(完整word版)2015年10浙江省高中数学学考试题及标准答案(高清WORD版).docx
- 格式:docx
- 大小:87.96 KB
- 文档页数:6
2015年浙江省高考数学试题及答案(理科)【解析版】D点评: 此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)(2015•浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A . 8cm 3B .12cm 3 C .D .考点: 由三视图求面积、体积.专题: 空间位置关系与距离.分析: 判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答: 解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C .点评: 本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)(2015•浙江)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( ) A . a 1d >0,dS 4>0 B . a 1d <0,dS 4<0C . a 1d >0,dS 4<0D . a 1d <0,dS 4>0考点: 等差数列与等比数列的综合.专题: 等差数列与等比数列.分析: 由a 3,a 4,a 8成等比数列,得到首项和公差的关系,即可判断a 1d 和dS 4的符号. 解答: 解:设等差数列{a n }的首项为a 1,则a 3=a 1+2d ,a 4=a 1+3d ,a 8=a 1+7d , 由a 3,a 4,a 8成等比数列,得,整理得:.∵d ≠0,∴,∴,=<0.故选:B.点评:本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,是基础题.4.(5分)(2015•浙江)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n0考点:命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.点评:本题主要考查含有量词的命题的否定,比较基础.5.(5分)(2015•浙江)如图,设抛物线y2=4x 的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C 在y轴上,则△BCF与△ACF的面积之比是()A .B.C.D.考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分根据抛物线的定义,将三角形的面积关系转析:化为的关系进行求解即可.解答:解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于E,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,故选:A点评:本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.6.(5分)(2015•浙江)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d (A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立考点:复合命题的真假.专题:集合;简易逻辑.分析:命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.解答:解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card(A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card (A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d (A ,B )=card (A ∪B )﹣card (A ∩B ),d (B ,C )=card (B ∪C )﹣card (B ∩C ),∴d (A ,B )+d (B ,C )=card (A ∪B )﹣card (A ∩B )+card (B ∪C )﹣card (B ∩C )=[card (A ∪B )+card (B ∪C )]﹣[card (A ∩B )+card (B ∩C )]≥card (A ∪C )﹣card (A ∩C )=d (A ,C ),故命题②成立, 故选:A 点评: 本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.7.(5分)(2015•浙江)存在函数f (x )满足,对任意x ∈R 都有( ) A .f (sin2x )=sinx B . f (sin2x )=x 2+xC . f (x 2+1)=|x+1|D . f (x 2+2x)=|x+1|考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:利用x取特殊值,通过函数的定义判断正误即可.解答:解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f (x )=,对任意x ∈R ,都有f(x 2+2x )=|x+1|; ∴该选项正确. 故选:D . 点评: 本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.8.(5分)(2015•浙江)如图,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 折成△A ′CD ,所成二面角A ′﹣CD ﹣B 的平面角为α,则( )A . ∠A ′DB ≤α B . ∠A ′D B ≥αC . ∠A ′C B ≤αD . ∠A ′C B ≥α 考点: 二面角的平面角及求法.专题:创新题型;空间角.分析:解:画出图形,分AC=BC,AC≠BC两种情况讨论即可.解答:解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.点评:本题考查空间角的大小比较,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•浙江)双曲线=1的焦距是2,渐近线方程是y=±x.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:确定双曲线中的几何量,即可求出焦距、渐近线方程.解答:解:双曲线=1中,a=,b=1,c=,∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.点评:本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.10.(6分)(2015•浙江)已知函数f(x)=,则f(f(﹣3))=0,f(x)的最小值是.考函数的值.点:专题:计算题;函数的性质及应用.分析:根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x≥1时,f(x)=,当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解解答:解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x )的最小值是.故答案为:0;.点评:本题主要考查了分段函数的函数值的求解,属于基础试题.11.(6分)(2015•浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是π,单调递减区间是[kπ+,kπ+](k∈Z).考点: 两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.专题:三角函数的求值.分析: 由三角函数公式化简可得f (x )=sin (2x ﹣)+,易得最小正周期,解不等式2k π+≤2x ﹣≤2k π+可得函数的单调递减区间.解答: 解:化简可得f (x )=sin 2x+sinxcosx+1 =(1﹣cos2x )+sin2x+1=sin (2x ﹣)+,∴原函数的最小正周期为T==π, 由2k π+≤2x ﹣≤2k π+可得k π+≤x ≤k π+,∴函数的单调递减区间为[k π+,k π+](k ∈Z )故答案为:π;[k π+,k π+](k ∈Z ) 点评: 本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.12.(4分)(2015•浙江)若a=log43,则2a+2﹣a =.考点:对数的运算性质.专题:函数的性质及应用.分析:直接把a代入2a+2﹣a,然后利用对数的运算性质得答案.解答:解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.点评:本题考查对数的运算性质,是基础的计算题.13.(4分)(2015•浙江)如图,三棱锥A﹣BCD 中,AB=AC=BD=CD=3,AD=BC=2,点M,N 分别是AD,BC的中点,则异面直线AN,CM 所成的角的余弦值是.考点:异面直线及其所成的角.专题:空间角.分析:连结ND,取ND 的中点为:E,连结ME说明异面直线AN,CM所成的角就是∠EMC 通过解三角形,求解即可.解答:解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.点评: 本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.14.(4分)(2015•浙江)若实数x ,y 满足x 2+y 2≤1,则|2x+y ﹣2|+|6﹣x ﹣3y|的最小值是 3 . 考点:函数的最值及其几何意义.专题:不等式的解法及应用;直线与圆.分析: 根据所给x ,y 的范围,可得|6﹣x ﹣3y|=6﹣x ﹣3y ,再讨论直线2x+y ﹣2=0将圆x 2+y 2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值. 解答: 解:由x 2+y 2≤1,可得6﹣x ﹣3y >0,即|6﹣x ﹣3y|=6﹣x ﹣3y ,如图直线2x+y ﹣2=0将圆x 2+y 2=1分成两部分,在直线的上方(含直线),即有2x+y ﹣2≥0,即|2+y ﹣2|=2x+y ﹣2,此时|2x+y ﹣2|+|6﹣x ﹣3y|=(2x+y ﹣2)+(6﹣x ﹣3y )=x ﹣2y+4,利用线性规划可得在A (,)处取得最小值3;在直线的下方(含直线),即有2x+y ﹣2≤0, 即|2+y ﹣2|=﹣(2x+y ﹣2),此时|2x+y ﹣2|+|6﹣x ﹣3y|=﹣(2x+y ﹣2)+(6﹣x ﹣3y )=8﹣3x ﹣4y ,利用线性规划可得在A (,)处取得最小值3.综上可得,当x=,y=时,|2x+y ﹣2|+|6﹣x ﹣3y|的最小值为3. 故答案为:3.点评:本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.15.(6分)(2015•浙江)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R ,,则x0= 1,y 0=2,|=2.考点:空间向量的数量积运算;平面向量数量积的运算.专题:创新题型;空间向量及应用.分析:由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),由已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t 2,由题意可得当x=x 0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得|.解答:解:∵•=||||cos<•>=cos<•>=,∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y ,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2 =x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y ﹣2)2+t2取最小值1,此时t2=1,故|==2故答案为:1;2;2点评:本题考查空间向量的数量积,涉及向量的模长公式,属中档题.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC 的面积为3,求b 的值.考点:余弦定理.专题:解三角形.分析: (1)由余弦定理可得:,已知b 2﹣a 2=c 2.可得,a=.利用余弦定理可得cosC .可得sinC=,即可得出tanC=. (2)由=×=3,可得c ,即可得出b .解答:解:(1)∵A=,∴由余弦定理可得:,∴b 2﹣a 2=bc ﹣c 2, 又b 2﹣a 2=c 2.∴bc ﹣c 2=c 2.∴b=c .可得,∴a 2=b 2﹣=,即a=. ∴cosC===.∵C ∈(0,π),∴sinC==. ∴tanC==2.(2)∵=×=3,解得c=2. ∴=3.点评:本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.17.(15分)(2015•浙江)如图,在三棱柱ABC ﹣A 1B 1C 1中,∠BAC=90°,AB=AC=2,A 1A=4,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.(1)证明:A 1D ⊥平面A 1BC ;(2)求二面角A 1﹣BD ﹣B 1的平面角的余弦值.考点: 二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析: (1)以BC 中点O 为坐标原点,以OB 、OA 、OA 1所在直线分别为x 、y 、z 轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A 1BD 的法向量与平面B 1BD 的法向量的夹角的余弦值的绝对值的相反数,计算即可.