苏教版网格中的图形PPT教学课件
- 格式:ppt
- 大小:777.50 KB
- 文档页数:16
数学中的格点图形网格是学生从小就熟悉的图形,在网格中研究格点图形,具有很强的可操作性,这和新课程的理念相符合,因此它也成为近几年新课程中考的热点问题. 一、考查坐标平面内的点与有序实数对是一一对应的. 【例1】(2006,大连)如图,在平面直角坐标系中,点E 的坐标是( ).A .(1, 2) ;B .(2, 1) ;C .(-1, 2) ;D .(1,-2).图 1Ey x123-1-2-3-3-2-1321O 123574689A C B D E F G H I12345678【例2】如图,围棋盘的左下角呈现的是一局围棋比赛中的几手棋.为记录棋谱方便,横线用数字表示,纵线用英文字母表示,这样,黑棋①的位置可记为(C ,4),白棋②的位置可记为(E ,3),则白棋⑨的位置应记为___________ .【例3】已知△ABC 在直角坐标系中的位置如图所示,如果△A'B'C' 与△ABC 关于y 轴对称,那么点A 的对应点A'的坐标为( ).A .(-4,2);B .(-4,-2);C .(4,-2);D .(4,2) .二、在网格中运用勾股定理进行计算.【例4】图4,是由边长为1m 的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A →B →C 所走的路程为_______m .(结果保留根号)【例5】三角形在正方形网格纸中的位置如图所示,则sinα的值是( ).A . 43; B . 34 ; C . 53 ; D . 54.ABC4题 图1mαABC【例6】如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC 边上的高是().A.322;B.3510;C.355;D.455.【例7】如图,直角坐标系中,△ABC的顶点都在网格点上,其中A点坐标为(2,-1),则△ABC的面积为____平方单位.A BCOxyABCOxyDE F【例8】(2006,广州)如图1,将一块正方形木板用虚线划分成36个全等的小正方形,然后,按其中的实线切成七块形状不完全相同的小木片,制成一副七巧板.用这副七巧板拼成图2的图案,则图2中阴影部分的面积是整个图案面积的( ).1111A. ;B. ;C. ;D. .47822图1 图2【例9】在平面直角坐标系中描出下列各点A(2,1),B(0,1),C(-4,-3),D(6,-3),并将各点用线段顺次连接构成一个四边形ABCD.(1)四边形ABCD是什么特殊的四边形?(2)在四边形ABCD内找一点P,使得△APB、△BPC、△CPD、△APD都是等腰三角形,请写出P点的坐标.三、分类讨论思想在格点问题中的运用.【例10】已知在正方形网格中,每个小方格都是边长为1的正方形,A、B 两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A、B、C为顶点的三角形面积为1,则点C的个数为A.3个;B.4个;C.5个;D.6个.【例11】如图所示,A、B是4×5网络中的格点,网格中的每个小正方形的边长为1,请在图中清晰标出使以A、B、C为顶点的三角形是等腰三角形的所有格点C的位置.四、网格中图形变换的画图与描述.【例12】在5×5方格纸中将图1中的图形N平移后的位置如图2所示,那么下面平移中正确的是()图1 图2A. 先向下移动1格,再向左移动1格;B. 先向下移动1格,再向左移动2格;C. 先向下移动2格,再向左移动1格;D. 先向下移动2格,再向左移动2格.【例13】如图1,点O、B的坐标分别为(0,0)、(3,0),将△OAB绕O点逆时针方向旋转90°得到△O A′B′.⑴画出△OA′B′;⑵点A′的坐标为________________;⑶求BB′的长.AOB【例14】如图1,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形.在建立平面直角坐标系后,点B的坐标为(-1,-1).(1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1的图形并写出点B1的坐标;(2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C的图形并写出点B2的坐标;(3)把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,画出△AB3C3的图形.