=| f (β)|+| f (α)|≥4)()(2=⋅βαf f当且仅当| f (β)|=| f (α)|=2时取“=”号,此时f (β)=2,f (α)=-2 …… 11分∴⎪⎩⎪⎨⎧=--=+-)2(022)1(21422 ββββa a……………………………………… 13分由(1)、(2)得0)16(2=+a a ,∴a =0为所求.…………………………………………………… 14分 36.已知函数)0()(>+=t xt x x f 和点)0 , 1(P ,过点P 作曲线)(x f y =的两条切线PM 、PN ,切点分别为M 、N .(Ⅰ)设)(t g MN =,试求函数)(t g 的表达式;(Ⅱ)是否存在t ,使得M 、N 与)1 , 0(A 三点共线.若存在,求出t 的值;若不存在,请说明理由.(Ⅲ)在(Ⅰ)的条件下,若对任意的正整数n ,在区间]64 , 2[nn +内总存在1+m 个实数m a a a ,,,21 ,1+m a ,使得不等式)()()()(121+<+++m m a g a g a g a g 成立,求m 的最大值.解:(Ⅰ)设M 、N 两点的横坐标分别为1x 、2x ,21)(xt x f -=', ∴切线PM 的方程为:))(1()(12111x x x t x t x y --=+-,又 切线PM 过点)0,1(P , ∴有)1)(1()(012111x x t x t x --=+-,即02121=-+t tx x , ………………………………………………(1) …… 2分同理,由切线PN 也过点)0,1(P ,得02222=-+t tx x .…………(2) 由(1)、(2),可得21,x x 是方程022=-+t tx x 的两根,⎩⎨⎧-=⋅-=+∴. ,22121t x x t x x ………………( * ) ……………………… 4分22211221)()(x t x x t x x x MN --++-=])1(1[)(221221x x t x x -+-=])1(1][4)[(22121221x x t x x x x -+-+=,把( * )式代入,得t t MN 20202+=,因此,函数)(t g 的表达式为)0( 2020)(2>+=t t t t g . ……………………5分(Ⅱ)当点M 、N 与A 共线时,NA MA k k =,∴1111--+x x t x =1222--+x x t x ,即21121x x t x -+=22222x x t x -+,化简,得0])()[(211212=-+-x x x x t x x ,21x x ≠ ,1212)(x x x x t =+∴. ………………(3) …………… 7分把(*)式代入(3),解得21=t .∴存在t ,使得点M 、N 与A 三点共线,且 21=t . ……………………9分(Ⅲ)解法1:易知)(t g 在区间]64,2[nn +上为增函数,∴)64()()2(nn g a g g i +≤≤)1,,2,1(+=m i ,则)64()()()()2(21n n g m a g a g a g g m m +⋅≤+++≤⋅ .依题意,不等式)64()2(nn g g m +<⋅对一切的正整数n 恒成立, …………11分)64(20)n6420(n 22022022nn m +++<⋅+⋅,即)]64()n64[(n 612nn m +++<对一切的正整数n 恒成立,.1664≥+nn , 3136]1616[61)]64()n64[(n 6122=+≥+++∴nn ,3136<∴m .由于m 为正整数,6≤∴m . ……………………………13分 又当6=m 时,存在221====m a a a ,161=+m a ,对所有的n 满足条件. 因此,m 的最大值为6. ……………………………14分 解法2:依题意,当区间]64,2[nn +的长度最小时,得到的m 最大值,即是所求值.1664≥+nn ,∴长度最小的区间为]16,2[, …………………11分当]16,2[∈i a )1,,2,1(+=m i 时,与解法1相同分析,得)16()2(g g m <⋅,解得3136<m .37.已知函数xa x y +=有如下性质:如果常数a >0,那么该函数在(0,a ]上是减函数,在[a ,+∞)上是增函数.(1)如果函数y =x +x b2(x >0)的值域为[6,+∞),求b 的值; (2)研究函数y =2x +2xc(常数c >0)在定义域内的单调性,并说明理由;(3)对函数y =x +xa 和y =2x +2xa (常数a >0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数)(x F =nx x )1(2++nx x)1(2+(n 是正整数)在区间[21,2]上的最大值和最小值(可利用你的研究结论).