解答: (1)证明:如图,以BC 中点O 为坐标原点,以OB 、OA 、OA 1所在直线分别为x 、y 、z轴建系.则BC=AC=2,A 1O==,易知A 1(0,0,),B (,0,0),C (﹣,0,0),A (0,,0),D (0,﹣,),B 1(,﹣,),=(0,﹣,0),=(﹣,﹣,), =(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A 1D ⊥OA 1, 又∵•=0,∴A 1D ⊥BC ,又∵OA 1∩BC=O ,∴A 1D ⊥平面A 1BC ; (2)解:设平面A 1BD 的法向量为=(x ,y ,z ), 由,得,取z=1,得=(,0,1),设平面B 1BD 的法向量为=(x ,y ,z ), 由,得,取z=1,得=(0,,1), ∴cos <,>===,又∵该二面角为钝角,∴二面角A 1﹣BD ﹣B 1的平面角的余弦值为﹣.点评:本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.18.(15分)(2015•浙江)已知函数f(x)=x2+ax+b (a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.解答:解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b )≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.点评:本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解M(a,b)是|f (x)|在区间[﹣1,1]上的最大值,以及利用三角不等式变形.19.(15分)(2015•浙江)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB =,再利用均值不等式即可得出.解答:解:(1)由题意,可设直线AB的方程为x=﹣my+n ,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m ×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m 2,∴或m.(2)直线AB与x轴交点纵坐标为n,∴S△OAB ==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S△AOB =,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB 取得最大值为.点评:本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)(2015•浙江)已知数列{a n }满足a 1=且a n+1=a n ﹣a n 2(n ∈N *) (1)证明:1≤≤2(n ∈N *);(2)设数列{a n 2}的前n 项和为S n ,证明(n ∈N *).考点:数列的求和;数列与不等式的综合.专题:创新题型;点列、递归数列与数学归纳法. 分析: (1)通过题意易得0<a n ≤(n ∈N *),利用a n ﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n ﹣a n+1累加得S n =﹣a n+1,利用数学归纳法可证明≥a n ≥(n ≥2),从而≥≥,化简即得结论.解答:证明:(1)由题意可知:0<a n ≤(n ∈N *), 又∵a 2=a 1﹣=,∴==2,又∵a n ﹣a n+1=,∴a n >a n+1,∴≥1,∴==≤2,∴1≤≤2(n ∈N *);(2)由已知,=a n ﹣a n+1,=a n ﹣1﹣a n ,…,=a 1﹣a 2, 累加,得S n =++…+=a 1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立; 当n ≥2时,=.下面证明:≥a n ≥(n ≥2).易知当n=2时成立,假设当n=k 时也成立,则a k+1=﹣+, 由二次函数单调性知:a n+1≥﹣+=≥, a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n ≥2,均有≥a n ≥, ∴=≥≥=,即(n ∈N *).点评: 本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.2015年浙江省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2015•浙江)已知集合P={x|x 2﹣2x ≥0},Q={x|1<x ≤2},则(∁R P )∩Q=( ) A .[0,1) B .(0,2] C .(1,2) D .[1,2]2.(5分)(2015•浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .8cm 3 B .12cm 3 C .D .3.(5分)(2015•浙江)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( )A . a 1d >0,dS 4>0B . a 1d <0,dS 4<0C . a 1d >0,dS 4<0D . a 1d <0,dS 4>04.(5分)(2015•浙江)命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A . ∀n ∈N *,f (n )∉N *且f (n )>n B . ∀n ∈N *,f (n )∉N *或f (n )>n C . ∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0D . ∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 05.(5分)(2015•浙江)如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A .B .C.D .6.(5分)(2015•浙江)设A ,B 是有限集,定义:d (A ,B )=card (A ∪B )﹣card (A ∩B ),其中card (A )表示有限集A 中的元素个数( )命题①:对任意有限集A ,B ,“A ≠B ”是“d (A ,B )>0”的充分必要条件;命题②:对任意有限集A ,B ,C ,d (A ,C )≤d (A ,B )+d (B ,C )A . 命题①和命题②都成立B . 命题①和命题②都不成立 C . 命题①成立,命题②不成立 D . 命题①不成立,命题②成立7.(5分)(2015•浙江)存在函数f (x )满足,对任意x ∈R 都有( ) A . f (sin2x )=sinx B . f (sin2x )=x 2+xC . f (x 2+1)=|x+1|D . f (x 2+2x)=|x+1|8.(5分)(2015•浙江)如图,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 折成△A ′CD ,所成二面角A ′﹣CD ﹣B 的平面角为α,则( )A . ∠A ′DB ≤α B . ∠A ′D B ≥αC . ∠A ′C B ≤αD . ∠A ′C B ≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 9.(6分)(2015•浙江)双曲线=1的焦距是 ,渐近线方程是 .10.(6分)(2015•浙江)已知函数f (x )=,则f (f (﹣3))= ,f (x )的最小值是 .11.(6分)(2015•浙江)函数f (x )=sin 2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)(2015•浙江)若a=log43,则2a+2﹣a=.13.(4分)(2015•浙江)如图,三棱锥A﹣BCD 中,AB=AC=BD=CD=3,AD=BC=2,点M,N 分别是AD,BC的中点,则异面直线AN,CM 所成的角的余弦值是.14.(4分)(2015•浙江)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)(2015•浙江)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=,y0=,|=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b 2﹣a 2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)(2015•浙江)如图,在三棱柱ABC ﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)(2015•浙江)已知函数f(x)=x2+ax+b (a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)(2015•浙江)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)(2015•浙江)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n ,证明(n∈N*).41。
2015年浙江省高考数学试卷(文科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2015•浙江)已知集合P={x|x2﹣2x≥3},Q={x|2<x<4},则P∩Q=()A.[3,4)B.(2,3]C.(﹣1,2)D.(﹣1,3]考点:交集及其运算.专题:集合.分析:求出集合P,然后求解交集即可.解答:解:集合P={x|x2﹣2x≥3}={x|x≤﹣1或x≥3},Q={x|2<x<4},则P∩Q={x|3≤x<4}=[3,4).故选:A.点评:本题考查二次不等式的解法,集合的交集的求法,考查计算能力.2.(5分)(2015•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8cm3B.12cm3C.D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)(2015•浙江)设a,b是实数,则“a+b>0”是“ab>0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:利用特例集合充要条件的判断方法,判断正确选项即可.解答:解:a,b是实数,如果a=﹣1,b=2则“a+b>0”,则“ab>0”不成立.如果a=﹣1,b=﹣2,ab>0,但是a+b>0不成立,所以设a,b是实数,则“a+b>0”是“ab>0”的既不充分也不必要条件.故选:D.点评:本题考查充要条件的判断与应用,基本知识的考查.4.(5分)(2015•浙江)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β,()A.若l⊥β,则α⊥βB.若α⊥β,则l⊥m C.若l∥β,则α∥βD.若α∥β,则l∥m考点:空间中直线与平面之间的位置关系.专题:综合题;空间位置关系与距离.分析: A根据线面垂直的判定定理得出A正确;B根据面面垂直的性质判断B错误;C根据面面平行的判断定理得出C错误;D根据面面平行的性质判断D错误.解答:解:对于A,∵l⊥β,且l⊂α,根据线面垂直的判定定理,得α⊥β,∴A正确;对于B,当α⊥β,l⊂α,m⊂β时,l与m可能平行,也可能垂直,∴B错误;对于C,当l∥β,且l⊂α时,α与β可能平行,也可能相交,∴C错误;对于D,当α∥β,且l⊂α,m⊂β时,l与m可能平行,也可能异面,∴D错误.故选:A.点评:本题考查了空间中的平行与垂直关系的应用问题,也考查了数学符号语言的应用问题,是基础题目.5.(5分)(2015•浙江)函数f(x)=(x ﹣)cosx(﹣π≤x≤π且x≠0)的图象可能为()A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:由条件可得函数f(x)为奇函数,故它的图象关于原点对称;再根据在(0,1)上,f(x)<0,结合所给的选项,得出结论.解答:解:对于函数f(x)=(x ﹣)cosx(﹣π≤x≤π且x≠0),由于它的定义域关于原点对称,且满足f(﹣x)=(﹣x)cosx=﹣f(x),故函数f(x)为奇函数,故它的图象关于原点对称.故排除A、B.再根据在(0,1)上,>x,cosx>0,f(x)=(x ﹣)cosx<0,故排除C,故选:D.点评:本题主要考查函数的奇偶性的判断,奇函数的图象特征,函数的定义域和值域,属于中档题.6.(5分)(2015•浙江)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m2)分别为x,y,z,且x<y<z,三种颜色涂料的粉刷费用(单位:元/m2)分别为a,b,c,且a<b<c.在不同的方案中,最低的总费用(单位:元)是()A.a x+by+cz B.a z+by+cx C.a y+bz+cx D.a y+bx+cz考点:函数的最值及其几何意义.专题:函数的性质及应用.分析:作差法逐个选项比较大小可得.解答:解:∵x<y<z且a<b<c,∴ax+by+cz﹣(az+by+cx)=a(x﹣z)+c(z﹣x)=(x﹣z)(a﹣c)>0,∴ax+by+cz>az+by+cx;同理ay+bz+cx﹣(ay+bx+cz)=b(z﹣x)+c(x﹣z)=(z﹣x)(b﹣c)<0,∴ay+bz+cx<ay+bx+cz;同理az+by+cx﹣(ay+bz+cx)=a(z﹣y)+b(y﹣z)=(z﹣y)(a﹣b)<0,∴az+by+cx<ay+bz+cx,∴最低费用为az+by+cx故选:B点评:本题考查函数的最值,涉及作差法比较不等式的大小,属中档题.7.