第1讲:认识有理数
- 格式:docx
- 大小:152.13 KB
- 文档页数:6
第一讲有理数的相关概念【知识要点及巩固】一、有理数基本概念1、正数:像3、1、+0.33等的数,叫做正数。
在小学学过的数,除0外都是正数。
正数都大于0。
2、负数:像-1、-3.12、-2012等在正数前加上“-”(读作负)号的数,叫做负数。
负数都小于0。
0既不是正数,也不是负数。
如果正数表示某种意义,那么负数表示它的相反的意义。
注意:正数和负数是表示相反意义的量。
如:南为正方向,向南km3表示为km-。
31表示为km1+,那么向北km3、有理数:整数与分数统称为有理数。
4、无理数:无限不循环小数,如π。
5.有理数的分类:6.几个重要概念:注意:⑴正数和零统称为非负数;⑵负数和零统称为非正数;⑶正整数和零统称为非负整数;⑷负整数和零统称为非正整数。
例1:判断下列说法正确与否⑴一个有理数不是整数就是分数()⑵一个有理数不是正数就是负数()⑶一个整数不是正的,就是负的()⑷一个分数不是正的,就是负的()例2:1、(2016山东德州)把下列各数填入表示相应集合的大括号中:-7.2,43,-9, 1.4,0, 3.14,π,5412,-2.5, 121121112.0,36整数集合{ } 正数集合{ } 分数集合{ } 有理数集合{ } 非正数集合{ } 负分数集合{ } 想一想:a +一定是正数吗?a -一定是负数吗?例3:(2014七中嘉祥)将一串有理数按下列规律排列,回答下列问题: (1)在A 处的数是正数还是负数? (2)负数排在A 、B 、C 、D 中的什么位置?(3)第2014个数是正数还是负数?排在对应于A 、B 、C 、D 中的什么位置? 例4:(2014七中嘉祥)观察下面依次排列的一列数,它的排列有什么规律?请根据你探索的规律接着写出后面的3个数,并尝试写出第100个数、第301个数。
1、6151-4131-211、、、、、-,_____,_______,_________,...;第100个数是_________,第301个数是________。
有理数的概念(数轴、相反数)要点一、正数与负数大于0的数,叫做正数; 像-3、-1.5、12-、-584等在正数前面加“-”号的数,叫做负数. 要点二、有理数的分类1.有理数:整数与分数统称为有理数. 2.有理数的分类:(1)有理数按性质分类: (2)有理数按符号分类⎧⎧⎫⎪⎪⎬⎨⎪⎭⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数负整数正分数分数负分数⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩正整数正有理数正分数有理数零(既不是正数,也不是负数)负整数负有理数负分数 【注】注意以下几个概念的区分:非负数:正数和零;非正数:负数和零;非负整数:正整数和零;非正整数:负整数和零;非负有理数:正有理数和零;非正有理数:负有理数和零.要点三、数轴:规定了原点、正方向和单位长度的直线叫做数轴.要点四、相反数:只有符号不同的两个数互为相反数;0的相反数是0.类型一、正数和负数(1)仔细思考以下各对量: ①胜二局与负三局; ②气温为3C -︒与气温升高30C ︒; ③盈利5万元与亏损5万元; ④增加10%与减少20%. 其中具有相反意义的量有( ) A .1对 B .2对 C .3对 D .4对(2)①我国现采用国际通用的公历纪年法,如果我们把公元2017年记作+2017年,那么,处于公元前500年的春秋战国时期可表示为___________.②如果80m 表示向东走80m ,那么60m -表示________________.③A ,B 两地海拔高度分别是120米,10-米,则B 地比A 地低________米.(3)某饮料公司生产的一种瓶装饮料外包装上印有“60030(ml)±”字样,请问“60030(ml)±”是什么含义?质检局对该产品抽查5瓶,容量分别为603ml ,611ml ,589ml ,573ml ,627ml ,问抽查产品的容量是否合格?知识导航典题精练例题1举一反三:【变式1】一种大米的质量标识为“(50±0.5)千克”,则下列各袋大米中质量不合格的是( ) A .50.0千克 B .50.3千克 C .49.7千克 D .49.1千克【变式2】(1)如果节约16吨水记作+16吨,则浪费6吨水记作__________.(2)在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作___________.类型二、有理数的概念及分类(1)下列说法错误的是( ) A .0既不是正数也不是负数B .正整数和负整数统称整数C .整数和分数统称有理数D .正有理数包括正整数和正分数(2)把下列各数分别填在所属分类里:5-,0, 3.14-,32, 2.4-,227,327,π, 5.5-,2.4,311-,3.14159,34-,2003①正数:{ }; ②负数:{ }; ③非负整数:{ }; ④分数:{ }; ⑤非正有理数:{ };举一反三:【变式1】判断题:(1)0是自然数,也是偶数.