“弹性力学”期末考试
- 格式:doc
- 大小:146.50 KB
- 文档页数:9
《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。
2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。
3.等截面直杆扭转问题中, M dxdy D=⎰⎰2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。
4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。
5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。
二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。
圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显着的改变,但远处的应力所受影响可以忽略不计。
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。
(2)将次要的位移边界条件转化为应力边界条件处理。
2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。
题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 ? 已知。
试求薄板面积的改变量S ∆。
题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。
由q E)1(1με-=得,设板在力P 作用下的面积改变为S ∆,由功的互等定理有: 将l ∆代入得:显然,S ∆与板的形状无关,仅与E 、μ、l 有关。
4.图示曲杆,在b r =边界上作用有均布拉应力q ,在自由端作用有水平集中力P 。
《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。
2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。
3.等截面直杆扭转问题中, M dxdy D=⎰⎰2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。
4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。
5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。
二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。
圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。
(2)将次要的位移边界条件转化为应力边界条件处理。
2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。
题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++=)(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。
试求薄板面积的改变量S ∆。
题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。
由q E)1(1με-=得,)1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。
弹性力学2005 期末考试复习资料一、简答题1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题?答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。
应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。
平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。
应注意当物体的位移分量完全确定时,形变量即完全确定。
反之,当形变分量完全确定时,位移分量却不能完全确定。
平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。
应注意平面应力问题和平面应变问题物理方程的转换关系。
2.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明。
答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。
位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。
应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。
混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。
3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。
如何确定它们的正负号?答:弹性体任意一点的应力状态由6个应力分量决定,它们是:σx、σy、σz、τxy、τyz、、τzx。
正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。
负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。
4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。
答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。
(2)假定物体是完全弹性的。
(3)假定物体是均匀的。
(4)假定物体是各向同性的。
弹性力学期末考试复习题
一、选择题
1. 弹性力学的基本假设是什么?
A. 材料是均匀的
B. 材料是各向同性的
C. 材料是线弹性的
D. 所有选项都是
2. 弹性模量和泊松比之间有什么关系?
A. 它们是独立的
B. 它们之间存在数学关系
C. 弹性模量总是大于泊松比
D. 泊松比总是小于0.5
二、简答题
1. 简述胡克定律的基本内容及其适用范围。
2. 解释什么是平面应力问题和平面应变问题,并给出它们的区别。
三、计算题
1. 给定一个矩形板,尺寸为2米×1米,厚度为0.1米,材料的弹性
模量为200 GPa,泊松比为0.3。