(5分)(2015•浙江)如图,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P满足∠PAB= 30°,则点P的轨迹是()A.直线B.抛物线C.椭圆D.双曲线的一支考点:圆锥曲线的轨迹问题.专题:圆锥曲线的定义、性质与方程.分析:根据题意,∠PAB=30°为定值,可得点P的轨迹为一以AB为轴线的圆锥侧面与平面α的交线,则答案可求.解答:解:用垂直于圆锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线.此题中平面α上的动点P满足∠PAB=30°,可理解为P在以AB为轴的圆锥的侧面上,再由斜线段AB与平面α所成的角为60°,可知P的轨迹符合圆锥曲线中椭圆定义.故可知动点P的轨迹是椭圆.故选:C.点评:本题考查椭圆的定义,考查学生分析解决问题的能力,比较基础.8.(5分)(2015•浙江)设实数a,b,t满足|a+1|=|sinb|=t.()A.若t确定,则b2唯一确定B.若t确定,则a2+2a唯一确定C.若t确定,则sin唯一确定D.若t确定,则a2+a唯一确定考点:四种命题.专题:开放型;简易逻辑.分析:根据代数式得出a2+2a=t2﹣1,sin2b=t2,运用条件,结合三角函数可判断答案.解答:解:∵实数a,b,t满足|a+1|=t,∴(a+1)2=t2,a2+2a=t2﹣1,t确定,则t2﹣1为定值.sin2b=t2,A,C不正确,∴若t确定,则a2+2a唯一确定,故选:B点评:本题考查了命题的判断真假,属于容易题,关键是得出a2+2a=t2﹣1,即可判断.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)9.(6分)(2015•浙江)计算:log2= ,2= .考点:对数的运算性质.专题:函数的性质及应用.分析:直接利用对数运算法则化简求值即可.解答:解:log2=log2=﹣;2===3.故答案为:;.点评:本题考查导数的运算法则的应用,基本知识的考查.10.(6分)(2015•浙江)已知{a n}是等差数列,公差d不为零,若a2,a3,a7成等比数列,且2a1+a2=1,则a 1= ,d= ﹣1 .考点:等比数列的性质.专题:等差数列与等比数列.分析:运用等比数列的性质,结合等差数列的通项公式,计算可得d=﹣a1,再由条件2a1+a2=1,运用等差数列的通项公式计算即可得到首项和公差.解答:解:由a2,a3,a7成等比数列,则a32=a2a7,即有(a1+2d)2=(a1+d)(a1+6d),即2d2+3a1d=0,由公差d不为零,则d=﹣a1,又2a1+a2=1,即有2a1+a1+d=1,即3a1﹣a1=1,解得a1=,d=﹣1.故答案为:,﹣1.点评:本题考查等差数列首项和公差的求法,是基础题,解题时要认真审题,注意等差数列和等比数列的性质的合理运用.11.(6分)(2015•浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是π,最小值是.考点:二倍角的余弦;三角函数的最值.专题:三角函数的图像与性质.分析:由三角函数恒等变换化简解析式可得f(x)=sin(2x﹣)+,由正弦函数的图象和性质即可求得最小正周期,最小值.解答:解:∵f(x)=sin2x+sinxcosx+1=+sin2x+1=sin(2x﹣)+.∴最小正周期T=,最小值为:.故答案为:π,.点评:本题主要考查了三角函数恒等变换的应用,考查了正弦函数的图象和性质,属于基本知识的考查.12.(6分)(2015•浙江)已知函数f(x)=,则f(f(﹣2))=,f(x)的最小值是2﹣6 .考点:函数的最值及其几何意义.专题:函数的性质及应用.分析:由分段函数的特点易得f(f(﹣2))=的值;分别由二次函数和基本不等式可得各段的最小值,比较可得.解答:解:由题意可得f(﹣2)=(﹣2)2=4,∴f(f(﹣2))=f(4)=4+﹣6=﹣;∵当x≤1时,f(x)=x2,由二次函数可知当x=0时,函数取最小值0;当x>1时,f(x)=x+﹣6,由基本不等式可得f(x)=x+﹣6≥2﹣6=2﹣6,当且仅当x=即x=时取到等号,即此时函数取最小值2﹣6;∵2﹣6<0,∴f(x)的最小值为2﹣6故答案为:﹣;2﹣6点评:本题考查函数的最值,涉及二次函数的性质和基本不等式,属中档题.13.(4分)(2015•浙江)已知1,2是平面向量,且1•2=,若平衡向量满足•1=•=1,则||= .考点:平面向量数量积的性质及其运算律.专题:平面向量及应用.分析:根据数量积得出1,2夹角为60°,<,1>=<,2>=30°,运用数量积的定义判断求解即可.解答:解:∵1,2是平面单位向量,且1•2=,∴1,2夹角为60°,∵平衡向量满足•1=•=1∴与1,2夹角相等,且为锐角,∴应该在1,2夹角的平分线上,即<,1>=<,2>=30°,||×1×cos30°=1,∴||=故答案为:点评:本题简单的考查了平面向量的运算,数量积的定义,几何图形的运用,属于容易题,关键是判断夹角即可.14.(4分)(2015•浙江)已知实数x,y满足x2+y2≤1,则|2x+y﹣4|+|6﹣x﹣3y|的最大值是15 .考点:简单线性规划.专题:开放型;不等式的解法及应用.分析:由题意可得2x+y﹣4<0,6﹣x﹣3y>0,去绝对值后得到目标函数z=﹣3x﹣4y+10,然后结合圆心到直线的距离求得|2x+y﹣4|+|6﹣x﹣3y|的最大值.解答:解:如图,由x2+y2≤1,可得2x+y﹣4<0,6﹣x﹣3y>0,则|2x+y﹣4|+|6﹣x﹣3y|=﹣2x﹣y+4+6﹣x﹣3y=﹣3x﹣4y+10,令z=﹣3x﹣4y+10,得,如图,要使z=﹣3x﹣4y+10最大,则直线在y轴上的截距最小,由z=﹣3x﹣4y+10,得3x+4y+z﹣10=0.则,即z=15或z=5.由题意可得z的最大值为15.故答案为:15.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,是中档题.15.(4分)(2015•浙江)椭圆+=1(a>b>0)的右焦点F(c,0)关于直线y=x的对称点Q在椭圆上,则椭圆的离心率是.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:设出Q的坐标,利用对称知识,集合椭圆方程推出椭圆几何量之间的关系,然后求解离心率即可.解答:解:设Q(m,n),由题意可得,由①②可得:m=,n=,代入③可得:,解得e2(4e4﹣4e2+1)+4e2=1,可得,4e6+e2﹣1=0.即4e6﹣2e4+2e4﹣e2+2e2﹣1=0,可得(2e2﹣1)(2e4+e2+1)=0解得e=.故答案为:.点评:本题考查椭圆的方程简单性质的应用,考查对称知识以及计算能力.三、解答题:本大题共5小题,共74分。
2015年高考数学试卷一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2015•原题)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A .[0,1)B.(0,2] C.(1,2)D.[1,2]2.(5分)(2015•原题)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A .8cm3B.12cm3C.D.3.(5分)(2015•原题)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A .a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>04.(5分)(2015•原题)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>n C.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n05.(5分)(2015•原题)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A .B.C.D.6.(5分)(2015•原题)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立7.(5分)(2015•原题)存在函数f(x)满足,对任意x∈R都有()A .f(sin2x)=sinxB.f(sin2x)=x2+xC.f(x2+1)=|x+1|D.f(x2+2x)=|x+1|8.(5分)(2015•原题)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A .∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•原题)双曲线=1的焦距是,渐近线方程是.10.(6分)(2015•原题)已知函数f(x)=,则f(f(﹣3))= ,f(x)的最小值是.11.(6分)(2015•原题)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)(2015•原题)若a=log43,则2a+2﹣a= .13.(4分)(2015•原题)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.(4分)(2015•原题)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)(2015•原题)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0= ,y0= ,|= .三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•原题)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)(2015•原题)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)(2015•原题)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)(2015•原题)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)(2015•原题)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).2015年高考数学试卷(理科)答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(原题卷)数学(理科)1.(5分)考点:交、并、补集的混合运算.专题:集合.分析:求出P中不等式的解集确定出P,求出P补集与Q的交集即可.解答:解:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2),∵Q=(1,2],∴(∁R P)∩Q=(1,2),故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.解答:解:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.点评:本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,是基础题.4.(5分)考点:命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.点评:本题主要考查含有量词的命题的否定,比较基础.5.(5分)考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.解答:解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于E,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,故选:A点评:本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.6.(5分)考点:复合命题的真假.专题:集合;简易逻辑.分析:命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.解答:解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card(A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card(B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B∩C)=[card (A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,故选:A点评:本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.7.(5分)考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:利用x取特殊值,通过函数的定义判断正误即可.解答:解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.点评:本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.8.(5分)考点:二面角的平面角及求法.专题:创新题型;空间角.分析:解:画出图形,分AC=BC,AC≠BC两种情况讨论即可.解答:解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.点评:本题考查空间角的大小比较,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)双曲线的简单性质.考点:计算题;圆锥曲线的定义、性质与方程.专题:确定双曲线中的几何量,即可求出焦距、渐近线方程.分析:解解:双曲线=1中,a=,b=1,c=,答:∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.点评:10.