( ) (2)0既可以看作是正数,也可以看成是负数.( ) (3)整数又叫自然数.( ) (4)非负数就是正数,非正数就是负数.( )例题2【变式2】下列四种说法,正确的是( ).(A)所有的正数都是整数(B)不是正数的数一定是负数(C)正有理数包括整数和分数 (D)0不是最小的有理数【变式3】下列说法正确的是()A.在有理数中,零的意义仅仅表示没有B.正有理数和负有理数组成全体有理数C.0.5既不是整数,也不是分数,因而它不是有理数D.零既不是正数,也不是负数【变式4】把下列各数填入表示它所在的大括号:.-24,3,2.008,10-3,114,0,()--2,3.14,||--4.正有理数:{ } 非负整数:{ } 负分数:{ }类型三、数轴(1)下面图形是数轴的是()A.B.C.D.(2)如图所示,数轴的一部分被墨水污染了,被污染的部分内含有的整数为_______.(3)已知:点A在数轴上的位置如图所示,点B也在数轴上,且A、B两点之间的距离是2,则点B表示的数是______.(4)在数轴上标出下列各数:0, 4.2,132,2,+7,113,并用“<”连接.举一反三:【变式】(1)如图,表示数轴正确的是()A.B.C.D.(2)已知点A,点B在数轴上,点A表示数为-2,A、B两点的距离为5,则点B表示的数是________.(3)在数轴上标出下列各数,并用“<”比较它们的大小:-3,+1,122,.-15,5.例题3(4)已知,a b 为有理数,在数轴上的位置如图所示,则a 1,b1,0,1的大小关系为_______________.(1)一个点沿着数轴的正方向从原点起移动2个单位长度后,又向反方向移动6个单位长度,则这个点表示的数是__________.(2)一个小虫在数轴上先向右爬2个单位,再向左爬6个单位,所在位置正好距离数轴原点2个单位,则小虫的起始位置所表示的数是________.(3)数轴上的点A 对应的数是1-,一只蚂蚁从A 点出发沿着数轴向右以每秒3个单位长度的速度爬行至B 点后,用2秒的时间吃光了B 点处的蜜糖,又沿原路以原速度返回A 点,共用去6秒,则蚂蚁爬行的路程是几个单位长度?B 点与A 点的距离是多少个单位长度?B 点对应的数是多少?举一反三:【变式】(1)点A 在数轴上距原点为3个单位,且位于原点左侧,若将A 向右移动4个单位,再向左移动2个单位,这时A 点表示的数是________.(2)一只小虫在数轴上先向右爬3个单位,再向左爬7个单位,正好停在-2的位置,则小虫的起始位置所表示的数是( ) A .-4 B .4 C .2 D .0类型、相反数(1)2017-的相反数是________,2017与________互为相反数.(2)已知有理数a 、b 在数轴上表示如图,则a 、b 、a -、b -的大小,正确的是( ) A .a b a b -<-<< B .a b b a <-<<-C .b a a b -<<-< D .a b b a <<-<-(3)下列说法正确的是( ) A .一个数的相反数一定是负数 B .π和.-314互为相反数 C .所有的有理数都有相反数 D .13和31互为相反数例题4例题5举一反三:【变式1】我们可以用字母表示数,比如a 、b 都能代表一个数,在一个数的前面添上“-”号,就得到这个数的相反数.(1)5的相反数是_______;13的相反数是_______,0的相反数是_______,数a 的相反数是________;(2)5-的相反数是_______,12-的相反数是________,4-的相反数是________;数a -的相反数是________;(3)(2)--的相反数是________;(5)+-的相反数是________,数()a -+的相反数是________,数()a --的相反数是_______;()a b ---与________互为相反数.【变式2】下列说法中正确的有( )①-3和+3互为相反数;②符号不同的两个数互为相反数;③互为相反数的两个数必定一个是正数,一个是负数;④π的相反数是-3.14;⑤一个数和它的相反数不可能相等. A. 0个 B.1个 C.2个 D.3个或更多化简下列各数中的符号.(1)123⎛⎫-- ⎪⎝⎭ (2)-(+5) (3)-(-0.25) (4)12⎛⎫+- ⎪⎝⎭(5)-[-(+1)] (6)-(-a)举一反三:【变式1】如果a <0,化简下列各数的符号,并说出是正数还是负数 ①()a -+; ②()a --; ③[()]a -+-; ④[()]a ---; ⑤{[()]}a -+--; ⑥{{{{{[()]}}}}}a -----+--【变式2】(1)37与________互为相反数;a 1-2是________的相反数.(2)()--2的相反数是________;b +4是________的相反数.(3){[()]}--+-4=________;{[()]}----5与________互为相反数.