(理)解:(1)函数2(0)by x x x=+>的最小值是2b2,则226b=,∴2log 9b =(2)设120x x <<,222221212122222112()(1)c c c y y x x x x xxx x-=+--=--⋅.当412c x x <<时,21y y >,函数22c y x x=+在[4c ,+∞)上是增函数;当4120x x c <<<时,21y y <,函数22c y x x=+在(0,4c ]上是减函数.又22c y x x=+是偶函数,于是,该函数在(-∞,-4c ]上是减函数, 在[-4c ,0)上是增函数;(3)可以把函数推广为(0)n na y x a x=+>,其中n 是正整数.当n 是奇数时,函数n na y x x=+在(0,n a 2]上是减函数,在[n a 2,+∞) 上是增函数,在(-∞,-na 2]上是增函数, 在[-n a 2,0)上是减函数;当n 是偶数时,函数n na y x x=+在(0,n a 2]上是减函数,在[n a 2,+∞) 上是增函数, 在(-∞,-na 2]上是减函数, 在[-n a 2,0)上是增函数;21()()nF x x x=++nx x)1(2+=)1()1()1()1(323232321220nnn n rn rn r n n n n nnn xx C xx C xxC xxC ++++++++----因此()F x 在 [21,1]上是减函数,在[1,2]上是增函数.所以,当12x =或2x =时,()F x 取得最大值9924nn⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭;当1x =时,()F x 取得最小值12n +.38已知函数()()2211xf x x R x x-=∈++.(Ⅰ)求函数()f x 的单调区间和极值; (Ⅱ)若()2220t t t e x e x e +++-≥对满足1x ≤的任意实数x恒成立,求实数t 的取值范围(这里e 是自然对数的底数);(Ⅲ)求证:对任意正数a 、b 、λ、μ,恒有2222a b a b a b f f λμλμλμλμλμλμ⎡⎤⎛⎫⎛⎫⎛⎫+++-⎢⎥ ⎪ ⎪ ⎪+++⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦≥22a b λμλμ+-+.【解】(Ⅰ)()()()()()()()()22222223232121111x x x x xx x f x x x x x ⎡⎤⎡⎤---+⋅----++-+-⎣⎦⎣⎦'==++++∴()f x 的增区间为()23,23---+,()f x 减区间为(),23-∞--和()23,-++∞.极大值为()23233f -+=,极小值为()23233f --=-.…………4′(Ⅱ)原不等式可化为()22211t x e x x-++≥由(Ⅰ)知,1x ≤时,)(x f 的最大值为332.∴()22211xx x-++的最大值为433,由恒成立的意义知道433t e ≥,从而433t ln≥…8′(Ⅲ)设()()()22101xg x f x x x x x x-=-=->++则()()()()()243222224124621111x x x x x x g x f x x x x x -++++++''=-=-=-++++.∴当0x >时,()0g x '<,故()g x 在()0,+∞上是减函数,又当a 、b 、λ、μ是正实数时,()()222220a b a b a bλμλμλμλμλμλμ-⎛⎫++-=- ⎪+++⎝⎭≤ ∴222a b a bλμλμλμλμ⎛⎫++ ⎪++⎝⎭≤. 由()g x 的单调性有:222222a b a b a b a b f f λμλμλμλμλμλμλμλμ⎡⎤⎛⎫⎛⎫⎛⎫++++--⎢⎥⎪ ⎪ ⎪++++⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦≥, 即222222a b a b a b a bf f λμλμλμλμλμλμλμλμ⎡⎤⎛⎫⎛⎫⎛⎫++++--⎢⎥ ⎪ ⎪ ⎪++++⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦≥.…………12′ 39.(本题12分) 已知函数()1bx c f x x +=+的图象过原点,且关于点(-1,1)成中心对称.(Ⅰ)求函数()f x 的解析式;(Ⅱ)若数列{}n a (*)n N ∈满足:()2110,1,()n n n a a a f a +>==,求数列{}n a 的通项n a ; (Ⅲ)若数列{}n a 的前n 项和为n S ,判断n S 与2的大小关系,并证明你的结论. 解 (Ⅰ) 因为函数()1bx c f x x +=+ 的图象过原点,所以c =0,即()1bx f x x =+.又函数()11bx bf x b x x ==-++的图象关于点(-1,1)成中心对称,所以1,()1xb f x x ==+。