图1【例15】如图1,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是关于点O 为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)求出△ABC与△A′B′C′的位似比;(3)以点O为位似中心,再画一个△A1B1C1,使它与△ABC的位似比等于1.5.图1五、网格图形的操作方案设计问题.【例16】如图,在网格中有两个全等的图形(阴影部分),用这两个图形拼成轴对称图形,试分别在图(1)、(2)中画出两种不同的拼法.【例17】如图,在方格纸(每个小方格都是边长为1个单位长度的正方形)中,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形.如图中的△ABC称为格点△ABC.(1)如果A、D两点的坐标分别是(1,1)和(0,-1),请你在方格纸中建立平面直角坐标系,并直接写出点B、点C的坐标;(2)请根据你所学过的平移、旋转或轴对称等知识,说明图中“格点四边形图案”是如何通过“格点△ABC图案”变换得到的.【例18】请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图1,请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x>0).依题意,割补前后图形的面积相等,有25x=x=,解得5的长.于是,画出如图2所示的分割线,拼出如图3所示的新正方形.请你参考小东同学的做法,解决如下问题: 现有10个边长为1的正方形,排列形式如图4,请把它们分割后拼接成一个新的正方形.要求:在图4中画出分割线,并在图5的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.说明:直接画出图形,不要求写分析过程.【例19】操作与探究:(1)图①是一块直角三角形纸片.将该三角形纸片按如图方法折叠,使点A 与点C重合,DE 为折痕.试证明△CBE 等腰三角形;(2)再将图①中的△CBE 沿对称轴EF 折叠(如图②).通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝无重叠)所成的矩形,我们称这样的两个矩形为“组合矩形”.你能将图③中的△ABC 折叠成一个组合矩形吗?如果能折成,请在图③中画出折痕;(3)请你在图④的方格纸中画出一个斜三角形,同时满足下列条件:①折成的组合矩形为正方形;②顶点都在格点(各小正方形的顶点)上;(4)有一些特殊的四边形,如菱形,通过折叠也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四条边上).请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足何条件时,一定能折成组合矩形?图5图4 图1 图2 图3六、利用格点图形探究规律.【例20】在边长为l 的正方形网格中,按下列方式得到“L ”形图形第1个“L ”形图形的周长是8,第2个“L ”形图形的周长是12, 则第n 个“L ”形图形的周长是①③②ABCBCF 图①图②图③图④。
第三章网格作图网格作图的特点:仅利用无刻度直尺,利用格点来作图,所以在网格中作图时一定要体现出过的格点.基本知识一、网格中作平行图1 图2图1中虚线线段均与线段AB平行,仔细观察,可发现线段AB长宽比为3∶1的矩形对角线,故想要作出与AB线段平行的线,必然也要使得作出的线段是长宽比为3∶1的矩形对角线,所以图1、图2均满足要求,即都与AB平行.二、网格中作垂直图1图1中虚线线段均与线段AB垂直,仔细观察,可发现线段AB长宽比为3∶1的矩形对角线,故想要作出与AB线段垂直的线,必然也要使得作出的线段是长宽比为3∶1的矩形对角线.【与平行的区别在于一个竖方向,一个横方向】三、网格中作垂直平分线在网格中垂直平分线的做法,利用垂直平分线性质逆定理,首先需要找到线段A、B两点距离相等的格点,图1中的C、D、E均满足到A、B距离相等,故连接CE(或者ED或者CD均可).此方法也适用于在网格中作线段中点,如图2图1 图2四、网格中等分线段以作三等分为例,在下列网格中,在线段AB上找一点P,使得BP=2AP.此类作图可利用相似的性质来解决,以下示范3种作法作法一 作法二 作法三五、网格中作相似三角形请分别在图1、2中作出一个△DEF ,使得△DEF 与△ABC 相似(图1和图2中的两个三角形不全等)图1 图2 【解析】在网格图中,三角形的任意一条边均可计算出来,所以常规来说只需计算出每条边,同比放大或缩小即可!