若在板的一侧施加均匀压力为1 MPa,求板的中心点的位移。
2. 一个圆柱形压力容器,内径为2米,外径为2.05米,材料的弹性
模量为210 GPa,泊松比为0.3。
求在内部压力为10 MPa时,容器壁
的最大应力。
四、论述题
1. 论述弹性力学在工程实际中的应用及其重要性。
2. 讨论材料的非线性行为对弹性力学分析的影响。
五、案例分析题
分析一个实际工程问题,如桥梁、大坝或高层建筑的结构设计,说明
在设计过程中如何应用弹性力学的原理来确保结构的稳定性和安全性。
结束语
弹性力学是一门理论性和实践性都很强的学科,希望同学们能够通过
本次复习,加深对弹性力学基本原理的理解和应用能力,为解决实际
工程问题打下坚实的基础。
祝大家考试顺利!。
《弹性力学及有限元基础》期末考试班级: 姓名: 学号:一.填空题(37分)1(9分). 杆件在竖向体力分量f (常量)的作用下,其应力分量为:x C x 1=σ;32C y C y +=σ;0=xy τ。
支承条件如图所示,C 1 =______ ;C 2=______; C 3=______。
2(12分). 一无限长双箱管道,深埋在地下,如图2所示,两箱中输送的气体压强均为σ0,设中间隔板AB (图中阴影所示)的位移分量为:u = Cx , v = 0,隔板材料模量为E 和μ。
计算隔板上各点的应力分量:σx = _______, σy ,= ______, σz =______。
3(9分). 圆环的内半径为r ,外半径为R ,受内压力q 1及外压力q 2的作用。
若内表面的环向应力为0,则内外压力的关系是:_________________。
4(10分).等截面实心直杆受扭矩的作用,假设应力函数为:()()222222y bx a by x a k -++-=Φ,扭矩引起的单位长度扭转角测得为θ,材料的剪切弹性模量为G ,a 、b 均为常数,则k = _____ 二.分析题5.(20分)一宽度为b 的单向薄板,两长边简支,横向荷载为⎪⎭⎫⎝⎛=b y p p πsin 0,计算板的挠度方程。
(设材料的弹性模量为E ,泊松比为μ,薄板的弯曲刚度为D )6.(20分)如图,一长度为l 的简支梁,在距右端为c 的位置作用一集中荷载P ,请用里兹法计算梁的挠度曲线。
(设挠度曲线为)(x l ax w -=,a 为代求系数)7.(23分)1cm 厚的三角形悬臂梁,长4m ,高2m 。
其三个顶点i , j , k 及内部点m 的面积坐标如图所示。
在面积坐标(1/8,1/2,3/8)处和j 节点处受到10kN 的集中力的作用,在jk 边受到垂直于斜边的线性分布力的作用。
用一个4节点的三角形单元对此题1图 题2图 x 题5图悬臂梁进行有限元分析,域内任一点的位移都表示成⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+++=+++=m m k k j j i i m m k k j j i i v N v N v N v N v u N u N u N u N u 。
1、弹性力学的基本假设是什么?弹性力学的基本假设是:连续性、完全弹性、均匀性、各向同性、小变形假定。
2、简述什么是弹性力学?弹性力学与材料力学的主要区别?弹性力学又称为弹性理论,事固体力学的一个分支,其中研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变何位移。
弹性力学与材料力学的区别:从研究对象看;材料力学主要研究杆件,在拉压、剪、弯、扭转等作用下的应力、形变何位移。
弹性力学研究各种形状的弹性体,出杆件外,还研究平面体、空间体、平板和壳体等。
从研究方法看;弹性力学的研究方法是;在弹性体区域内必须严格地考虑静力学、几何学和物理学;而材料力学中虽然也考虑这几方面的条件,但不是十分严密。
3、如图所示悬臂梁,试写出其边界条件。
解:(1)x a =,1,00,0x y l m f f ==⎧⎪⎨==⎪⎩由()()()()x s xy s xy s xy s yl m f m l f στστ+=+=得()()0,0x xy s s στ==(2),y h =-0,10,x y l m f f q==-⎧⎪⎨==⎪⎩()()()()0(1)0(1)0x xy s s y xy ssqστστ⋅+⋅-=⋅-+⋅=则()(),0y xy s s q στ=-=(3),y h =+0,10,0x y l m f f ==+⎧⎪⎨==⎪⎩()()()()0(1)0(1)00x xy s s y xy ssστστ⋅+⋅+=⋅++⋅=得()()0,0y xy s s στ==(4)0,x =00s su v =⎧⎨=⎩4、已知下列位移,试求在坐标为(2,6,8)的P 点的应变状态()32103012-⨯+=x u ,31016-⨯=zy v ,()321046-⨯-=xy z w解:根据⎪⎭⎫ ⎝⎛∂∂+∂∂==∂∂=∂∂+∂∂==∂∂=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂==∂∂=z u x w zw z v y w y v x v y u x u zx zx z yz yz y xy xy x 2121,)(2121,2121,εγεεγεεγε 得到-34801201284410124496ij ε-⎡⎤⎢⎥=⨯⎢⎥⎢⎥-⎣⎦5、图示平面薄板,弹性模量E=200GPa ,泊松比v=0.3,求各应变分量()[]()[]()[]⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=+-=+-=yx z z x z y y z y x x v E v E v E σσσεσσσεσσσε111⎪⎪⎪⎩⎪⎪⎪⎨⎧===G G G zx zx yz yz xy xy τγτγτγ 得到100MPa50MPa41075.5-⨯=x ε,4104-⨯-=y ε, 41075.0-⨯-=z ε,0===yz xz xy γγγ6、下面给出平面应力问题(单连通域)的应力场,试分别判断它们是否为可能的应力场(不计体力)。
《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。
2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。
3.等截面直杆扭转问题中, M dxdy D=⎰⎰2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。
4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。
5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。