圆锥曲线解题中几种分式型函数最值的求法在圆锥曲线解题中,我们常常会遇到各种分式型函数,并需要求出函数的最值。
本文将介绍几种常见的分式型函数最值求解方法,帮助读者更好地解决相关问题。
一、分式函数求极值的常见方法在解析几何中,我们常常遇到形如f(x) = P(x) / Q(x) 的分式函数,其中P(x)和Q(x)分别是x的多项式函数。
要求解该分式函数的最值,可以使用以下几种方法:1. 利用导数法求解导数法是最常用的方法之一。
通过求解函数的导数,再通过导数的性质来确定函数的最值点。
具体步骤如下:(1)求出函数f(x)的导数f'(x);(2)求解f'(x)=0的解,即为函数f(x)的驻点;(3)将驻点和函数的定义域的端点进行比较,找出函数的最值。
2. 利用等价变形法求解有时,我们可以通过等价变形将分式函数转化为新的形式,从而更容易求解最值。
常见的等价变形方法有:(1)分子分母同乘以相同的因式,从而将分式函数简化成更简单的形式;(2)将分式函数展开为多项式,然后通过求解多项式的最值来求解分式函数的最值;(3)将分式函数分解成若干个部分,然后通过分别求解每个部分的最值,再综合得出总的最值。
二、若干种分式型函数的最值求法1. 高斯型函数高斯型函数是一种形如f(x) = e^(-ax^2 + bx + c)的分式函数。
其中a, b, c为常数。
对于这种类型的函数,我们可以通过以下步骤来求解最值:(1)求出函数的导数f'(x);(2)求解f'(x) = 0的解,即为函数的驻点;(3)将驻点与函数定义域的端点进行比较,找出函数的最值。
2. 有理分式型函数有理分式型函数是指分子和分母都是多项式函数的函数。
对于这种类型的函数,我们可以使用以下方法来求解最值:(1)对函数进行等价变形,将分子分母简化为最简形式;(2)找出函数的定义域以及分母为零的点,剔除无定义的点;(3)求解导数f'(x)=0的解,即为函数的驻点;(4)将驻点与函数定义域的端点进行比较,找出函数的最值。
第2讲 二次型分式函数求最值知识与方法我们把y =一次函数二次函数、y =二次函数一次函数、y =二次函数二次函数统称为“二次型分式函数”,这些函数求最值的方法是类似的,通常有均值不等式法、判别式法、求导法等,下面通过例题详细分析这些方法是如何使用的.典型例题【例题】函数211x x y x −+=−()1x >的最小值为________.【解析】解法1(均值不等式法):令1t x =−,则0t >,1x t =+,所以()()2211111113t t t t y t tt t +−++++===++≥+=,当且仅当1t t =,即1t =时取等号,此时2x =,从而函数211x x y x −+=−()1x >的最小值为3.解法2(判别式法):将211x x y x −+=−变形为()211y x x x −=−+,整理得:()2110x y x y −+++=①,将式①看出关于x 的一元二次方程,其判别式()()21410y y ∆=+−+≥,解得:1y ≤−或3y ≥,因为1x >,所以10x −>,210x x −+>,从而0y >,故3y ≥,注意到当2x =时,3y =,所以函数211x x y x −+=−()1x >的最小值为3.解法3(求导法):设()211x x f x x −+=−()1x >,则()()()221x x f x x −'=−,所以()02f x x '>⇔>,()012f x x '<⇔<<,从而()f x 在()1,2上,在()2,+∞上,故()()min 23f x f ==.【答案】3 变式1 函数211x y x x −=−+()1x >的最大值为________.【解析】解法1(均值不等式法):令1t x =−,则0t >,1x t =+,所以()()22111131111t t y t t t t t t ===≤=+++−++++, 当且仅当1t t =,即1t =时取等号,此时2x =,从而函数211x y x x −=−+()1x >的最大值为13.