本题有个特殊角,即∠ABC =135°,所以先找到135°,该角两边同倍缩小或放大即可!(图1缩小为原来的12,即相似比为1∶2;图2似比为1例题讲解例题1、已知在下列边长为1的网格图中,用3种不同的方法作一个直角三角形,使得该直角三角形面积为8.作法一 作法二 作法三【解析】由题意可知,直角边乘积为16,若均为整数,则有1×16,2×8,4×4;若均为无理;也可以从比例去解决,下面分别以上三中思路各作一个三角形.例题2、如图,是由100个边长为1的小正方形组成的10×10正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形.已知△ABC 中,AB ,AC BC =6.(1)请你在所给的网格中画出格点△A 1B 1C 1,使得△A 1B 1C 1与△ABC 相似(画出一个即可,不需证明);(2)试直接写出在所给的网格中与△ABC 相似且面积最大的格点三角形的个数,并画出其中的一个(不需证明).【解析】(1)先画个与△ABC 全等的三角形(如图1),再以∠B 为公共角,将∠B 的边缩小一半即可(如图1)图1 图2(2)因为ABCDNMS S ∆∆=相似比2,故只需使得相似比最大即可,我们找最长边AC格中最长边为对角线,MN=,由此ND DM AB BC =所以可计算出DNDM2中点D 即为关键点,连接DM 、DN 即可.例题3、如图,在每个小正方形的边长为1的网格中,点A 、B 、C 均在格点上.(1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △P AB ∶S △PBC ∶S △PCA =1∶2∶3,请在如图所示的网格中,用无刻度的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明).【解析】(1)AB(2)方法一:关注到S △P AB +S △PBC =S △PCA ,可得到S △PCA =12S △ABC .如图1,找到AB 中点D ,过点D 作AC 平行线,交BC 与点E ,所以点P 必然在线段DE 上.在网格中找到一点M ,使得点C 到MB 的距离与点A 到MB 的距离之比为1∶2.如图2,点Q 为AC 三等分点,连接BO ,与线段DE 交点即为点P .方法二:发现AC边上本身就存在点D、E使得AD:EC:DE=1∶2∶3,先作出如下图形,接着利用平行,将△ADB和△BEC面积转化.过点B作AC平行线,与l1交于点H,与l2交于点G,连接EG、DH,易证EG∥BC,DH ∥AB,所以EG与DH交点即为点P.2、请在如图所示的正方形和等边三角形网格内,仅用无刻度的直尺完成下列作图,过点P 向线段AB引平行线.解:如图所示,PQ即为所求.4、如图,方格图中每个小格的边长为1,仅用直尺过点C画线段CD,使CD∥AB,D是格点,过C作AB的垂线CH,垂足为H.连结BC、AD.(1)试猜想:线段BC与线段AD的关系为;(2)请计算:四边形ABCD的面积为;(3)若线段AB的长为m,则线段CH长度为.(用含m的代数式表示)解:(1)∵AD =BC ==BC ∥AD 且BC =AD .故答案为BC ∥AD 且BC =AD ;(2)S ▱ABCD =3×512-⨯1×212-⨯1×412-⨯1×212-⨯1×4=15﹣1﹣2﹣1﹣2=9.故答案为9;(3)∵AB =,S ▱ABCD =9m ,∴AB •CH =9,即CH=m 5=m .故m .图1 图2 图3 图47、图1,图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角△MON ,使点N 在格点上,且∠MON =90°;(2)在图2中以格点为顶点画出一个正方形ABCD ,使正方形ABCD 面积等于(1)中等腰直角△MON 面积的4倍,并将正方形ABCD 分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD 面积没有剩余(画出一种即可).图1 图2 解:(1)如图1所示:∠MON =90°;图1 图2 图3(2)如图2、3所示.10、如图,将线段AB 放在边长为1的小正方形网格,点A 点B 均落在格点上,请用无刻度直尺在线段AB 上画出点P ,使AP =217,并保留作图痕迹.(备注:本题只是找点不是证明,所以只需连接一对角线就行)解:由勾股定理得,AB 224117=+=,所以,AP 2173=时AP ∶BP =2∶1.