例题6一、选择题1.如图所示,在数轴上点A 表示的数可能是( )A .1.5 B.-1.5 C.-2.6 D.2.62.从原点开始向右移动3个单位,再向左移动1个单位后到达A 点,则A 点表示的数是( ). A.3 B.4 C.2 D.-23.关于数“0”,以下各种说法中,错误的是 ( ) A .0是整数 B .0是偶数C .0是正整数D .0既不是正数也不是负数 4.下列说法中:(1)0是最小的自然数;(2)0是最小的正数;(3)0是最大的负整数;(4)0属于整数集合;(5)0既非正数也非负数.正确的是( ) A .(1)(2)(4) B .(4)(5) C .(1)(4)(5) D .(1)(2)(5) 5.一个数的相反数是非负数,则这个数一定是( ) A.正数 B.负数 C.非正数 D.非负数 6.在①+(+1)与-(-1);②-(+1)与+(-1);③+(+1)与-(+1);④+(-1)与-(-1)中,互为相反数的是( )A. ①②B. ②③C. ③④D. ②④ 7.-(-2)=( ) A.-2B. 2C.±2D.4二、填空题1.不大于4的正整数的个数为 .2.已知数轴上有A ,B 两点,A ,B 之间的距离为1,点A 与原点O 的距离为3,那么点B 对应的数是 .3. 既不是正数,也不是负数的有理数是 .4.如图所示,矩形ABCD 的顶点A ,B 在数轴上,CD =6,点A 对应的数为-1,则点B 所对应的数为 .5.数轴上离原点的距离小于3.5的整数点的个数为m , 距离原点等于3.5的点的个数为n , 则3____m n -=.6.已知x 与y 互为相反数,y 与z 互为相反数,又2z =,则z x y -+= .7. 已知-1<a <0<1<b ,请按从小到大的顺序排列-1,-a ,0,1,-b 为 .8.一种零件的长度在图纸上是(03.002.010+-)毫米,表示这种零件的标准尺寸是 毫米,加工要求最大不超过 毫米,最小不小于 毫米.课堂巩固三、解答题9.小敏的家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为A 、B 、C 、D ,学校位于小敏家西150米,邮局位于小敏家东100米,图书馆位于小敏家西400米. (1)用数轴表示A 、B 、C 、D 的位置(建议以小敏家为原点).(2)一天小敏从家里先去邮局寄信后.以每分钟50米的速度往图书馆方向走了约8分钟.试问这时小敏约在什么位置?距图书馆和学校各约多少米?10.把下列各数填在相应的大括号内: 1.2-,3,1,41,0,-14.3,101-,6.20,25-,1056,-7.正分数集合:{ …}; 非负数集合:{ …};正整数集合:{ …}; 负整数集合:{ …}.11.化简下列各数,再用“<”连接.(1)-(-54) (2)-(+3.6) (3)53⎛⎫-+ ⎪⎝⎭ (4)245⎛⎫-- ⎪⎝⎭12.若a 与b 互为相反数,c 与d 互为倒数,m 是最大的负整数.求代数式的值.13.在数轴上有三个点A ,B ,C 如图所示,请回答:(1)将B 点向左移动3个单位长度后,三个点表示的数谁最小? (2)与A 点相距3个单位长度的点所表示的数是什么?(3)将C 点左移6个单位长度后,这时B 点表示的数比C 点表示的数大多少?。
--------有理数的概念(★)1. 使学生体会具有相反意义的量,并能用有理数表示,掌握有理数的分类;2. 能用数轴上的点表示有理数,理解相反数和绝对值的意义;3. 会求有理数的相反数和绝对值,会利用绝对值的意义解决实际问题。
【课前导入】小明在书上看到,冬日的一天,某地的最高气温为15℃,最低气温达到-12℃,平均气温是0 ℃,这里面的数是什么数?【答案】15是正数 ,-12是负数,0既不是正数也不是负数.随着同学们视野的拓展,小学学过的自然数、分数和小数已经不能满足认知需要了.譬如一些具有相反意义的量,收入300元和支出200元,向东50米和向西30米,零上6C ︒和零下4C ︒等等,它们不但意义相反,而且表示一定的数量,怎么表示它们呢?我们把一种意义的量规定为正的,把另一种和它意义相反的量规定为负的,这样就产生了正数和负数.正数:像3、1、0.33+等的数,叫做正数.在小学学过的数,除0外都是正数.正数都大于0. 负数:像1-、 3.12-、175-、2008-等在正数前加上“-”(读作负)号的数,叫做负数.负数都小于0. 0既不是正数,也不是负数.一个数字前面的“+”,“-”号叫做它的符号.正数前面的“+”可以省略,注意3与3+表示是同一个正数.用正、负数表示相反意义的量:如果正数表示某种意义,那么负数表示它的相反的意义,反之亦然. 譬如:用正数表示向南,那么向北3km 可以用负数表示为3km -.“相反意义的量”包括两个方面的含意:一是相反意义;二是相反意义的基础上要有量.【知识结构】【知识点一:有理数的概念和分类】 有理数:按定义整数与分数统称有理数.