解法2(判别式法):将211x y x x −=−+变形成()211y x x x −+=−, 整理得:()2110yx y x y −+++=①,当0y ≠时,把①看成关于x 的一元二次方程,其判别式()()21410y y y ∆=−+−+≥⎡⎤⎣⎦,解得:113y −≤≤,注意到当2x =时,13y =,所以函数211x y x x −=−+()1x >的最大值为13. 解法3(求导法):设()211x f x x x −=−+()1x >,则()()()2221x x f x x x −'=−+,所以()012f x x '>⇔<<,()02f x x '<⇔>,从而()f x 在()1,2上,在()2,+∞上,故()()max 123f x f ==.【答案】13变式2 函数22221x x y x x −+=−+()1x >的最小值为________.【解析】解法1(均值不等式法):由题意,()()22222112211111x x x x x x y x x x x x x −+−−−+−===−−+−+−+,令1t x =−,则0t >,1x t =+,且()()221211111131111t t y t t t t t t =−=−=−≥=+++−++++, 当且仅当1t t =,即1t =时取等号,此时2x =,从而函数22221x x y x x −+=−+()1x >的最小值为23.解法2(判别式法):将22221x x y x x −+=−+变形为()22122y x x x x −+=−+,整理得:()()21220y x y x y −+−+−=,当1y ≠时,将该方程看成关于x 的一元二次方程,其判别式()()()224120y y y ∆=−−−−≥,解得:223y ≤≤()1y ≠, 注意到当2x =时,23y =,所以函数22221x x y x x −+=−+()1x >的最小值为23.解法3(求导法):设()22221x x f x x x −+=−+()1x >,则()()()2221x x f x x x −'=−+,所以()02f x x '>⇔>,()012f x x '<⇔<<,从而()f x 在()1,2上,在()2,+∞上,故()()min 223f x f ==. 【答案】23【反思】从上面的几个例子可以看到,y =一次函数二次函数、y =二次函数一次函数、y =二次函数二次函数这三种“二次型分式函数”求最值的方法是类似的,在三种方法的选择上,一般首选均值不等式法,判别式法和求导法作为备选方案. 变式3函数y =的最大值为________.【解析】设t ,则1t ≥,221x t =−,且211444t y t t t ===≤=++,当且仅当4t t =,即2t =时取等号,此时x =,所以函数y =14.【答案】14变式4函数y =________.【解析】设t ,则2t ≥,224x t =−,且222115411t y x x t t t====+++++, 易得函数()1t t tϕ=+在[)2,+∞上,所以()()min522t ϕϕ==,故函数25y x =+的最大值为25. 【答案】25强化训练1.(★★)函数21x y x =−()1x >的最小值为________.【解析】解法1(均值不等式法):设1t x =−,则0t >,1x t =+,且()22212112241t x t t y t x t t t +++====++≥=−,当且仅当1t t =,即1t =时取等号,此时2x =,所以函数21x y x =−()1x >的最小值为4.解法2(判别式法):将21x y x =−变形成()21y x x −=,整理得:20x yx y −+=①,将式①看成关于x 的一元二次方程,则其判别式240y y ∆=−≥,所以0y ≤或4y ≥,因为1x >,所以0y >,从而4y ≥,注意到当2x =时,4y =,所以函数21x y x =−()1x >的最小值为4.解法3(求导法):设()21x f x x =−()1x >,则()()()221x x f x x −'=−,所以()02f x x >⇔>,()012f x x '<⇔<<,从而()f x 在()1,2上,在()2,+∞上,故()()min 24f x f ==.【答案】42.(★★)函数221x x y x −+=+在[]0,4上的最小值为________.【解析】解法1(均值不等式法):设1t x =+,则1x t =−,因为04x ≤≤,所以15t ≤≤,且()()22211223443311t t x x t t y t x t t t −−−+−+−+====+−≥=+,当且仅当4t t =,即2t =时取等号,此时1x =,所以函数221x x y x −+=+在[]0,4上的最小值为1.