点P 如图所示.11、如图,在平面直角坐标系中,A (0,4)、B (4,4)、C (6,2). (1)在图中画出经过A 、B 、C 三点的圆弧所在圆的圆心M 的位置; (2)点M 的坐标为 ;(3)判断点D (5,—2)与OM 的位置关系. (3)判断点D (5,﹣2)与⊙M 的位置关系.解:(1)如图1,点M 就是要找的圆心;(2)圆心M 的坐标为(2,0).故答案为(2,0);(3)圆的半径AM 2224=+=25.线段MD 22(52)213=-+=<25,所以点D 在⊙M 内.12、如图,在单位长度为1的正方形网格中,一段圆弧经过格点A 、B 、C . (1)画出该圆弧所在圆的圆心D 的位置(不用写作法,保留作图痕迹),并连接AD 、CD . (2)请在(1)的基础上,以点0为原点、水平方向所在直线为x 轴、竖直方向所在直线为y轴,建立平面直角坐标系,完成下列问题:①OD的半径为(结果保留根号);②若用扇形ADC围成一个圆锥的侧面,则该圆锥的底面圆半径是;③若E(7,0),试判断直线EC与⊙D的位置关系并说明你的理由.解:(1)根据题意画出相应的图形,如图所示:(2)①在Rt△AOD中,OA=4,OD=2,根据勾股定理得:AD==则⊙D的半径为②AC==CD=AD2+CD2=AC2,∴∠ADC=90°.扇形ADC的弧长==,圆锥的底面的半径=;③直线EC与⊙D的位置关系为相切,理由为:在Rt△CEF中,CF=2,EF=1,根据勾股定理得:CE==在△CDE中,CD=CE=DE=5,∵CE2+CD2=()2+(2=5+20=25,DE2=25,∴CE2+CD2=DE2,∴△CDE为直角三角形,即∠DCE=90°,则CE与圆D相一、构造直角例题1、网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sin A= .【解析】如图,作AD⊥BC于D,CE⊥AB于E,由勾股定理得AB=AC=BC=,AD =ABC 是等腰三角形,由面积相等可得,12BC •AD 12=AB •CE , 即CE 5==,sinA 35CE AC ===,故答案为35.【总结】由于格点三角形各边都可求,所以利用解直角三角形即可求出各个内角的三角函数值.二、角度转换例题2、如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P ,则tan ∠APD 的值是 .思路一:构造直角连接BE ,由四边形EDBC 为正方形可知,CD ⊥BE ,∴tan ∠APD =tan ∠BPF =BFPF,设小正,可得BF =1,CD =2,由△ACP ∽△BDP ,且相似比为3∶1可得PCDP=3, ∴PC CD =34,∴PC =33242⨯=,∴PF =PC —CF =12, ∴tan ∠BPF 1=212=.思路二∶角度转换连接BE ,可知BE ∥CD ,∴∠APD =∠BPF =∠ABE ,连接AE ,AE 和BE 均为正方形对角线,易得AE ⊥BE ,tan ∠ABE =2AEBE=.例题3、在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A 、B 、C 、D 都在格点处,AB 与CD 相交于O ,则tan ∠BOD 的值等于【答案】3 【解析】转化思路一:到格点三角形内,再用例题1的方法(此方法构造情况较多,解法较暴力,在此不一一列举,以下给出三种转化法)转化思路二:思路一的情况下,存在转化出的格点三角形恰好为直角三角形,这类方法最巧妙,但需要学生有较强的观察能力!直角构造思路三:通过连接某些辅助线,构造出直角后直接在直角三角形内求解.2、如图,在4x 5的正方形方格图形中,小正方形的顶点称为格点,△ABC 的顶点都在格点上,则tan ∠ABC = ;sin ∠ACB = .【解析】找到与A 构成小正方形对角线的格点D 、E ,连接CD ,AE ,EB ,AC 与EB 交于点F .由网格特点和正方形的性质可知,∠BAE =90°,根据勾股定理得,AE =AB =,DB ,DC BE ===,则tan ∠ABC 3DCDB==,又BE ⊥AC ,易得△AEF ∽△BAF ,故13AE EF AF AB AF BF ===,∴19EF BF =,∴BF =910⨯sin ∠ACB=BF BC ===,故答案为3.3、如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB ,CD 相交于点P ,则APPB的值= ,tan ∠APD 的值= .