(6分)函数的值.考点:计算题;函数的性质及应用.专题:分根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x≥1时,f(x)=,析:当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解解答:解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.本题主要考查了分段函数的函数值的求解,属于基础试题.点评:11.(6分)两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.考点:专三角函数的求值.题:分由三角函数公式化简可得f(x)=sin(2x﹣)+,易得最小正周期,解不等析:式2kπ+≤2x﹣≤2kπ+可得函数的单调递减区间.解答:解:化简可得f(x)=sin2x+sinxcosx+1=(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)故答案为:π;[kπ+,kπ+](k∈Z)点评:本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.12.(4分)考点:对数的运算性质.专题:函数的性质及应用.分析:直接把a代入2a+2﹣a,然后利用对数的运算性质得答案.解答:解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.点评:本题考查对数的运算性质,是基础的计算题.13.(4分)考点:异面直线及其所成的角.专题:空间角.分析:连结ND,取ND 的中点为:E,连结ME说明异面直线AN,CM所成的角就是∠EMC通过解三角形,求解即可.解答:解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.点评:本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.14.(4分)考点:函数的最值及其几何意义.专题:不等式的解法及应用;直线与圆.分析:根据所给x,y的范围,可得|6﹣x﹣3y|=6﹣x﹣3y,再讨论直线2x+y﹣2=0将圆x2+y2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值.解答:解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.点本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.评:15.(6分)空间向量的数量积运算;平面向量数量积的运算.考点:专创新题型;空间向量及应用.题:分由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),由析:已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t2,由题意可得当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得|.解解:∵•=||||cos<•>=cos<•>=,答:∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故|==2故答案为:1;2;2点本题考查空间向量的数量积,涉及向量的模长公式,属中档题.评:三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)余弦定理.考点:解三角形.专题:分(1)由余弦定理可得:,已知b2﹣a2=c2.可得,a=.利析:用余弦定理可得cosC.可得sinC=,即可得出tanC=.(2)由=×=3,可得c,即可得出b.解解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,答:又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.点评:本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.17.(15分)考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.解答:(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.点评:本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.18.(15分)考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.解答:解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.点评:本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解M(a,b)是|f(x)|在区间[﹣1,1]上的最大值,以及利用三角不等式变形.19.(15分)考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB=,再利用均值不等式即可得出.解答:解:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点纵坐标为n,∴S△OAB==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S△AOB=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.点评:本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)考点:数列的求和;数列与不等式的综合.专题:创新题型;点列、递归数列与数学归纳法.分析:(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n﹣a n+1累加得S n=﹣a n+1,利用数学归纳法可证明≥a n≥(n≥2),从而≥≥,化简即得结论.解答:证明:(1)由题意可知:0<a n≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a n﹣1﹣a n,…,=a1﹣a2,累加,得S n=++…+=a1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥a n≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则a k+1=﹣+,由二次函数单调性知:a n+1≥﹣+=≥,a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥a n≥,∴=≥≥=,即(n∈N*).点评:本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。
2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2015年浙江,理1】已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则()R P Q =( ) (A )[0,1) (B )(0,2] (C )(1,2) (D )[1,2] 【答案】C【解析】(][),02,P =-∞+∞,()0,2R P =,()()1,2R P Q ∴=,故选C .【点评】此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键. (2)【2015年浙江,理2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )(A )38cm (B )312cm (C )332cm 3 (D )340cm 3【答案】C【解析】图像为正四棱锥与正方体的组合体,由俯视图知:正方体棱长为2,正四棱锥底面边长2,高为2,所以该几何体的体积3213222233V =+⨯⨯=,故选C .【点评】本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力. (3)【2015年浙江,理3】已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若348,,a a a 成等比数列,则( )(A )10,0n a d dS >> (B )10,0n a d dS << (C )10,0n a d dS >< (D )10,0n a d dS <>【答案】B【解析】因为245,,a a a 成等比数列,所以()()()211134a d a d a d +=++,化简得2150a d d =-<,()224114646140dS d a d a d d d =+=+=-<,故选B .【点评】本题考查了等差数列和等比数列的性质,考查了等差数列的前n 项和,是基础题. (4)【2015年浙江,理4】命题“**,()n N f n N ∀∈∈ 且()f n n ≤的否定形式是( )(A )**,()n N f n N ∀∈∈且()f n n > (B )**,()n N f n N ∀∈∈或()f n n >(C )**00,()n N f n N ∃∈∈且00()f n n > (D )**00,()n N f n N ∃∈∈或00()f n n > 【答案】D【解析】全称命题:p x M ∀∈,()p x 的否定是0:p x M ⌝∃∈,()0p x ⌝,所以命题的否定为:*0n N ∃∈,()*0f n N ∉或()00f n n >,故选D .【点评】本题主要考查含有量词的命题的否定,比较基础. (5)【2015年浙江,理5】如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在抛物线上,点C 在y 轴上,则n a 与ACF ∆的面积之比是( ) (A )11BF AF --(B )2211BF AF --(C )11BF AF ++(D )2211BF AF ++【答案】A【解析】如图所示,抛物线的准线DE 的方程为1x =-,又由抛物线定义知BF BD =,AF AE =,11BM BD BF ∴=-=-,11AN AE AF =-=-,11BCF ACF BMBF S BC S AC AN AF ∆∆-∴===-,故选A . 【点评】本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.(6)【2015年浙江,理6】设,A B 是有限集,定义(,)()()d A B card A B card A B =-,其中()card A 表示有限集A 中的元素个数( )命题①:对任意有限集,A B ,“A B ≠”是“(,)0d A B >”的充分必要条件;命题②:对任意有限集,,A B C ,(,)(,)(,)d A C d A B d B C ≤+.(A )命题①和命题②都成立 (B )命题①和命题②都不成立 (C )命题①成立,命题②不成立 (D )命题①不成立,命题②成立 【答案】A【解析】由题意,()()()(),20d A B card A card B card A B =+-≥,命题①:()()(),0A B card AB card AB d A B =⇔=⇔=,(),0A B d A B ∴≠⇔>,命题①成立.命题②:由维恩图易知命题②成立,下面给出严格证明:()()(),,,d A C d A B d B C ≤+()()()()()()()()()222card A card C card A C card A card B card AB card B cardC card BC ⇔+-≤+-++-()()()()card A C card A B card B C card B ⇔≥+-()()()()card AC card AC B card A B C card B ⇔≥--⎡⎤⎣⎦,因为()0card A C ≥且()()()0card A C B card ABC card B --≤⎡⎤⎣⎦,故命题②成立,故选A .【点评】本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.(7)【2015年浙江,理7】存在函数()f x 满足,对任意x R ∈都有( )(A )(sin 2)sin f x x = (B )2(sin 2)f x x x =+ (C )2(1)1f x x +=+ (D )2(2)1f x x x +=+ 【答案】D【解析】选项A :当4x π=时,()212f =;当54x π=时,()212f =-; 选项B :当4x π=时,()21164f ππ=+;当54x π=时,()22551164f ππ=+; 选项C :当1x =-时,()20f =;当1x =时,()22f =;或()21f x +为偶函数,然而1y x =+并不是偶函数;选项D :()()222111f x x f x x +=+-=+,令1t x =+得()21f t t -=,0t ≥,再令21t m -=,则1t m =+,()1f m m =+,故函数()1f x x =+可以满足要求,故选D .【点评】本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.(8)【2015年浙江,理8】如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )(A )A DB α'∠≤ (B )A DB α'∠≥ (C )A CB α'∠≤ (D )A CB α'∠≤ 【答案】B【解析】解法一:考查特殊值,用排除法,若CA CB ≠,则当απ=时,A CB π'∠<,排除D ,当0α=时, 0A CB '∠>,0A DB '∠>,排除A ,C ,故选B . 解法二:①当AC BC =时,A DB α'∠=; ②当AC BC ≠时,如图,点A '投影在AE 上,A OE α'=∠,连接AA ',易得ADA AOA ''∠<∠,A DB A OE ''∴∠>∠,即A DB α'∠>. 