解法2(判别式法):将221x x y x −+=+变形成()212y x x x +=−+,整理得:()2120x y x y −++−=①,将式①看成关于x 的一元二次方程,则其判别式()()21420y y ∆=+−−≥,解得:7y ≤−或1y ≥,因为04x ≤≤,所以10x +>,220x x −+>,从而0y >,故1y ≥,注意到当1x =时,1y =,所以函数221x x y x −+=+在[]0,4上的最小值为1.解法3(求导法):设()221x x f x x −+=+()04x ≤≤,则()()()()2311x x f x x +−'=+,所以()014f x x '>⇔<≤,()001f x x '<⇔≤<,从而()f x 在[)0,1上,在(]1,4上,故()()min 11f x f ==.【答案】13.(★★★)函数2211x x y x x ++=−+的值域为________.【解析】解法1(均值不等式法):由题意,()2222212121111x x x x x xy x x x x x x −++++===+−+−+−+,当0x =时,1y =;当0x ≠时,2111y x x=++−,易求得12x x +≤−或12x x +≥, 所以113x x +−≤−或111x x +−≥,从而220131x x−≤<+−或20211x x <≤+−,所以113y ≤<或13y <≤,综上所述,函数2211x x y x x ++=−+的值域为1,33⎡⎤⎢⎥⎣⎦.解法2(判别式法):()22221111x x y y x x x x x x ++=⇒−+=++−+,整理得:()()21110y x y x y −−++−=①,当1y =时,0x =;当1y ≠时,方程①可以看成关于x 的一元二次方程,则其判别式()()221410y y ∆=+−−≥,解得:133y ≤≤()1y ≠,综上所述,函数2211x x y x x ++=−+的值域为1,33⎡⎤⎢⎥⎣⎦.【答案】1,33⎡⎤⎢⎥⎣⎦4.(★★★)函数2sin 12sin x y x=+02x π⎛⎫≤≤ ⎪⎝⎭的最大值为________.【解析】设sin t x =,则212t y t =+,因为02x π≤≤,所以01t ≤≤, 当0t =时,0y =;当01t <≤时,1142y t t=≤=+,当且仅当12t t =,即2t =时等等号,此时4x π=,所以函数2sin 12sin xy x=+02x π⎛⎫≤≤ ⎪⎝⎭的最大值为4. 【答案】45.(★★★)函数22y x =+的最大值为________.【解析】设t =,则1t ≥,且211112t y t t t ====≤=++,当且仅当1t t =,即1t =时取等号,此时0x =,所以函数y =12.【答案】1 26.(★★★)函数y=的最小值为________.【解析】设1t=+,则1t≥,()211x t=−+,所以()22211124332444t t ty tt t t⎡⎤−+−−+⎣⎦====+−≥−=−,当且仅当32tt=,即t=y=的最小值为4.【答案】−4。
均值不等式的应用——分式二次型函数求最值
段军长
【期刊名称】《数理化解题研究:高中版》
【年(卷),期】2012(000)005
【摘要】算术平均数与几何平均数之间的不等关系式称为均值不等式.它是几个正数和与积转化的依据,不但可以直接解决和与积的不等问题,而且通过结合不等式的性质、函数的单调性等还可以解决其他形式的不等式问题.
【总页数】2页(P8-9)
【作者】段军长
【作者单位】甘肃省会宁县第一中学,730700
【正文语种】中文
【中图分类】G633.62
【相关文献】
1.二次函数在闭区间上的最值问题两类轴对称问题的辨析小议辅助角公式的求解策略抽象函数问题分类例析均值不等式的应用与分析对称问题中参数范围的一种求解策略关于解不等式问题的若干策略简化解析几何计算的若干策略“定”,“动”相宜——二次函数在闭区间上的最值问题 [J], 蔡永强
2.用均值不等式和单调性求二次分式的值域 [J], 文明云
3.求分式型函数最值的方法 [J], 吕谦
4.浅议巧用均值不等式求条件分式最值 [J], 赵省淳;
5.谈求分式型函数最值(或值域)的解法 [J], 何红星
因版权原因,仅展示原文概要,查看原文内容请购买。
圆锥曲线是数学中的重要概念,涉及到解题中几种分式型函数最值的求解方法。
在本文中,我将深入探讨这些方法,以帮助您更好地理解和应用这些概念。