【解析】∵四边形BCED 是正方形,∴DB ∥AC ,∴△DBP ∽△CAP ,∴AP ACPB DB==3, 连接BE ,∵四边形BCED 是正方形,∴DF =CF 12=CD ,BF 12=BE ,CD =BE ,BE ⊥CD ,∴BF =CF ,根据题意得:AC ∥BD ,∴△ACP ∽△BDP ,∴DP :CP =BD :AC =1:3,∴DP :DF =1:2,∴DP =PF 12=CF 12=BF ,在Rt △PBF 中,tan ∠BPF BF PF ==2,∵∠APD =∠BPF ,∴tan ∠APD =2,故答案为3,2.5、如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .【解析】如图,连接EA ,EC ,设菱形的边长为a ,由题意得∠AEF =30°,∠BEF =60°,AE =,EB =2a ,∴∠AEC =90°,∵∠ACE =∠ACG =∠BCG =60°, ∴E 、C 、B 共线,在Rt △AEB 中,tan ∠ABC AE BE ===6、如图,网格中的四个格点组成菱形ABCD ,则tan ∠DBC 的值为 .【解析】如图,连接AC 与BD 相交于点O ,∵四边形ABCD 是菱形,∴AC ⊥BD ,BO 12=BD ,CO 12=AC ,由勾股定理得,AC ==,BD ==BO 122==,CO 12=⨯2=tan ∠DBC CO BO ===3.故案为3.7、如图1是由边长为1的小正方形组成的网格,点A 、B 、C 、D 都在网格的格点上,AC 、BD 相交于点O .图1 图2 图3 图4 (一)探索发现(1)如图1,当AB =2时,连接AD ,则∠ADO =90°,BO =2DO ,AD =BO 23=tan ∠AOD = .如图2,当AB =3时,画AH ⊥BD 交BD 的延长线于H ,则AH 32=BO = ,tan ∠AOD = .如图3,当AB =4时,tan ∠AOD = .(2)猜想:当AB =n (n >0)时,tan ∠AOD = .(结果用含n 的代数式表示),请证明你的猜想. (二)解决问题(3)如图,两个正方形的一边CD 、CG 在同一直线上,连接CF 、DE 相交于点O,若tan ∠COE 1713=,求正方形ABCD 和正方形CEFG 的边长之比. 解∶(一)探索发现(1)如图1,当AB =2时,∵BO =2DO ,BO 23=∴OD =又∵∠ADO =90°,AD =tan ∠AOD 3ADOD===3,即tan ∠AOD =3. 如图2,设DCBE 为正方形,连接CE ,交BD 于F .∵四边形BCDE 是正方形, ∴DF =CF =BF 12=BD 12=CE ,BD ⊥CE .根据题意得∶AB ∥DC ,∴△AOB ∽△COD , ∴DO ∶BO =CD ∶AB .当AB =3时,DO ∶BO =1∶3,∴BO 4=.∵S △ABD 12=BD •AH 12=AB •ED ,∴BD •AH =AB •ED ,∴AH 2AB ED BD ⋅===,DO ∶BO =CD ∶AB =1∶3,∴DO ∶DF =1∶2,∴OF ∶DF =1∶2,即OF ∶CF =1∶2.在Rt △OCF 中,tan ∠COF CFOF==2,∵∠AOD =∠COF ,∴tan ∠AOD =2;如图3,当AB =4时,DO ∶BO =CD ∶AB =1∶4,∴DO ∶DF =1∶2.5=2∶5,∴OF ∶DF =3∶5,即OF ∶CF =3∶5.在Rt △OCF 中,tan ∠COF 53CF OF ==,∵∠AOD =∠COF ,∴tan ∠AOD 53=;故答案是32;53;(2)猜想∶当AB =n (n >0)时,tan ∠AOD 11n n +=-(结果用含n 的代数式表示). 证明∶过点A 作AH ⊥BH 于点H ,则AH =BH 2=n .∵AB ∥OD ,∴△AOB ∽△COD , ∴1OB AB nOD CD ==,∴OB 1n =+.∴OH =BH ﹣OB 2=n 1n -+.∴tan ∠AOD 11AHn HDn +===-;故答案是11n n +-; (二)解决问题(3)解:如图4,过点D作DH⊥CF于点H,则tan∠DOHDHHO=.∵∠DOH=∠COE,∴tan∠DOH1713=,又由(一)结论得:117113nn+=-,∴n152=,∴正方形ABCD和正方形CEFG的边长之比为152.图1 图2 图3 图4。