二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。
圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。
(2)将次要的位移边界条件转化为应力边界条件处理。
2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。
题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。
试求薄板面积的改变量S ∆。
题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。
由q E)1(1με-=得,)1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。
弹性力学期末考试试题及答案一、名词解释(每题5分,共25分)1. 弹性力2. 弹簧常数3. 应力4. 应变5. 胡克定律6. 弹性模量7. 弹性体的形变8. 弹性位移9. 弹性能量10. 弹性碰撞二、选择题(每题2分,共20分)1. 以下哪种材料不属于弹性材料?A. 钢铁B. 橡胶C. 玻璃D. 水2. 在弹性限度内,弹性力与形变量之间的关系遵循哪一定律?A. 平方律B. 立方律C. 直线律D. 反比律3. 一弹簧的弹簧常数为50N/m,当一个力作用于弹簧上使其压缩0.1m时,弹簧的弹性势能为多少?A. 0.5JB. 1JC. 2JD. 5J4. 下列哪种情况下,弹簧的弹性力最大?A. 弹簧处于自然长度时B. 弹簧被压缩时C. 弹簧被拉伸时D. 弹簧被压缩或拉伸到极限时5. 两个相同的弹性球碰撞,如果它们的弹性系数不同,那么碰撞后它们的速度关系是?A. 速度大小不变,方向相反B. 速度大小不变,方向相同C. 速度大小发生变化,方向相反D. 速度大小发生变化,方向相同三、填空题(每题5分,共25分)1. 一弹性体的形变是指其_________的变化。
2. 在弹性碰撞中,两个物体的速度满足_________定律。
3. 弹簧的弹簧常数_________,表示弹簧的_________。
4. 当一个力作用于弹性体上时,该力与弹性体的_________之比称为应力。
5. 弹性模量是衡量材料_________的物理量。
四、计算题(共40分)1. 一弹簧的弹簧常数为200N/m,当一个力作用于弹簧上使其压缩0.5m时,求弹簧的弹性势能。
(5分)2. 质量为2kg的物体从静止开始沿斜面滑下,斜面与水平面的夹角为30°,斜面长度为10m,摩擦系数为0.2。
求物体滑到斜面底部时的速度。
(5分)3. 两个弹性球A和B,质量分别为m1和m2,弹性系数分别为k1和k2。
它们从静止开始相互碰撞,求碰撞后A和B的速度。
ϕ题二(2)图+ 2cy(b )⎨⎧=++= )(),(),(323θθϕϕf r r cxy y bx ax y x 题二(3)图题二(4)图;题三(1)图,可近似视为半平面体边界受一集中力偶题三(2)图,截面惯性矩为123h I =,由材料力学计算公式有My2-==σ题二(3)图。
抗弯刚度为EI,在自由端受集中力题二(3)图4.图示弹性薄板,作用一对拉力P 。
试由功的互等定理证明:薄板的面积改变量S ∆与板的形状无关,仅与材料的弹性模量E 、泊松比 、两力P 作用点间的距离l 有关。
题二(4)图5.下面给出平面问题(单连通域)的一组应变分量,试判断它们是否可能。
),(22y x C x +=ε,2Cy y =εCxy xy 2=γ。
6.等截面直杆扭转问题的应力函数解法中,应力函数),(y x ϕ应满足:GK22-=∇ϕ 式中:G 为剪切弹性模量;K 为杆件单位长度扭转角。
试说明该方程的物理意义。
三、计算题1.图示无限大薄板,在夹角为90°的凹口边界上作用有均匀分布剪应力q 。
已知其应力函数为:)2cos (2B A r +=θϕ 不计体力,试求其应力分量。
(13分)题三(1)图2.图示矩形截面杆,长为l ,截面高为h ,宽为单位1,受偏心拉力N ,偏心距为 e ,不计杆的体力。
试用应力函数23By Ay +=ϕ求杆的应力分量,并与材料力学结果比较。
θθαττ(12分)题三(2)图3.图示简支梁,其跨度为l ,抗弯刚度EI 为常数,受有线性分布载荷q 作用。
试求:(1)用三角函数形式和多项式写出梁挠度(w )近似函数的表达式;(2)在上述梁挠度(w )近似函数中任选一种,用最小势能原理或Ritz 法求梁挠度(w )的近似解(取2项待定系数)。
(13分)题三(3)图4.图示微小四面体OABC ,OA = OB = OC ,D 为AB 的中点。
设O 点的应变张量为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=03.001.0001.002.0005.00005.001.0ij ε试求D 点处单位矢量v 、t 方向的线应变。
本科弹性力学试题及答案一、选择题(每题2分,共20分)1. 弹性力学中,下列哪一项不是基本假设?A. 连续性假设B. 均匀性假设C. 各向异性假设D. 小变形假设答案:C2. 在弹性力学中,下列哪一项不是应力的类型?A. 正应力B. 剪应力C. 拉应力D. 弯应力答案:D3. 弹性模量E和泊松比μ之间存在以下哪种关系?A. E = 2G(1+μ)B. E = 3G(1-2μ)C. E = 3G(1+μ)D. E = 2G(1-μ)答案:C4. 弹性力学中的圣维南原理适用于以下哪种情况?A. 仅适用于平面应力问题B. 仅适用于平面应变问题C. 适用于平面应力和平面应变问题D. 不适用于任何情况答案:C5. 弹性力学中,下列哪一项不是位移场的基本方程?A. 几何方程B. 物理方程C. 运动方程D. 边界条件答案:D6. 弹性力学中,下列哪一项不是平面应力问题的特点?A. 应力分量σz=0B. 应变分量εz≠0C. 应力分量τxz=τyz=0D. 应变分量γxz=γyz=0答案:B7. 弹性力学中,下列哪一项不是平面应变问题的特点?A. 应力分量σz≠0B. 应变分量εz=0C. 应力分量τxz=τyz=0D. 应变分量γxz=γyz=0答案:A8. 弹性力学中,下列哪一项不是应力集中的类型?A. 几何不连续引起的应力集中B. 材料不连续引起的应力集中C. 载荷不连续引起的应力集中D. 温度不连续引起的应力集中答案:D9. 弹性力学中,下列哪一项不是弹性常数?A. 杨氏模量EB. 泊松比μC. 剪切模量GD. 体积模量K答案:D10. 弹性力学中,下列哪一项不是弹性体的基本性质?A. 均匀性B. 连续性C. 各向同性D. 各向异性答案:D二、填空题(每题2分,共20分)1. 弹性力学中,应力状态的基本方程包括______、______和______。
答案:几何方程、物理方程、平衡方程2. 弹性力学中,应变能密度W与应力分量和应变分量的关系为W=______。