我们需要了解什么是圆锥曲线以及其相关的分式型函数。
圆锥曲线包括抛物线、椭圆和双曲线,它们在数学和物理问题中具有广泛的应用。
而分式型函数则是指函数中含有分式的表达式,常见的形式为f(x) =p(x)/q(x),其中p(x)和q(x)都是多项式函数。
在解题中,我们经常需要求解这些函数的最值,即最大值或最小值。
接下来,我将逐一介绍几种分式型函数最值的求法。
1. 使用导数法求解最值:对于给定的分式型函数f(x) = p(x)/q(x),我们可以通过求解导数f'(x) = 0来找出函数的极值点。
通过判断导数的符号和函数的凹凸性,我们可以确定函数的最值所在的区间。
2. 利用特殊点求解最值:对于特定的分式型函数,我们可以寻找其在定义域内的特殊点,如端点、奇点或者函数值为0的点。
通过研究这些特殊点的性质,我们可以找到函数的最值。
3. 运用参数法求解最值:对于含有参数的分式型函数,我们可以引入参数来化简函数,然后再对参数进行讨论,以求解函数的最值。
这种方法在一些特殊的问题中具有较好的适用性。
通过以上三种方法,我们可以有效地求解分式型函数的最值,从而更好地理解和应用圆锥曲线的相关概念。
在解题过程中,我们还需要注意一些常见的问题和技巧。
在讨论函数的极值点时,需要考虑导数不存在的情况,这通常对应着函数的奇点;在使用参数法求解最值时,需要注意参数的取值范围,以避免出现无解或者重复解的情况。
通过对圆锥曲线解题中几种分式型函数最值的求法进行全面的介绍和讨论,希望能够帮助您更好地掌握这些概念,并在解题中灵活运用这些方法。
我个人认为,掌握这些方法不仅可以帮助我们解决数学问题,更重要的是培养了我们的逻辑思维能力和数学建模能力,这对我们的综合素质提升有着积极的作用。
圆锥曲线解题中几种分式型函数最值的求解方法是数学学习中的重要内容,通过深入理解和掌握这些方法,我们可以更好地应对数学问题,提升数学解题的能力。
第二讲 多元函数最值和分式函数最值最值问题是高考中出现最广泛,也是最有难度的一类问题,我们解题的基本思路是将要讨论的某个问题的最值用几个变量先表示出来,然后利用题目所给已知条件,将目标函数转化为单(主)变量函数,从而利用导数,均值不等式,三角换元等工具解决函数最值。
函数题目中经常有多变量函数,一般都是转化为单变量,一定注意其主元变化范围,而解析几何中的最值基本都是单变量,主变量范围一般是:直线与圆锥曲线的位置关系中∆的范围,方程中变量的范围,角度的大小等;下面的例子精选出来,希望同学们认真练习,熟悉各种情况下最值问题的处理能力。
题型一:二元转化为一元的经典考题例1.已知,,0a b R x ∈>时,不等式ln ax b x +≥恒成立,则a b +的最小值? 变形:已知,,0a b R x ∈>时,不等式xax b e +≤恒成立,则a b +的最大值?例2.已知函数()f x 满足满足121()(1)(0)2x f x f ef x x -'=-+; (1)求()f x 的解析式及单调区间; (2)若21()(1)2f x x a x b ≥+-+,求ab 的最大值。
例3.设函数()()21f x x aIn x =++有两个极值点12x x 、,且12x x <(I )求a 的取值范围,并讨论()f x 的单调性;(II )证明:()21224In f x ->例4.已知函数(1)()ln .1a x f x x x -=-+ (Ⅰ)若函数()(0,)f x +∞在上为单调增函数,求a 的取值范围; (Ⅱ)设.,n m ,n m >且为正实数求证:2ln ln nm n m n m +<--.例5.直线y a =分别与曲线()21y x =+,ln y x x =+交于A ,B ,则||AB 的最小值例6.已知函数.(1)求函数的最大值; (2)若,不等式恒成立,求实数的取值范围;()ln f x x =()()1g x f x x =+-0x ∀>()21f x ax x ≤≤+a(3)若,求证:.例7.已知函数21()ln,()22x x f x g x e -=+=,对于,(0,)a R b ∀∈∃∈+∞使得()()g a f b =成立,则b a -的最小值为( )例8.已知函数f (x )=22,0,ln ,0,x x a x x x ⎧++<⎨>⎩其中a 是实数.设A (x 1,f (x 1)),B (x 2,f (x 2))为该函数图象上的两点,且x 1<x 2.(1)若函数f (x )的图象在点A ,B 处的切线互相垂直,且x 2<0,求x 2-x 1的最小值; (2)若函数f (x )的图象在点A ,B 处的切线重合,求a 的取值范围.120x x >>()()1222212122f x f x x x x x x ->-+例9.已知函数,曲线在点处的切线方程为.(1)求实数的值及函数的单调区间;(2)若,求的最大值.题型二:解析几何中分式函数的最值分式函数求最值的主要过程是:先分离,或者换元后凑配分离,一般遵循“照着简单配复杂的”,即低次换元,高次表示。