()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数 ()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数 注:⑴正数和零统称为非负数;⑵负数和零统称为非正数; ⑶正整数和零统称为非负整数; ⑷负整数和零统称为非正整数.【例1】 ⑴如果收入2000元,可以记作2000+元,那么支出5000元,记为 .⑵高于海平面300米的高度记为海拔300+米,则海拔高度为600-米表示 . ⑶某地区5月平均温度为20C ︒,记录表上有5月份5天的记录分别为 2.7+,0,1.4+,3-,4.7-,那么这5项记录表示的实际温度分别是 . ⑷向南走200-米,表示 .【解析】 ⑴5000-元;⑵低于海平面600米的高度;⑶22.7C ︒,20C ︒,21.4C ︒,17C ︒,15.3C ︒;⑷向北走200米.【例2】 珠穆朗玛峰海拔高度为8848米,吐鲁番盆地海拔高度为155-米,则海平面为 【解析】 0米;海拔高度也称绝对高度,就是某地与海平面的高度差,通常以平均海平面做标准来计算,是表示地面某个地点高出海平面的垂直距离。
第一讲 有理数的有关概念(一)【考点梳理】有理数的基本概念1.正数:大于0的数叫做正数;负数:小于0的数叫做负数。
备注:在正数前面加“-”的数是负数;“0”既不是正数,也不是负数。
2.有理数:整数和分数统称有理数。
3.有理数分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 或者 ⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数 4.数轴:规定了原点、正方向和单位长度的直线。
性质:(1)在数轴上表示的两个数,右边的数总比左边的数大;(2)正数都大于0,负数都小于0;正数大于一切负数;(3)所有有理数都可以用数轴上的点表示。
【典例精析】1.在7, 0, -1.5, 21-, -301, 31.25, 81-, 100.1, -3.001中,负分数为 ,整数为 ,正整数为 。
2.小于5.05的正数有 个,正整数有 个,负整数有 个。
3在数轴上距原点2个单位长度的点表示 。
4、下列说法中,错误的有( ) ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
A 、1个 B 、2个 C 、3个 D 、4个5. a , b 两数在数轴上的位置如图,下列结论中正确的是 。
A. a >0, b <0 B. a <0, b >0C. b >aD. 以上均不对 【训练迁移】6. 0是 。
A. 正数B. 负数C. 整数D. 分数7.(1)如果向南走5米,记作+5米,那么向北走8米应记作___________. (2)如果温度上升3℃记作+3℃,那么下降5℃记作____________. 8. 在数轴上,离开表示数2的点距离是3的点表示的数是_______。
9、(1)既是分数又是正数的是( )A 、+2B 、 -314 C 、0 D 、2.3(2)在0,1,-2,-3.5这四个数中,是负整数的是( ) A 、0 B 、1 C 、-2 D 、-3.5 10,在2005,212,0,-3,+1,41,-6.8中,正整数和负分数共有 ( )A .3个B .4个C .5个D .6个11.12. 下面说法中正确的是( ).(A)正整数和负整数统称整数(B)分数不包括整数(C)正分数,负分数,负整数统称有理数 (D)正整数和正分数统称正有理数13如图:下列说法正确的是( )A :a 比b 大B :b 比a 大C :a 、b 一样大D :a 、b 的大小无法确定14、________是最小的正整数,_______是最小的非负数,_________是最大的非正数。
一、有理数六大基本概念Ⅰ:正数、负数及有理数概念正数:像、、等的数,叫做正数.在小学学过的数,除外都是正数.正数都大于.负数:像、、等在正数前加“”(读作负)号的数,叫做负数.负数都小于. 既不是正数,也不是负数.一个数字前面的“”,“”号叫做它的符号.正数前面的“”可以省略.用正、负数表示相反意义的量:如果正数表示某种意义,那么负数表示它的相反的意义,反之亦然. “相反意义的量”包括两个方面的含意:一是相反意义;二是相反意义的基础上要有量.有理数:整数与分数统称有理数.注:⑴正数和零统称为非负数;⑵负数和零统称为非正数;⑶正整数和零统称为非负整数;⑷负整数和零统称为非正整数.⑷正有理数和零统称为非负有理数.⑷负有理数和零统称为非正有理数.Ⅱ:数轴数轴:规定了原点、正方向和单位长度的直线.310.33+001- 3.12-175--00+-+()ììüïýïíþïïïíîïìïíïîî正整数自然数整数零有理数按定义分类负整数正分数分数负分数()()ììíïîïïíïìïïíïïîî正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数ìüïýíþïî有限小数可化成分数形式,是有理数小数无限循环小数无限不限循环小数---不可化成分数形式,不是有理数第一讲有理数之六大必考概念注意:⑴原点、正方向、单位长度称为数轴的三要素,三者缺一不可.