综上所述,A DB α'∠≥,故选B .【点评】本题考查空间角的大小比较,注意解题方法的积累,属于中档题.第Ⅱ卷(非选择题 共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.(9)【2015年浙江,理9】双曲线2212x y -=的焦距是 ,渐近线方程是 .【答案】23;22y x =±【解析】2a =,1b =,焦距223c a b =+=,∴焦距为23,渐近线22b y x x a =±=±.【点评】本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.(10)【2015年浙江,理10】已知函数221,1()2lg(1),1x x f x x x ⎧+-≥⎪=⎨⎪+<⎩,则((3))f f -= ,()f x 的最小值是 . 【答案】0;223-【解析】()()((3))log1011230f f f f -===+-=;当1x ≥时,()23223f x x x=+-≥-(当2x =时取最小值)当2x =时取最小值,当1x <时,()()2log 1log10f x x =+≥=,2230-<,()f x ∴的最小值为223-.【点评】本题主要考查了分段函数的函数值的求解,属于基础试题. (11)【2015年浙江,理11】函数2()sin sin cos 1f x x x x =++的最小正周期是 ,单调递减区间是 .【答案】π;37,,88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【解析】()21cos 2123sin sin cos 1sin 21sin 222242x f x x x x x x π-⎛⎫=++=++=-+ ⎪⎝⎭,所以最小正周期T π=; 单调递减区间:3222242k x k πππππ+≤-≤+,化简得3788k x k ππππ+≤≤+, ∴单调递减区间:37,,88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.【点评】本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题. (12)【2015年浙江,理12】若2log 3a =,则22a a -+= . 【答案】433【解析】由2log 3a =可知43a =,即23a =,所以14322333a a -+=+=. 【点评】本题考查对数的运算性质,是基础的计算题. (13)【2015年浙江,理13】如图,三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,点,M N 分别是,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值是 __.【答案】78【解析】取ND 的中点E ,因为//ME AN ,则EMC ∠为异面直线AN ,CM 所成的角.22AN =,2ME NE ∴==,22MC =,又EN NC ⊥,223EC EN NC ∴=+=,2837cos 82222EMC +-∴∠==⨯⨯.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力. (14)【2015年浙江,理14】若实数,x y 满足221x y +≤,则2263x y x y +-+--的最小值是 .【答案】3【解析】221x y +≤,630x y ∴-->,即6363x y x y --=--,如图,直线220x y +-=将直线221x y +=分成了两部分:①在阴影区域内的(),x y 满足220x y +-≥,即2222x y x y +-=+-, 此时()()2263226324x y x y x y x y x y +-+--=+-+--=-+,利用线性规划可知在34,55A ⎛⎫⎪⎝⎭处取得最小值3;②在阴影区域外的(),x y 满足220x y +-≤,即()2222x y x y +-=-+-, 此时()()22632263834x y x y x y x y x y +-+--=-+-+--=--,利用线性规划可知在34,55A ⎛⎫⎪⎝⎭处取得最小值3.综上,当35x =,45y =时,2263x y x y +-+--的最小值为3.【点评】本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.(15)【2015年浙江,理15】已知12,e e 是空间单位向量,1212e e ⋅=,若空间向量b 满足1252,2b e b e ⋅=⋅=,且对于任意,x y R ∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈,则0x = ,0y = ,b = . 【答案】01x =,02y =,22b ==. 【解析】121212121cos ,cos ,2e e e e e e e e ⋅===,12,3e e π∴=,不妨设113,,022e ⎛⎫= ⎪ ⎪⎝⎭,()21,0,0e =,(),,b m n t =,则由题意知113222b e m n ⋅=+=,252b e m ⋅==,解得52m =,32n =,53,,22b t ⎛⎫∴= ⎪ ⎪⎝⎭, ()125133,,2222b xe ye x y x t ⎛⎫-+=--- ⎪ ⎪⎝⎭,()22221251332222b xe ye x y x t ⎛⎫⎛⎫∴-+=--+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭()22222243457224y x xy y x y t x y t -⎛⎫=++--++=++-+ ⎪⎝⎭,由题意,当1e x x ==,2e y y ==时,()22243224y x y t -⎛⎫++-+ ⎪⎝⎭取到最小值1,此时21t =,故2225382222b t ⎛⎫⎛⎫=++== ⎪ ⎪ ⎪⎝⎭⎝⎭. 【点评】本题考查空间向量的数量积,涉及向量的模长公式,属中档题.三、解答题:本大题共5题,共74分.解答应写出文字说明,演算步骤或证明过程.(16)【2015年浙江,理16】(本小题满分14分)在()nf n n ≤中,内角**,()n N f n N ∀∈∉所对边分别为**,()n N f n N ∀∈∉.已知4A π=,22212b ac -=-. (Ⅰ)求tan C 的值;(Ⅱ)若()nf n n ≤的面积为7,求b 的值.解:(Ⅰ)由22212b a c -=及正弦定理得2211sin sin 22B C -=,故2cos2sin B C -=.又由4A π=,即34B C π+=, 得cos2sin22sin cos B C C C -==,解得tan 2C =.(Ⅱ)由tan 2C =得25sin 5C =,5cos 5C =,又()sin sin sin 4B A C C π⎛⎫=+=+ ⎪⎝⎭,故310sin 10B =,由正弦定理得223c b =,又4A π=,1sin 32bc A =,故62bc =,故3b =.【点评】本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.(17)【2015年浙江,理17】(本小题满分15分)如图,在三棱柱111ABC A B C -中,090BAC ∠=,2AB AC ==,14A A =,1A 在底面ABC 的射影为BC 的中点,D 为11B C 的中点.(Ⅰ)证明:1A D ⊥平面1A BC ;(Ⅱ)求二面角11A BD B --的平面角的余弦值. 解:解法一:(Ⅰ)设E 为BC 的中点,连1,A E AE .由题1A E ⊥平面ABC ,故1A E AE ⊥.因AB AC =,故AE BC ⊥, 从而AE ⊥平面1A BC .由,D E 分别11,B C BC 的中点,得1//DE B B 且1DE B B =, 从而1//DE A A ,且1DE A A =,所以1A AED 为平行四边形,故1//A D AE .又AE ⊥平面1A BC , 故1A D ⊥平面1A BC .(Ⅱ)作1A F BD ⊥于F ,连1B F ,由题2AE EB ==,01190A EA A EB ∠=∠=,得114A B A A ==.由11A D B D =,11A B B B =,得11A DB B DB ∆≅∆.由1A F BD ⊥,得1B F BD ⊥,因此11A FB ∠ 为二面角11A BD B --的平面角.由12A D =,14A B =,0190DA B ∠=,得32BD =,1143A F B F ==,由余弦定理得111cos 8A FB =-.解法二:(Ⅰ)如图,以BC 中点为原点O ,CB 方向为x 轴正方向,OA 为y 轴正方向,1OA 为z 轴正方向,建立空间直角坐标系.2BC =,22AC =,221114AO AA AO =+=,易知 ()10,0,14A ,()2,0,0B,()2,0,0C -,()0,2,0A ,()0,2,14D -,()12,2,14B -, ()10,2,0A D =-,()2,2,14BD =--,()12,0,0B D =-,()22,0,0BC =-, ()10,0,14OA =,110A D OA ∴⋅=,11A D OA ∴⊥,又10A D BC ⋅=,1A D BC ∴⊥,又1OA BC O =,1A D ∴⊥平面1A BC .(Ⅱ)设平面1A BD 的法向量为()1111,,n x y z =,知11120n A D y ⋅=-=,111122140n BD x y z ⋅=--+=,则取()17,0,1n =,设平面1B BD 的法向量为()2222,,n x y z =,则2122222140n B D x y z ⋅=--+=,2220n BD x ⋅=-=,则取()20,7,1n =,12121211cos ,82222n n n n n n ⋅∴===⨯⋅,又知该二面角为钝角,所以其平面角的余弦值为18-.【点评】本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题. (18)【2015年浙江,理18】(本小题满分15分)已知函数()()2,f x x ax b a b R =++∈,记(),M a b 是()||f x 在区间[]1,1-上的最大值.(Ⅰ)证明:当||2a ≥时,(),2M a b ≥;(Ⅱ)当,a b 满足(),2M a b ≤,求||||a b +的最大值.解:(Ⅰ)由()2224a a f x x b ⎛⎫=++- ⎪⎝⎭,得对称轴为直线2a x =-,由||2a ≥,得||12a -≥,故()f x 在[]1,1-上单调,因此()()(){},max |1|,|1|M a b f f =-.当2a ≥时,()()1124f f a --=≥,故()()4|1||1|f f ≤+-,()(){}max |1|,|1|2f f ∴-≥,即(),2M a b ≥;当2a ≤-时,()()1124f f a --=-≥,故()()4|1||1|f f ≤-+,()(){}max |1|,|1|2f f ∴-≥,即(),2M a b ≥.综上,当||2a ≥时,(),2M a b ≥.(Ⅱ)由(),2M a b ≤得()|1||1|2a b f ++=≤,()|1||1|2a b f -+=-≤,故||3a b +≤,||3a b -≤,由()()||0||||||0a b ab a b a b ab ⎧+≥⎪+=⎨-<⎪⎩,得||||3a b +≤.当2a =,1b =-时,||||3a b +=,且2|21|x x +-在[]1,1-的最大值为2,即()2,12M -=,故||||a b +的最大值为3.【点评】本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解(),M a b 是()f x 在区间[]1,1-上的最大值,以及利用三角不等式变形.(19)【2015年浙江,理19】(本小题满分15分)已知椭圆2212x y +=上两个不同的点,A B 关于直线12y mx =+对称. (Ⅰ)求实数m 的取值范围;(Ⅱ)求AOB ∆面积的最大值(O 为坐标原点). 解:(Ⅰ)由题知0m ≠,可设直线AB :1y x b m=-+,代入椭圆方程并整理得()()222224210m x mbx m b +-+-=. 因直线AB 与椭圆2212x y +=有两个不同的交点,故()2222820m m m b ∆=+-> ①.将AB 中点2222,22mb m b M m m ⎛⎫ ⎪++⎝⎭代入直线方程12y mx =+得2222m b m +=-②.由①②得m <m > (Ⅱ)令2130,2t m ⎛⎫=∈ ⎪⎝⎭,则||AB =,且O 到AB的距离为1t d +=,故AOB ∆的面积()1||2S t AB d =⋅≤,当且仅当12t =时,等号成立,故AOB ∆. 【点评】本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.(20)【2015年浙江,理20】(本小题满分15分)已知数列{}n a 满足112a =且()21n n n a a a n N ++=-∈,数列{}2n a 的前n 项和为n S ,证明:(Ⅰ)()112n n an N a ++≤≤∈;(Ⅱ)()()()112221n S n N n n n +≤≤∈++. 解:(Ⅰ)由题210n n n a a a +-=-≤,即1n n a a +≤,故12n a ≤. 由()111n n n a a a --=-得()()()12111110n n n a a a a a --=--->,故102n a <≤,从而(]111,21n n n a a a +=∈-,即112n n a a +≤≤. (Ⅱ)由题21n n n a a a +=-,故11n n S a a +=- ①.由1111=n n n n a a a a ++-和112n n a a +≤≤得,11112n na a +≤-≤,故11112n n n a a +≤-≤,因此()()111212n a n N n n ++≤≤∈++ ②, 由①②得()()()112221n S n N n n n +≤≤∈++. 【点评】本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。