分式函数的图象及性质和值域(4,13班) 耿
在近几年的高考和模拟考试题目中,经常会出现求解模型函数为分式函数值域的题目,而分式函数的值域求法有共同的规律,本节课给大家介绍解法并总结出通法! 【知识要点】
1.函数(0,)ax b
y c ad bc cx d
+=≠≠+
(1)定义域:{|}d x x c ≠-(2)值域:{|y y ≠单调区间为(,),(,+)d d
c c
-∞--∞(4)直线,d a x y c c =-=,对称中心为点(,)d a
c c
-
(5)奇偶性:当0a d ==时为奇函数。
(62.函数(0,0)b
y
ax a b x
=+
>>的图象和性质: (1)定义域:{|0}x x ≠(2)值域:{|y y y ≥或(3)奇偶性:奇函数(4
)单调性:在区间+),(∞上是增函数;在区间上是减函数(5以y 轴和直线y ax =为渐近线(6)图象:如图所示。
3.函数(0,0)b
y ax a b x
=+
><的图象和性质: (1)定义域:{|0}x x ≠(2)值域:R (3调性:在区间(0,+)∞和(,0)-∞上是增函数。
(5直线y ax =为渐近线(6)图象:如图所示。
4.函数(0)b
y ax a x
=+
<
类型一:(,,,)ax b
y a b c d R cx d
+=
∈+(
“一次比一次”型) 备注:本质上一定是反比例函数上下或左右平移而来,所以一定是中学对称函数,可以从图像观察出其值域范围。
例1。
函数1
1
+-
=x y 的图象是 ( )
A B C D
例2、画出函数21
1
x y x -=
-的图像,依据函数图像,指出函数的单调区间、值域、对称中心。
【分析】212(1)112111x x y x x x --+=
==+---,
即函数211x y x -=-的图像可以经由函数1
y x
=的图像向右平移1个单位,再向上平移2个单位得到。
如下表所示:
12
111211
y y y x x x =
−−→=−−→=+--右上 由此可以画出函数21
1
x y x -=
-的图像,如下: 单调减区间:(,1),(1,)-∞+∞; 值域:(,2)
(2,)-∞+∞;
x
O
y
x
O
y
1
2
x
O
y 1
对称中心:(1,2)。
例3.不等式1
4x x
>
的解集为 ( )
1111111. (,0)(,) . (-,)(,) . (,0)(0,,+) .(,0)(0,)
2222222A B C D -+∞∞-+∞-∞-
类型二:22,bx c dx ex f
y or y dx ex f bx c
+++==+++,(“一次比二次”或“二次比一次”型)
备注:处理这种分式函数时主要用换元法,即“照着低次配高次”,然后在分离变形。
例4、设1x >,求函数221
1
x x y x -+=-的最小值.
例5、 求2710
(1)1
x x y x x ++=
>-+的值域。
例6:1
43442122+-=⋅=∆k k PQ d S OPQ
,求面积函数的取值范围
例7、求函数22
54
x y x +=
+的值域。
例8.已知函数2
()ax b
f x x c
+=+的图象如图所示,则,,a b c 的大小关系为
( )
. . . .A a b c B a c b C b a c Db c a >>>>>>>>
类型三:22
ax bx c y dx ex f
++=++,(“二次比二次”型) 备注:处理这种分式函数时主要是先分离,再用类型二的方法去处理。
例9:函数221
x x
y x x -=-+的值域是
例10、求函数22
45
(),[0,2]43
x x f x x x x ++=∈++的值域.
类型四:“二次比四次型”
备注:处理这种分式函数时,若二次仅有二次项,则直接将其换元后分离,若二次项比较复杂时,则先将二次转化为完全平方因式,再用换元法拆分后变形
例11.求
42
21
x x
y
x
-
=
+
的值域
例12.
求
24
2
2
2
e e
e
λ
-
=
-
.的值域,
类型五:“四次比四次型”:
例13
:2
()1)
ABC
S f k k
∆
==>,求面积函数的取值范围
例14求四边形PMQN面积S=
)2
()
1(2 4
2
2
2
2 +
+
k k k
的取值范围。