高中数学说题比赛集锦李玉超说题共24页
- 格式:ppt
- 大小:3.56 MB
- 文档页数:24
试题出处:2011年高考数学辽宁理科第21题已知函数2()ln (2)f x x ax a x =-+-(1)讨论()f x 的单调性;(2)设0a >,证明:当10x a <<时,11()()f x f x a a+>-; (3)若函数()y f x =的图像与x 轴交于A B 、两点,线段AB 中点的横坐标为0x ,证明:0()0f x '<1说题目立意(1)考查常见函数的导数公式(包括形如()f ax b +的复合函数求导)及导数的四则运算法则;(2)考查对数的运算性质;(3)导数法判断函数的单调性;(4)考查用构造函数的方法证明不等式;(5)考查分类讨论、数形结合、转化化归等思想。
2说解法解:()f x 的定义域为(0,)+∞ 定义域优先原则1(21)(1)()2(2)x ax f x ax a x x+-'=-+-=- 若0a ≤,则()0f x '>,所以()f x 在(0,)+∞单调递增;若0a >,则由()0f x '=,得1x a=, 当1(0,)x a ∈时,()0f x '>,()f x 单调递增; 分类讨论的思想 当1(+)x a ∈∞,时,()0f x '<,()f x 单调递减;归纳小结:本问主要考查导数法确定函数单调性,属导数中常规问题。
(2)分析:在函数、导数的综合题中,不等式证明的实质就是转化成函数求最值。
本问只要考查构造函数法,完成不等式的证明。
形如11()()f x f x a a +>-的不等式叫“二元不等式”,二元不等式的证明,多采用“主元法”。
方法一:构造以x 为主元的函数 设函数11()()()g x f x f x a a=+--则()ln(1)ln(1)2g x ax ax ax =+---32222()2111a a a x g x a ax ax a x '=+-=+-- 当10x a<<时,()0g x '>,而(0)0g =,所以()0g x > 故当10x a <<时,11()()f x f x a a+>-。