⑵单位长度和长度单位是两个不同的概念,前者指所取度量单位的长度,后者指所取度量单位的名称,即单位长度是一条人为规定的代表“1’的线段,这条线段可长可短,按实际情况来规定,同一数轴上的单位长度一旦确定,则不能再改变.⑶数轴的画法及常见错误分析①画一条水平的直线;②在这条直线上适当位置取一实心点作为原点:③确定向右的方向为正方向,用箭头表示;④选取适当的长度作单位长度,用细短线画出,并对应标注各数,同时要注意同一数轴的单位长度要一致.数轴画法的常见错误举例:一切有理数都可以用数轴上的点表示出来. 注意:数轴上的点不都代表有理数,如. 在数轴上,右边的点所对应的数总比左边的点所对应的数大.正数都大于0,负数都小于0,正数大于一切负数.利用数轴比较有理数的大小:数轴上右边的数总大于左边的数.因此,正数总大于零,负数总小于零,正数大于负数.Ⅲ:相反数相反数:只有符号不同的两个数互称为相反数.特别地,0的相反数是0.相反数的性质:⑴代数意义:只有符号不同的两个数叫做互为相反数,特别地,0的相反数是0.相反数必须成对出现,不能单独存在.另外,定义中的“只有”指除符号以外,两个数完全相同,注意应与“只要符号不同”区分开.⑵几何意义:一对相反数在数轴上应分别位于原点两侧,并且到原点的距离相等.这两点是关于原点对称的.⑶求任意一个数的相反数,只要在这个数的前面添上“”号即可.一般地,数的相反数是;这里以表示任意一个数,可以为正数、0、负数,也可以是任意一个代数式.注意不一定是负数.当时,;当时,;当时,.π-a a -a a -0a >0a -<0a =0a -=0a <0a ->⑷互为相反数的两个数的和为零,即若与互为相反数,则,反之,若,则与互为相反数.⑸多重符号的化简:一个正数前面不管有多少个“”号,都可以全部去掉;一个正数前面有偶数个“”号,也可以把“”号全部去掉;一个正数前面有奇数个“”号,则化简后只保留一个“”号,既“奇负偶正”(其中“奇偶”是指正数前面的“”号的个数的奇偶数,“负正”是指化简的最后结果的符号). Ⅳ:绝对值绝对值的几何意义:一个数的绝对值就是数轴上表示数的点与原点的距离.数的绝对值记作.绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;的绝对值是.③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:符号是负号,绝对值是.求字母的绝对值:① ② ③ 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若,则,,Ⅴ:倒数、负倒数倒数:乘积为1的两个数互为倒数. ,互为倒数,则;反之亦然.倒数是成对出现的,单独一个数不能称为倒数;互为倒数的两个数的乘积一定是;0没有倒数; 负倒数:乘积为的两个数互为负倒数.,互为负倒数,则.反之亦然.二、有理数大小的比较数轴上的数,右边的数总大于左边的数.正数大于0,负数小于0,正数大于负数;两个负数,绝对值大的反而小 两数比较大小,可按符号情况分类: 注☆“0”的9种说法:(1)既不是正数也不是负数的数. (2)最大的非正数. (3)最小的非负数. (4)与其相反数相等的数. (5) 最小的非负整数. (6) 最大的非正整数. (7) 最小的自然数. (8) 绝对值最小的有理数. (9) 没有倒数的数.a b 0a b +=0a b +=a b +-----a a a a 005-5a (0)0(0)(0)a a a a a a >ìï==íï-<î(0)(0)a a a a a ì=í-<î≥(0)(0)a a a a a >ì=í-î≤0a b c ++=0a =0b =0c =a b 1a b ×=11-a b 1a b ×=-0ììïíîïïíïìïíïîî同正:绝对值大的数大两数同号同负:绝对值大的反而小比较大小两数异号(一正一负):正数大于负数正数与0:正数大于0其中有时负数与0:负数小于0补充练习【例1】 (北京师范大学附属中学初一期中考试第1题3分)如果零上记作,那么零下记作( )A. B . C. D.【例2】 (铁路第二中学初一第二次月考第1题2分)关于零,下列几种说法不正确...的是 ( ) A .零既不是正数,也不是负数 B .零的相反数是它本身C .零是绝对值最小的有理数D .零是最小的有理数【例3】 (京源学校初一期中考试第1题3分)1是( )A .最小的整数B .最小的正整数C .最小的自然数D .最小的有理数【例4】 (人大附中初一期中考试第2题3分)在15,,0.15,,,中,负分数的个数是( )A .1B .2C .3D .4【例5】 (一六一中学初一期中考试第14题2分)和的大小关系是____ 【例6】 (北京四中初一期中考试第13题2分)数轴上与原点距离是3个单位长度的点所表示的数是__________.【例7】 (北京市中考题第1题4分)7的相反数( )A .B .7C .D . 