一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P=( )A .[)3,4B .(]2,3C .()1,2-D .(]1,3- 【答案】A 【解析】试题分析:由题意得,{}|31P x x x =≥≤或,所以[3,4)P Q =,故选A.考点:1.一元二次不等式的解法;2.集合的交集运算.2、某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .83cmB .123cmC .3233cm D .4033cm 【答案】C考点:1.三视图;2.空间几何体的体积.3、设a ,b 是实数,则“0a b +>”是“0ab >”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】D考点:1.充分条件、必要条件;2.不等式的性质.4、设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( ) A .若l β⊥,则αβ⊥ B .若αβ⊥,则l m ⊥ C .若//l β,则//αβ D .若//αβ,则//l m 【答案】A 【解析】试题分析:采用排除法,选项A 中,平面与平面垂直的判定,故正确;选项B 中,当αβ⊥时,,l m 可以垂直,也可以平行,也可以异面;选项C 中,//l β时,,αβ可以相交;选项D 中,//αβ时,,l m 也可以异面.故选A.考点:直线、平面的位置关系. 5、函数()1cos f x x x x ⎛⎫=-⎪⎝⎭(x ππ-≤≤且0x ≠)的图象可能为( )A .B .C .D . 【答案】D 【解析】试题分析:因为11()()cos ()cos ()f x x x x x f x x x-=-+=--=-,故函数是奇函数,所以排除A, B ;取x π=,则11()()cos ()0f ππππππ=-=--<,故选D.考点:1.函数的基本性质;2.函数的图象.6、有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:2m )分别为x ,y ,z ,且x y z <<,三种颜色涂料的粉刷费用(单位:元/2m )分别为a ,b ,c ,且a b c <<.在不同的方案中,最低的总费用(单位:元)是( ) A .ax by cz ++ B .az by cx ++ C .ay bz cx ++ D .ay bx cz ++ 【答案】B考点:1.不等式性质;2.不等式比较大小.7、如图,斜线段AB 与平面α所成的角为60,B 为斜足,平面α上的动点P 满足30∠PAB =,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支 【答案】C 【解析】试题分析:由题可知,当P 点运动时,在空间中,满足条件的AP 绕AB 旋转形成一个圆锥,用一个与圆锥高成60角的平面截圆锥,所得图形为椭圆.故选C. 考点:1.圆锥曲线的定义;2.线面位置关系.8、设实数a ,b ,t 满足1sin a b t +==( )A .若t 确定,则2b 唯一确定B .若t 确定,则22a a +唯一确定C .若t 确定,则sin 2b唯一确定 D .若t 确定,则2a a +唯一确定 【答案】B 【解析】试题解析:因为1sin a b t +==,所以222(1)sin a b t +==,所以2221a a t +=-,故当t 确定时,21t -确定,所以22a a +唯一确定.故选B.考点:函数概念二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9、计算:2log = ,24log 3log 32+= .【答案】12-考点:对数运算10、已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a = ,d = .【答案】2,13- 【解析】试题分析:由题可得,2111(2)()(6)a d a d a d +=++,故有1320a d +=,又因为1221a a +=,即131a d +=,所以121,3d a =-=. 考点:1.等差数列的定义和通项公式;2.等比中项.11、函数()2sin sin cos 1f x x x x =++的最小正周期是 ,最小值是 .【答案】3,2π 【解析】试题分析:()211cos 2113sin sin cos 1sin 21sin 2cos 222222x f x x x x x x x -=++=++=-+3)42x π=-+,所以22T ππ==;min 3()2f x =考点:1.三角函数的图象与性质;2.三角恒等变换.12、已知函数()2,166,1x x f x x x x ⎧≤⎪=⎨+->⎪⎩,则()2f f -=⎡⎤⎣⎦ ,()f x 的最小值是 .【答案】162-考点:1.分段函数求值;2.分段函数求最值.13、已知1e ,2e 是平面单位向量,且1212e e ⋅=.若平面向量b 满足121b e b e ⋅=⋅=,则b = .【答案】3【解析】试题分析:由题可知,不妨1(1,0)e =,21(2e =,设(,)b x y =,则11b e x ⋅==,21122b e x y ⋅=+=,所以3(1,)3b =,所以113b =+=. 考点:1.平面向量数量积运算;2.向量的模.14、已知实数x ,y 满足221x y +≤,则2463x y x y +-+--的最大值是 . 【答案】15 【解析】试题分析: 22,2224631034,22x y y xz x y x y x y y x+-≥-⎧=+-+--=⎨--<-⎩由图可知当22y x ≥-时,满足的是如图的AB 劣弧,则22z x y =+-在点(1,0)A 处取得最大值5;当22y x <-时,满足的是如图的AB 优弧,则1034z x y =--与该优弧相切时取得最大值,故1015z d -==,所以15z =,故该目标函数的最大值为15. 考点:1.简单的线性规划;15、椭圆22221x y a b+=(0a b >>)的右焦点()F ,0c 关于直线b y x c =的对称点Q 在椭圆上,则椭圆的离心率是 .考点:1.点关于直线对称;2.椭圆的离心率.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 16. (本题满分14分)在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan(A)24π+=.(1)求2sin 2sin 2cos AA A+的值;(2)若B ,34a π==,求ABC ∆的面积. 【答案】(1)25;(2)9考点:1.同角三角函数基本关系式;2.正弦定理;3.三角形面积公式.17. (本题满分15分)已知数列{}n a 和{}n b 满足,*1112,1,2(n N ),n n a b a a +===∈*12311111(n N )23n n b b b b b n+++++=-∈. (1)求n a 与n b ;(2)记数列{}n n a b 的前n 项和为n T ,求n T . 【答案】(1)2;nn n a b n ==;(2)1*(1)22()n n T n n N +=-+∈【解析】试题分析:(1)根据数列递推关系式,确定数列的特点,得到数列的通项公式;(2)根据(1)问得到新的数列的通项公式,利用错位相减法进行数列求和.考点:1.等差等比数列的通项公式;2.数列的递推关系式;3.错位相减法求和. 18. (本题满分15分)如图,在三棱锥111ABC A B C -中,011ABC=90=AC 2,AA 4,A ?=,AB 在底面ABC 的射影为BC 的中点,D 为11B C 的中点.(1)证明: 11D A BC A 平面; (2)求直线1A B 和平面11B C B C 所成的角的正弦值.【答案】(1)略;(2)作1A F DE ⊥,垂足为F ,连结BF.因为AE ⊥平面1A BC ,所以1BC A E ⊥. 因为BC AE ⊥,所以BC ⊥平面1AA DE . 所以11,BC A F A F ⊥⊥平面11BB C C .所以1A BF ∠为直线1A B 与平面11BB C C 所成角的平面角.由2,90AB AC CAB ==∠=,得EA EB ==.由AE ⊥平面1A BC ,得1114,A A A B A E ==.由1114,90DE BB DA EA DA E ===∠=,得12A F =.所以1sin A BF ∠=考点:1.空间直线、平面垂直关系的证明;2.直线与平面所成的角. 19. (本题满分15分)如图,已知抛物线211C 4x :y=,圆222C (y 1)1x +-=:,过点P(t,0)(t>0)作不过原点O 的直线PA ,PB 分别与抛物线1C 和圆2C 相切,A ,B 为切点.(1)求点A ,B 的坐标; (2)求PAB ∆的面积.注:直线与抛物线有且只有一个公共点, 且与抛物线的对称轴不平行,则该直线 与抛物线相切,称该公共点为切点.【答案】(1)222222(2,),(,)11t t A t t B t t++;(2)32t因为直线PA 与抛物线相切,所以216160k kt ∆=-=,解得k t =.所以2x t =,即点2(2,)A t t .设圆2C 的圆心为(0,1)D ,点B 的坐标为00(,)x y ,由题意知,点B,O 关于直线PD 对称,故有00001220y x t x t y ⎧=-+⎪⎨⎪-=⎩,解得2002222,11t t x y t t ==++.即点22222(,)11t t B t t++. (2)由(1)知,AP =直线AP 的方程为20tx y t --=,所以点B 到直线PA的距离为2d =.所以PAB ∆的面积为3122t S AP d =⋅=. 考点:1.抛物线的几何性质;2.直线与圆的位置关系;3.直线与抛物线的位置关系.20. (本题满分15分)设函数2(),(,)f x x ax b a b R =++∈.(1)当214a b =+时,求函数()f x 在[1,1]-上的最小值()g a 的表达式; (2)已知函数()f x 在[1,1]-上存在零点,021b a ≤-≤,求b 的取值范围.【答案】(1)222,2,4()1,22,2,24a a a g a a a a a ⎧++≤-⎪⎪⎪=-<≤⎨⎪⎪-+>⎪⎩;(2)[3,9--考点:1.函数的单调性与最值;2.分段函数;3.不等式性质;4.分类讨论思想.。
2015年1月浙江省普通高中学业水平考试数学试题学生须知:1、本试卷分选择题和非选择题两部分,共6页,满分100分,考试时间110分钟.2、考生答题前,务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上.3、选择题的答案须用2B 铅笔将答题纸上对应题目的答案标号涂黑,如要改动,须将原填涂处用橡皮擦净.4、非选择题的答案须用黑色字迹的签字笔或钢笔写在答题纸上的相应区域内,作图时可先使用2B 铅笔,确定后须用黑色字迹的签字笔或钢笔描黑,答案写在本试卷上无效. 5、参考公式柱体的体积公式: V=Sh 锥体的体积公式:V=13Sh (其中S 表示底面积,h 表示高)选择题部分一、选择题(共25小题,1-15每小题2分,16-25每小题3分,共60分.每小题给出的选项中只有一个是符合题目要求的,不选、多选、错选均不得分.) 1、设集合M={0,3},N={1,2,3},则 M ∪N = ( )A. {3}B. {0,1,2}C. {1,2,3}D. {0,1,2,3} 2、函数121y x =-的定义域是 ( )A. {x|x>12}B. {x|x≠0,x ∈R }C. {x|x<12}D. {x|x≠12,x ∈R }3、向量a =(2,1),b =(1,3),则a +b = ( )A.(3,4)B.(2,4)C.(3,-2)D.(1,-2) 4、设数列{a n }(n ∈N *)是公差为d 的等差数列,若a 2=4,a 4=6,则d= ( )A.4B.3C.2D.15、直线y=2x+1在y 轴上的截距为 ( )A.1B.-1C.12D.-126、下列算式正确的是 ( )A.26+22=28B. 26-22=24C. 26×22=28D. 26÷22=237、下列角中,终边在y 轴正半轴上的是 ( )A.4πB.2π C.π D.32π8、以(2,0)为圆心,经过原点的圆方程为 ( )A.(x+2)2+y 2=4B. (x -2)2+y 2=4C. (x+2)2+y 2=2D. (x -2)2+y 2=2 9、设关于x 的不等式(ax -1)(x+1)<0(a ∈R )的解集为{x|-1<x<1},则a 的值是 ( )A.-2B.-1C.0D.110、下列直线中,与直线x -2y+1=0垂直的是 ( )A.2x -y -3=0B.x -2y+3=0C.2x+y+5=0D.x+2y -5=011、设实数x ,y 满足{02x y x y +≥-≤-,则x+2y 的最小值为( )A.-3B.-1C.1D.312、椭圆22143y x +=的离心率为( )C.12D.1413、一个几何体的三视图如图所示,则该几何体的体积为( )A.πB.2πC.4πD.8π14、在△ABC 中,设角A ,B ,C 的对边分别为a ,b ,c 。
