练习-单因素方差分析
- 格式:docx
- 大小:937.41 KB
- 文档页数:4
第10章单因素方差分析单因素方差分析(0ne-Way ANOV A),又称一维方差分析,它能够对单因素多个独立样本的均数进行比较,可以用10种检验方法对变量间的均数进行两两比较(即多重比较检验)并给出方差分析表,还可以作出5种类型图形(Type of plots)和2种均数图形(Means plot options)10.1 单因素方差分析的计量资料[例10—1] 某社区随机抽取了30名糖尿病患者、IGT异常人和正常人进行载脂蛋白(mg/dL)测定,结果示于表10—1。
试问3组人群的载脂蛋白测定结果含量是否相同?(倪宗瓒.卫生统计学.第4版,北京:人民卫生出版社,2001.50)本例是一个完全随机设计的单因素方差分析。
已建立SAS数据集文件并保存Sasuser.onewav4。
(1)进入SAS/Win(v8)系统,单击Solutions-Analysis-Analyst,得到分析家窗口。
(2)单击File-open By SAS Name—Sasuser-0neway4—0K,调入数据文件。
(3)在“分析家”窗口单击Statistics-ANOV A-One way ANOV A,得到图10—1所示对话框。
本例因变量(Dependent)为A(载脂蛋白),单击A—Dependent。
自变量(1ndependent):B(3种人的组别),单击B—Independent 。
图10.1 0ne—way ANOV A:0neway4(单因素方差分析)对话框(4)单击Tests按钮,得到图10—2所示对话框。
在此对话框的ANOV A(F—检验)选项中可进行如下设置。
Analysis of variance,方差分析。
Welch’s variance-weighted ANOV A,威尔奇方差—权重方差分析。
Tests for equal variance,相等方差检验,即方差齐性检验。
Barlett’s test,巴特尼特检验。
北科S P S S软件应用练习题------------------------------------------作者xxxx------------------------------------------日期xxxxSpss第 3 次作业方差分析练习题:第1题(1)【实验目的】学会单因素方差分析(2)【实验内容】1、入户推销有五种方法。
某大公司想比较这五种方法有无显著的效果差异,设计了一项实验。
从尚无推销经验的应聘人员中随机挑选一部分,并随机将他们分为五个组,每种用一种推销方法培训。
一段时期后得到他们在一个月的推销额,如下表所示:第一组20第二组第三组第四组第五组(1)利用单因素方差分析方法分析这五种推销方式是否存在显著差异?(2)绘制各组的均值比对图,并利用LSD方法进行剁成比较检验。
(3)【操作步骤】在数据编辑窗口输入组别和推销额→分析→比较平均值→单因素ANOVA检验→将“推销额”转入“因变量列表”→将“组别”转入“因子”→确定分析→一般线性模型→单变量→将“推销额”转入“因变量”→将“组别”转入“固定因子”→事后比较→将“组别”转入“下列各项的事后检验”→选中“LSD”→继续→确定(4)【输出结果】ANOVAVAR00002平方和自由度均方 F 显著性组间 4 .000组内30总计34主体间因子个案数VAR00001 77777主体间效应检验因变量: VAR00002源III 类平方和自由度均方 F 显著性修正模型a 4 .000 截距 1 .000 VAR00001 4 .000 误差30总计35修正后总计34a. R 方 = .601(调整后 R 方 = .547)*.000*.000基于实测平均值。
误差项是均方(误差)。
*. 平均值差值的显著性水平为 .05。
(5)【结果分析】1.五种单因素相等重复试验,考察推销额。
方差分析结果:不同推销方式对推销额有影响,即五种推销方式存在显著差异。
单因素⽅差分析(one-wayANOVA)单因素⽅差分析(⼀)单因素⽅差分析概念是⽤来研究⼀个控制变量的不同⽔平是否对观测变量产⽣了显著影响。
这⾥,由于仅研究单个因素对观测变量的影响,因此称为单因素⽅差分析。
例如,分析不同施肥量是否给农作物产量带来显著影响,考察地区差异是否影响妇⼥的⽣育率,研究学历对⼯资收⼊的影响等。
这些问题都可以通过单因素⽅差分析得到答案。
(⼆)单因素⽅差分析步骤第⼀步是明确观测变量和控制变量。
例如,上述问题中的观测变量分别是农作物产量、妇⼥⽣育率、⼯资收⼊;控制变量分别为施肥量、地区、学历。
第⼆步是剖析观测变量的⽅差。
⽅差分析认为:观测变量值的变动会受控制变量和随机变量两⽅⾯的影响。
据此,单因素⽅差分析将观测变量总的离差平⽅和分解为组间离差平⽅和和组内离差平⽅和两部分,⽤数学形式表述为:SST=SSA+SSE。
第三步是通过⽐较观测变量总离差平⽅和各部分所占的⽐例,推断控制变量是否给观测变量带来了显著影响。
(三)单因素⽅差分析原理总结在观测变量总离差平⽅和中,如果组间离差平⽅和所占⽐例较⼤,则说明观测变量的变动主要是由控制变量引起的,可以主要由控制变量来解释,控制变量给观测变量带来了显著影响;反之,如果组间离差平⽅和所占⽐例⼩,则说明观测变量的变动不是主要由控制变量引起的,不可以主要由控制变量来解释,控制变量的不同⽔平没有给观测变量带来显著影响,观测变量值的变动是由随机变量因素引起的。
(四)单因素⽅差分析基本步骤1、提出原假设:H0——⽆差异;H1——有显著差异2、选择检验统计量:⽅差分析采⽤的检验统计量是F统计量,即F值检验。
3、计算检验统计量的观测值和概率P值:该步骤的⽬的就是计算检验统计量的观测值和相应的概率P值。
4、给定显著性⽔平,并作出决策(五)单因素⽅差分析的进⼀步分析在完成上述单因素⽅差分析的基本分析后,可得到关于控制变量是否对观测变量造成显著影响的结论,接下来还应做其他⼏个重要分析,主要包括⽅差齐性检验、多重⽐较检验。