【例8】 (一六一中学初一期中考试第13题2分)数的相反数是________【例9】 (北京市中考题第1题4分)的绝对值等于( )A .6B .C .D . 【例10】 (上地实验初一期中考试第17题3分)绝对值大于2而小于5的负整数是 .【例11】 (101中学初一期中考试第6题4分)已知、为有理数,且,,,则、、、的大小关系是( )A .B .C .D .【例12】 (人大附中初一期中考试第4题3分) 下列说法正确的是( )A .符号相反的数互为相反数B .任何有理数均有倒数C .一个数的绝对值越大,表示它的点在数轴上越靠右D .一个数的绝对值越大,表示它的点在数轴上离原点越远【例13】 (101中学初一期中考试第1题4分)下列说法错误的是( )A .0既不是正数,也不是负数B .1是绝对值最小的数C .一个有理数不是整数就是分数D .0的绝对值就是0 【例14】 (101中学初一期中考试第5题4分) 下列各数中互为相反数的是( )A .和B .和 5℃5+℃5℃5-10-5-℃10-℃38-30-12.8-22545-0.9-45-0.9-1717-7-a 6-1616-6-a b 0a <0b >||||b a <a b a -b -b a b a -<<<-b b a a -<<-<a b b a <-<<-a b b a -<<-<()a --||a --(2)-+(2)+-C .和D .和 【例15】 (京源学校初一期中考试选择第8题3分)若为有理数,则表示的数是( )A .正数B .非正数C .负数D .非负数【例16】 (2007北京市中考题第一题4分)的倒数( )A .B .C .D .3 【例17】 (西城外国语初一期中第6题3分)下列说法正确的是( ). A .符号相反的数互为相反数 B .任何有理数都有倒数C .最小的自然数是1D .一个数绝对值越大,表示它的点在数轴上离原点越远【例18】 (北大附中初一期中考试试卷第14题2分)的绝对值为_______,的相反数为_______,的倒数是________.【例19】 (北京师范大学附属中学初一期中考试第2题3分,14题2分)⑴ 在0,,,这四个数中,最小的数是 ( ) A. B. C. 0 D. ⑵ 大于而小于2的所有整数是 . ⑶(北京四中初一期中考试第15题2分)比较大小: ; _______. 【例20】 若是非负有理数,则下列说法中正确的有 .① 是负有理数;② 是正有理数或0;③ 是正有理数或0;④ 可以是正有理数,也可以是负有理数;⑤ 也是有理数;⑥ 是正有理数或0或负有理数.【例21】 (北京四中初一期中考试第30题4分)一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续走了1.5千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.⑴ 以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置;⑵ 小明家与小刚家相距多远?⑶ 若货车每千米耗油0.05升,那么这辆货车共耗油多少升?(5)--|5|-132- 3.5x ||x x -3-13-133-3.5- 3.5-3.5-211-3-3-1-21313-31-52-()1--1--a -()a -+()a ---éùëû()a +--éùëû()a --a ()a -+百货大楼-。
第一讲 有理数及其运算(一) 知识梳理 1、正数与负数: (1).【正数】:像+1.8,+420、+30、+10%等带有理数“+”号的数叫做正数。为了强调正数,前面加上“+”号,也可以省略不写。 (2).【负数】:像-3、-4754、-50、-0.6、-15%等带有“-”号的数叫做负数。而负数前面的“-”号不能省略。 (3).【零】:既不是正数也不是负数,它是正数与负数的分界点。
★注意:对于正数与负数,不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数。例如-a不一定是负数,因为字母a代表任何一个有理数,当a是0时,-a是0,当a是负数时,-a是正数;能用正数与负数表示相反意义的量,习惯上把增加、盈利等规定为正,它们相反意义的量规定为负,正、负是相对而言有理数。
2、有理数及其分类: 有理数:整数与分数统称为有理数。
按整数、分数的关系分类: 按正数、负数、零的关系分类:
负分数正分数分数
负整数
正整数整数有理数0
负分数负整数负有理数
正分数正整数正有理数
有理数0
★注意:小学学过的零表示没有,而引入负数后,就不能把“零”完全当作没有了,如0℃就是一个特定的温度;现在我们学过的数,除和与有关的数外,其他的数都是有理数;引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大到整数。