2015年浙江省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2015•浙江)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A .[0,1)B.(0,2]C.(1,2)D.[1,2]2.(5分)(2015•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8cm3B.12cm3C.D.3.(5分)(2015•浙江)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A.a1d>0,dS4>0 B.a1d<0,dS4<0 C.a1d>0,dS4<0 D.a1d<0,dS4>04.(5分)(2015•浙江)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>n C.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n05.(5分)(2015•浙江)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A.B.C.D.6.(5分)(2015•浙江)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立7.(5分)(2015•浙江)存在函数f(x)满足,对任意x∈R都有()A.f(sin2x)=sinx B.f(sin2x)=x2+x C.f(x2+1)=|x+1| D.f(x2+2x)=|x+1|8.(5分)(2015•浙江)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•浙江)双曲线=1的焦距是,渐近线方程是.10.(6分)(2015•浙江)已知函数f(x)=,则f(f(﹣3))=,f(x)的最小值是.11.(6分)(2015•浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)(2015•浙江)若a=log43,则2a+2﹣a=.13.(4分)(2015•浙江)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.(4分)(2015•浙江)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)(2015•浙江)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=,y0=,|=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)(2015•浙江)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)(2015•浙江)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)(2015•浙江)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)(2015•浙江)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).2015年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)考点:交、并、补集的混合运算.专题:集合.分析:求出P中不等式的解集确定出P,求出P补集与Q的交集即可.解答:解:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2),∵Q=(1,2],∴(∁R P)∩Q=(1,2),故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.解答:解:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.点评:本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,是基础题.4.(5分)考点:命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.点评:本题主要考查含有量词的命题的否定,比较基础.5.(5分)考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.解答:解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于E,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,故选:A点评:本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.6.(5分)考点:复合命题的真假.专题:集合;简易逻辑.分析:命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.解答:解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card(A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card(B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B∩C)=[card (A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,故选:A点评:本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.7.(5分)考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:利用x取特殊值,通过函数的定义判断正误即可.解答:解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.点评:本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.8.(5分)考点:二面角的平面角及求法.专题:创新题型;空间角.分析:解:画出图形,分AC=BC,AC≠BC两种情况讨论即可.解答:解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.点评:本题考查空间角的大小比较,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:确定双曲线中的几何量,即可求出焦距、渐近线方程.解答:解:双曲线=1中,a=,b=1,c=,∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.点评:本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.10.(6分)考点:函数的值.专题:计算题;函数的性质及应用.分析:根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x≥1时,f(x)=,当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解解答:解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.点评:本题主要考查了分段函数的函数值的求解,属于基础试题.11.(6分)考点:两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.专题:三角函数的求值.分析:由三角函数公式化简可得f(x)=sin(2x﹣)+,易得最小正周期,解不等式2kπ+≤2x﹣≤2kπ+可得函数的单调递减区间.解答:解:化简可得f(x)=sin2x+sinxcosx+1=(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)故答案为:π;[kπ+,kπ+](k∈Z)点评:本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.12.(4分)考点:对数的运算性质.专题:函数的性质及应用.分析:直接把a代入2a+2﹣a,然后利用对数的运算性质得答案.解答:解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.点评:本题考查对数的运算性质,是基础的计算题.13.(4分)考点:异面直线及其所成的角.专题:空间角.分析:连结ND,取ND 的中点为:E,连结ME说明异面直线AN,CM所成的角就是∠EMC通过解三角形,求解即可.解答:解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.点评:本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.14.(4分)考点:函数的最值及其几何意义.专题:不等式的解法及应用;直线与圆.分析:根据所给x,y的范围,可得|6﹣x﹣3y|=6﹣x﹣3y,再讨论直线2x+y﹣2=0将圆x2+y2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值.解答:解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.点评:本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.15.(6分)考点:空间向量的数量积运算;平面向量数量积的运算.专题:创新题型;空间向量及应用.分析:由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),由已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t2,由题意可得当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得|.解答:解:∵•=||||cos<•>=cos<•>=,∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故|==2故答案为:1;2;2点评:本题考查空间向量的数量积,涉及向量的模长公式,属中档题.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)考点:余弦定理.专题:解三角形.分析:(1)由余弦定理可得:,已知b2﹣a2=c2.可得,a=.利用余弦定理可得cosC.可得sinC=,即可得出tanC=.(2)由=×=3,可得c,即可得出b.解答:解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.点评:本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.17.(15分)考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.解答:(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.点评:本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.18.(15分)考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.解答:解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.点评:本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解M(a,b)是|f(x)|在区间[﹣1,1]上的最大值,以及利用三角不等式变形.19.(15分)考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB=,再利用均值不等式即可得出.解答:解:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点纵坐标为n,∴S△OAB==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S△AOB=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.点评:本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)考点:数列的求和;数列与不等式的综合.专题:创新题型;点列、递归数列与数学归纳法.分析:(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n﹣a n+1累加得S n=﹣a n+1,利用数学归纳法可证明≥a n≥(n≥2),从而≥≥,化简即得结论.解答:证明:(1)由题意可知:0<a n≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a n﹣1﹣a n,…,=a1﹣a2,累加,得S n=++…+=a1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥a n≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则a k+1=﹣+,由二次函数单调性知:a n+1≥﹣+=≥,a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥a n≥,∴=≥≥=,即(n∈N*).点评:本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。
