高中数学说题比赛集锦李玉超说题共24页
- 格式:ppt
- 大小:3.56 MB
- 文档页数:24
试题出处:2011年高考数学辽宁理科第21题已知函数2()ln (2)f x x ax a x =-+-(1)讨论()f x 的单调性;(2)设0a >,证明:当10x a <<时,11()()f x f x a a+>-; (3)若函数()y f x =的图像与x 轴交于A B 、两点,线段AB 中点的横坐标为0x ,证明:0()0f x '<1说题目立意(1)考查常见函数的导数公式(包括形如()f ax b +的复合函数求导)及导数的四则运算法则;(2)考查对数的运算性质;(3)导数法判断函数的单调性;(4)考查用构造函数的方法证明不等式;(5)考查分类讨论、数形结合、转化化归等思想。
2说解法解:()f x 的定义域为(0,)+∞ 定义域优先原则1(21)(1)()2(2)x ax f x ax a x x+-'=-+-=- 若0a ≤,则()0f x '>,所以()f x 在(0,)+∞单调递增;若0a >,则由()0f x '=,得1x a=, 当1(0,)x a ∈时,()0f x '>,()f x 单调递增; 分类讨论的思想 当1(+)x a ∈∞,时,()0f x '<,()f x 单调递减;归纳小结:本问主要考查导数法确定函数单调性,属导数中常规问题。
(2)分析:在函数、导数的综合题中,不等式证明的实质就是转化成函数求最值。
本问只要考查构造函数法,完成不等式的证明。
形如11()()f x f x a a +>-的不等式叫“二元不等式”,二元不等式的证明,多采用“主元法”。
方法一:构造以x 为主元的函数 设函数11()()()g x f x f x a a=+--则()ln(1)ln(1)2g x ax ax ax =+---32222()2111a a a x g x a ax ax a x '=+-=+-- 当10x a<<时,()0g x '>,而(0)0g =,所以()0g x > 故当10x a <<时,11()()f x f x a a+>-。
高中数学,说题稿篇一:高中数学说题稿会做得全分——“讲好,练好,考好”基础考点考题佛冈一中数学科组各位评委,各位老师,大家好。
我是8号邓顺平。
基于三角函数在高考中主要以简单、基础题出现,我的说题标题是《会做得全分——“讲好,练好,考好”基础考点考题》,我将从以下六方面展开:一、原题背景:17.(本小题满分12分)已知函数f?2cosx?1,x?R.(Ⅰ)求函数f的最小正周期;(Ⅱ)求函数f在区间??上的最小值和最大值.84这是一道07年天津理科高考试卷第17题,也是第一道大题。
主要考查的是高中数学人教版必修4的三角函数。
条件是有关三角函数的解析式,问题是求相关性质:周期,给定定义域范围内最值。
虽然这是一道老题,但这恰恰体现了他的经典。
这一章节知识内容也是我们广东历年高考的必考内容,因为他能够涉及较多高中数学学习的基础内容,思想方法,逻辑思维等。
他的题型设置主要是一道选择题加一道解答题,分值一般17分,考查内容与解三角形、向量结合的较多。
考查难度以简单基础为主。
因此对于数学学的比较薄弱的学生是一个必须拿下的阵地,也是学生学习、考试由浅入深的关口。
该题通过考查三角函数中特殊角三角函数值、倍角公式、化一公式、函数y?Asin的图像性质等基础知识,考查基本运算能力.实现高考考试大纲要求。
(考纲)2.三角函数理解任意角三角函数的定义。
能利用单位圆中的三角函数线推导出的正弦、余弦、正切的诱导公式,能画出y?Asin 的图像,了解三角y?Asin 函数的周期性。
理解正弦函数、余弦函数在[0,2π]上的性质,理解正切函数在定义域内的单调性。
理解同角三角函数的基本关系式:了解三角函数的物理意义;能画出三角函数的图像。
了解参数对函数图像变化的影响。
会用三角函数解决一些简单实际问题,了解三角函数是描述周期变化现象的重要函数模型。
二、解题方法此题第一问主要是考查倍角公式,化一公式,参数对函数性质影响,周期公式,数学运算变形技巧等方面。