3、数轴: (1).数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。 ①数轴是一条直线,可以向两端无限延伸; ②数轴三要素:原点、正方向、单位长度(三者缺一不可); ③原点的位置、正方向的取向、单位长度的大小的选定,都是根据实际需要而定的。
(2).数轴的画法: ①画一条水平的直线; ②在直线的适当位置选取一点作作为原点,并用0表示这点; ③确定向右为正方向,用箭头表示出来; ④选取适当的长度作为单位长度, ★注意:在数轴上,右边的数总比左边的数大,所以正数都大于0,负数都小于0,正数大于负数。 4、相反数: 只有符号不同的两个数互为相反数。 规定0的相反数是0 从数轴上看,表示互为相反数的两个数,分别位于原点的两侧,且与原点的距离相等
第1讲有理数的分类与数轴上的数教学目标1、了解自然数、分数、小数的产生过程及在解决实际问题中的应用;2、理解数轴的概念,掌握数轴的三要素,会画数轴;3、会用数轴上的点表示有理数,能说出数轴上的点表示的有理数;4、利用数轴理解相反数的意义,会求一个数的相反数。
重点、难点重点:理解数轴、相反数概念,数轴的画法难点:1、理解负数、0表示的量的意义。
2、从数形结合的观点出发认识相反数。
考点及考试要求1、理解有理数的意义;2、用数轴上的点表示有理数以及有理数的相反数。
教学内容知识框架1、从自然数到分数2、正数和负数3、数轴知识点一:从自然数到分数【内容概述】1、自然数的作用:①计数②测量③标号和排序注意:基数和序数的区别。
2、分数可以看成是两个整数相除,因此分数都可以化为小数表示。
分数在化成小数时,结果可能是有限小数,也可能是无限循环小数。
分数和小数是同一种数,只是表示方式不同而已。
(注意:带单位)【典型例题—1】自然数的作用例1、下列句子中用到的自然数,哪些属于计数?哪些表示测量结果?哪些属于标号或排序?(1)2002年全国共有高等学校2003所;(2)小明哥哥乘1425次列车从北京到天津;(3)香港特别行政区的中国银行大厦高368米,地上70层,至1993年为止,是世界第5高楼。
答:计数和测量:;表示标号或排序:;练习1、下面关于万里长城的描述中用了很多自然数,请找出这些数,并说说它们哪些表示计数和测量,哪些表示标号或排序?我国的长城始建于公元前7世纪,前后修造了2000余年,是世界七大奇迹之一。
明长城从山海关到嘉峪关,实际长度为5130千米(合一万零二百六十里),故称万里长城。
以明代修建长城作估算,需用砖石5000万立方米,土1.5亿立方米。
若用这些砖石和土方筑成一道宽1米,高5米的长墙,能绕地球赤道1周;如用来铺筑宽5米,厚50厘米的公路,能绕地球赤道2周。
答:表示计数和测量: ;表示标号或排序: ;【典型例题—2】分数、小数的相互转换与实际应用 例2、把下列分数化成小数,把小数化成分数 53 311.31 0.0062例3、计算15.669.3 ,结果用分数表示是多少?用小数表示是多少?例4、已知盐的单价为1.6元/千克,糖的单价为3元/千克。
第一章数与式第1讲实数考纲要求命题趋势1.理解有理数、无理数和实数的概念,会用数轴上的点表示有理数.2.借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值.3.理解平方根、算术平方根、立方根的概念,会求一个数的算术平方根、平方根、立方根.4.理解科学记数法、近似数与有效数字的概念,能按要求用四舍五入法求一个数的近似值,能正确识别一个数的有效数字的个数,会用科学记数法表示一个数.5.熟练掌握实数的运算,会用各种方法比较两个实数的大小.实数是中学数学重要的基础知识,中考中多以选择题、填空题和简单的解答题的形式出现,主要考查基本概念、基本技能以及基本的数学思想方法.另外,命题者也会利用分析归纳、总结规律等题型考查考生发现问题、解决问题的能力.一、实数的分类1、按实数的定义分类:实数有限小数或无限循环数2、按实数的正负分类:二、实数的有关概念及性质1.数轴(1)规定了原点、单位长度、正方向的直线叫做数轴;(2)实数与数轴上的点是一一对应的.2.相反数(1)实数a 的相反数是-a ,零的相反数是零;(2)a 与b 互为相反数⇔a +b =0.3.倒数(1)实数a (a≠0)的倒数是1/a ;ìíîìíî正数正无理数零 负有理数负数⎪⎪⎪⎪î⎪⎪⎪⎪íìîíì⎪⎪⎪î⎪⎪⎪íìîíì⎪î⎪íì正无理数无理数负分数零正整数整数有理数(2)a与b互为倒数⇔ab=1.4.绝对值(1)数轴上表示数a的点与原点的距离,叫做数a的绝对值,记作|a|.(2)|a|a>0 ,a=0 ,a<0 .5.平方根、算术平方根、立方根(1)平方根①定义:如果一个数x的平方等于a,即x2=a,那么这个数x叫做a的平方根(也叫二次方根),数a的平方根记作±a.②一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.(2)算术平方根①如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,a的算术平方根记作a.零的算术平方根是零,即0=0.