浙江省2015年高考理科数学试题与答案(word版)本试题、答案共8 页,满分150分,时间120分钟,一、选择题:本大题共8小题,每小题5分,共40分(1)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=A.[0,1]B.(0,2]C.(1,2)D.[1,2](2) 某几何体的三视图如图所示(单位:cm),则该几何体的体积是A. 8cm3B. 12cm3C.D.(3) 已知{an}是等差数列,公差d不为零,前n项和是Sn,若a3,a4,a8成等比数列,则(4) 命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是A. ∀n∈N*,f(n)∉N*且f(n)>nB. ∀n∈N*,f(n)∉N*或f(n)>nC. ∃n0∈N*,f(n0)∉N*且f(n0)>n0D. ∃n0∈N*,f(n0)∉N*或f(n0)>n0(5) 如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是(6) 设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A. 命题①和命题②都成立B. 命题①和命题②都不成立C. 命题①成立,命题②不成立D. 命题①不成立,命题②成立(7) 存在函数f(x)满足,对任意x∈R都有A. f(sin2x)=sinxB. f(sin2x)=x2+xC. f(x2+1)=|x+1|D. f(x2+2x)=|x+1|(8) 如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则A. ∠A′DB≤αB. ∠A′DB≥αC. ∠A′CB≤αD. ∠A′CB≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.(9) 双曲线 =1的焦距是_________ ,渐近线方程是_____________ .(10) 已知函数f(x)=,则f(f(﹣3))= ,f(x)的最小值是______.(11) 函数f(x)=sin2x+sinxcosx+1的最小正周期是_____,单调递减区间是_______.(12) 若a=log43,则2a+2﹣a= __________.(13) 如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是________.(14) 若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是____________ .(15)已知是空间单位向量,若空间向量满足,且对于任意x,y∈R,,则x0= __________,y0= ____________,|= __________ .三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.(16)(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.(17)(15分)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.(18)(15分)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.(19)(15分)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).(20)(15分)已知数列{an}满足a1=且an+1=an﹣an2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{an2}的前n项和为Sn,证明(n∈N*).参考答案一、选择题1.C 2.C 3.B 4.D 5. A 6.A 7.D 8.B二、填空题:9.2,y=±x 10. 11.π,[kπ+,kπ+](k∈Z).12.13. 14.3 15.x0= 1 ,y0= 2 ,|= 2.三、解答题,∴由余弦定理可得:a2=c2.∴c2 = .∴ b = c,=cosC = = =sinC==tanC=)∵ =c=2=3BC=AC=2A1O=,,,,,﹣,,﹣,,,(﹣,﹣,(﹣,,)••=0的法向量为,得=,的法向量为,得=,<,==,的平面角的余弦值为﹣﹣因为|a|≥2,所以≥1,(|)|≥,代入椭圆方程,可得,则.﹣m×+n=y=mx+上,∴=,,∴m=|n|•,=,=,又∵m=.<an≤=,∴=an+1=,∴≤2,∴1≤)由已知,,…,=a1++…+an+1==下面证明:≥an≥﹣++=≥an+1≤﹣+≤,≤,即当n≥2,均有≥an≥,=≥,(。
2015 年 10 月浙江省普通高中学业水平考试数学试题一、选择题(本大题共18 小题,每小题 3 分,共 54 分。
每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.函数 f ( x) 3 x 2的定义域为A. (-∞,0)B.[0 ,+∞)C. [2 , +∞)D. (-∞, 2)2.下列数列中,构成等比数列的是A.2 ,3, 4, 5,B.1,- 2,- 4, 8C.0 , 1,2, 4D.16,- 8,4,- 23.任给△ ABC ,设角 A , B, C 所对的边分别为 a, b, c,则下列等式成立的是A.c 2=a2+b2+2abcosCB. c2=a2+b2- 2abcosCC. c2=a2+b2+2absinCD. c2=a2+b2- 2absinC4.如图,某简单组合体由一个圆锥和一个圆柱组成,则该组合体三视图的俯视图为5.要得到余弦曲线 y=cosx,只需将正弦曲线 y=sinx 向左平移A.个单位B.个单位C.个单位D.个单位23466.在平面直角坐标系中,过点 (0, 1)且倾斜角为 45°的直线不经过.A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.已知平面向量 a=(1,x),b=(y,1)。
若 a∥b,则实数x,y一定满足A.xy - 1=0B. xy+1=0C.x - y=0D.x+y=08.已知 {a n}(n ∈N*) 是以1 为首项, 2为公差的等差数列。
设 S n是 {a n} 的前 n 项和,且 S n=25,则 n=A.3B.4C.5D.69.2的焦点为 F。
若 F 到直线 y= 3 x 的距离为 3 ,则p=设抛物线 y =2px(p>0)A.2B.4C.23D.4310.在空间直角坐标系 Oxyz 中,若 y 轴上点 M 到两点 P(1,0,2),Q(1,- 3,1) 的距离相等,则点M的坐标为A.(0 , 1,0)B. (0 ,- 1, 0)C. (0 , 0, 3)D. (0, 0,- 3)3x y0,11.若实数 x, y 满足x 2 y0,则 y 的最大值为(x1)2y21,A.3B.1C.3D. 425112.设 a>0,且 a≠1,则“a>1”是“log a2<1”的A. 充分而不必要条件B. 必要而不充分条件C.充要条件D.既不充分也不必要条件13.如图,在正方体 ABCD - A 1 B1C1D 1中,M 为棱 D1C1的中点。
设 AM 与平面 BB 1D 1D 的交点为 O,则A.三点 D 1,O, B 共线,且 OB=2OD 1B.三点 D 1, O, B 不共线,且 OB=2OD 1C.三点 D 1, O, B 共线,且 OB=OD 1D.三点 D 1,O, B 不共线,且 OB=OD 1(第 13 题图)14.设正实数 a, b 满足 a+λb=2 (其中λ为正常数)。
若 ab 的最大值为 3,则λ=A.3B.3 C .2 D.123315.在空间中,设 l , m 为两条不同直线,α,β为两个不同的平面,则下列命题正确的是A.若 l α, m 不平行于 l ,则 m 不平行于αB.若 l α,m β,且α,β不平行,则 l , m 不平行C.若 l α, m 不垂直于 l ,则 m 不垂直于αD.若 l α, m β, l 不垂直于 m,则α,β不垂直16.设 a, b, c∈R,下列命题正确的是A. 若 |a|<|b|,则 |a+c|<|b+c|B. 若 |a|<|b|,则 |a- c|<|b- c|C. 若 |a|<|b-c|,则 |a |<|b|- |c|D. 若 |a|<|b- c|,则 |a|- |c|<|b|17. 已知 F1, F2分别是双曲线x2y21(a, b 0) 的左、右焦点,b2a2l1, l 2为双曲线的两条渐近线。
设过点M(b , 0)且平行于 l1的直线交l 2于点 P。
若 PF1⊥ PF2,则该双曲线的离心率为A.3B.5(第 17 题图)C.14241D.14241 2218. 如图,在菱形ABCD 中,∠ BAD=60°,线段 AD , BD 的中点分别为E, F。
现将△ ABD 沿对角线 BD 翻折,则异面直线BE 与 CF 所成角的取值范围是A. (,)B. (6,] C. ( ,] D. (,2)6323233(第 18 题图)二、填空题(本大题共 4 小题,每空 3 分,共 15分)19.设 a, b 为平面向量。
若a=(1,0), b=(3,4),则|a|=, a·b=.20.设全集 U={2 , 3, 4} ,集合 A={2 , 3} ,则 A 的补集U A=.21.n 1 23{ a n1 } 是等差数列,则a6.在数列 {a }(n∈ N*)中,设 a =a =1,a =2。
若数列an=22.已知函数 f(x)=x a | x a |, g(x)=ax+1 ,其中 a>0。
若 f(x) 与 g(x) 的图象有两个不同的交点,2则 a 的取值范围是.三、解答题(本大题共 3 小题,共 31 分)23.(本题 10 分)已知函数 f(x)=2sinxcosx ,x∈R.(Ⅰ)求 f(4 )的值;(Ⅱ)求函数f(x) 的最小正周期;(Ⅲ)求函数g(x)=f(x)+f(x+4 )的最大值。
24. (本题 10 分)设 F 1, F 2 分别是椭圆C : x 2 y 2 1的左、右焦点,2过 F 1 且斜率不为零的动直 线 l 与椭圆 C 交于 A , B 两点。
(Ⅰ)求△ AF 1F 2 的周长;(Ⅱ)若存在直线 l ,使得直线 F 2A , AB ,F 2B 与直线 x= -1分别2交于 P , Q , R 三个不同的点,且满足 P , Q , R 到 x 轴的距离依次成等比数列,求该直线l的方程。
25. (本题 11 分)已知函数 f(x)=ax1 1 ,a ∈ R .x 1 x 1(Ⅰ)判断函数f(x) 的奇偶性,并说明理由;(Ⅱ)当 a<2 时,证明:函数 f(x) 在 (0, 1)上单调递减;(Ⅲ)若对任意的x ∈ (0, 1)∪ (1, +∞),不等式 (x - 1)[f(x) - 2 ]≥0 恒成立,求 a 的取值范围。
x数学试题参考答案一、选择题(本大题共18 小题,每小题 3 分,共 54 分)题号 1 2 3 4 5 6 7 8 9 10 答案C D B D A D A C BB题号11 12 13 14 15 16 17 18 答案BAADCDBC二、填空题 (本大题共4 小题,每空 3 分,共 15 分)19.1 , 3 20.{4} 21.12022.0<a<1三、解答题(本大题共 3 小题,共 31 分)23.解: (Ⅰ) 由题意得f(4 )=2 sin 4 cos 4 =1(Ⅱ) ∵ f(x)= sin2x ∴函数 f(x) 的最小正周期为 T= π(Ⅲ) ∵ g(x)= sin2x+ sin(2x+ 2 )= sin2x+cos2x=2 sin(2 x 4)∴当 x k, k ∈ Z 时,函数 g(x) 的最大值为 2824.解: (Ⅰ)因为椭圆的长轴长2a=22 ,焦距 2c=2.又由椭圆的定义得|AF 1|+|AF 2|=2a所以 △AF 1F 2 的周长为 |AF 1|+|AF 2|+|F 1F 2|=22 +2(Ⅱ)由题意得 l 不垂直两坐标轴,故设l 的方程为 y=k(x+1)(k ≠0)于是直线 l 与直线 x=- 1交点 Q 的纵坐标为y Qk2 2设 A(x 1, y 1), B(x 2, y 2),显然 x 1,x 2≠1,所以直线 F 2A 的方程为 yy 1 (x 1)x11故直线 F 2A 与直线 x= -1交点 P 的纵坐标为 y P3y 122( x 1 1)同理,点 R 的纵坐标为 y R3y 22( x 2 1)因为 P , Q , R 到 x 轴的距离依次成等比数列,所以|y P | |y ·R |=|y Q |23 y 3 y k 2 9k 2 (x 1 1)(x 2 1) 2即 | 1 2| 即 | ( x 1 1)(x 2 1) | k 2( x 1) 2( x 1) 412整理得 9 | x 1 x 2 (x 1 x 2 ) 1| | x 1x 2 ( x 1 x 2 ) 1| 。
( * )yk( x1),消去 y 得 (1+2k 2)x 2+4k 2x+2k 2- 2=0联立x 2 y 21,2所以 x 1+x 2=4k 2 , x 1x 2= 2k 221 2k 21 2k 2代入( * )得 9 |2k224k 21| |2k 2 2 4k 21|1 2k 21 2k 21 2k2 1 2k 2 化简得 |8k 2 - 1|=9解得 k= 52经检验,直线 l 的方程为 y=5(x+1)2111 =- ( ax 1125. (Ⅰ)解:因为 f(- x)= - ax x 1 xx1 x 1 )=- f(x)又因为 f(x) 的定义域为 {x ∈ R |x ≠- 1 且 x ≠1}所以函数 f(x) 为奇函数。
(Ⅱ)证明:任取x 1, x 2∈ (0, 1),设 x 1<x 2,则f(x 1) -f(x 2)=a(x 1- x 2 )+x 2 x 1x 2 x 11)(x 21) (x 11)( x 2 1)( x 1 = ( x 1x 2 )[ a111)](x 1 1)(x 2 1) ( x 1 1)(x 2 = ( x 1 x 2 )[ a 2( x 1x 2 1) ](x 121)(x 2 21)因为 0<x 1<x 2<1,所以 2(x 1x 2 +1)>2 , 0<(x 12 -1)(x 22- 1)<1所以2( x 1 x 2 1) 2a 所以a 2( x 1x 21)( x 121)( x 221) ( x 121)(x 221)又因为 x 1- x 2<0 ,所以 f(x 1)>f(x 2)所以函数 f(x) 在 (0, 1)上单调递减(Ⅲ)解:因为 (x - 1)[f(x) -2]=(x - 1)[ ax2x - 2]x x 2 1 x ax 2 ( x 21) 2x 22( x 2 1) ax 2 ( x 2 1) 2=x( x 1)=1)x( x所以不等式 ax 2(x 2-1)+2 ≥0 对任意的 x ∈ (0, 1)∪ (1, +∞)恒成立。