②算术平方根都是非负数,即a≥0(a≥0).③(a)2=a(a≥0),a2=|a|a≥0 ,a a<0 .(3)立方根①定义:如果一个数x的立方等于a,即x3=a,那么这个数x叫做a的立方根(也叫三次方根),数a 的立方根记作3a.②任何数都有唯一一个立方根,一个数的立方根的符号与这个数的符号相同.6.科学记数法、近似数、有效数字(1)科学记数法把一个数N表示成a与10的幂相乘(1≤a<10,n是整数)的形式叫做科学记数法.当N≥1时,n等于原数N的整数位数减1;当N<1时,n是一个负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数位上的零).(2)近似数与有效数字一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位,这时从左边第1个不为0的数字起,到末位数字止,所有的数字都叫做这个近似数的有效数字.三、非负数的性质1.常见的三种非负数|a|≥0,a2≥0,a≥0(a≥0).2.非负数的性质(1)非负数的最小值是零;(2)任意几个非负数的和仍为非负数;(3)几个非负数的和为0,则每个非负数都等于0.四、实数的运算1.运算律(1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ).(3)乘法交换律:ab =ba .(4)乘法结合律:(ab )c =a (bc ).(5)乘法分配律:a (b +c )=ab +ac .2.运算顺序(1)先算乘方,再算乘除,最后算加减;(2)同级运算,按照从左至右的顺序进行;(3)如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.3.零指数幂和负整数指数幂(1)零指数幂的意义为:a 0=1(a≠0);(2)负整数指数幂的意义为:p a -=pa 1(a≠0,p 为正整数).五、实数的大小比较1.实数的大小关系在数轴上表示两个数的点,右边的点表示的数总比左边的点表示的数大.正数大于零,负数小于零,正数大于一切负数;两个负数比较,绝对值大的反而小.2.作差比较法(1)a -b >0⇔a >b ;(2)a -b =0⇔a =b ;(3)a -b <0⇔a <b .3.倒数比较法若1a >1b ,a >0,b >0,则a <b .4.平方法因为由a >b >0,可得a >b ,所以我们可以把a 与b 的大小问题转化成比较a 和b 的大小问题.2.﹣2的绝对值是()A .2B .﹣2C .D .A .-1B .1C .D .74.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可用科学记数法表示为()A .3.7×10-5克B .3.7×10-6克C .37×10-7克D .3.7×10-8克5.已知实数a 在数轴上的对应点位置如图所示,则化简的结果是()A .3﹣aB .﹣a ﹣5C .3a +3D .3a ﹣56.计算:.考点一、实数的分类A .1个B .2个C .3个D .4个方法总结一个数是不是无理数,应先计算或者化简再判断.有理数都可以化成分数的形式.常见的无理数有四种形式:(1)含有π的式子;(2)根号内含开方开不尽的式子;(3)无限且不循环的小数;(4)某些三角函数式.举一反三在下列实数中,无理数是()A .0B .14C D .6考点二、相反数、倒数、绝对值与数轴【例2】1.-5的绝对值是2.-6的倒数是()A .16B .-16C .6D .-63.如图,数轴上的点A 、B 分别对应实数a 、b ,下列结论中正确的是()A .a >bB .|a|>|b|C .-a <bD .a+b <0方法总结1.求一个数的相反数,直接在这个数的前面加上负号,有时需要化简得出.2.解有关绝对值和数轴的问题时常用到字母表示数的思想、分类讨论思想和数形结合思想.3.相反数是它本身的数只有0;绝对值是它本身的数是0和正数(即非负数);倒数是它本身的数是±1.;-3的倒数是2.-2024的绝对值是()A .-2024B .2024C .20241D .20241-3.如图,数轴上的A 、B 、C 三点所表示的数分别是a 、b 、c ,其中AB =BC ,如果|a |>|c |>|b |,那么该数轴的原点O 的位置应该在()A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点B 与点C 之间或点C 的右边考点三、平方根、算术平方根与立方根【例3】1.实数0.5的算术平方根等于()A .2B C .22D .12.方法总结1.对于算术平方根,要注意:(1)一个正数只有一个算术平方根,它是一个正数;(2)0的算术平方根是0;(3)负数没有算术平方根;(4)算术平方根a 具有双重非负性:①被开方数a 是非负数,即a≥0;②算术平方根a 本身是非负数,即a≥0.2.(3a )3=a ,3a 3=a ..的平方根是.2.若a 是(﹣3)2的平方根,则3a 等于()A .﹣3B .33C .33或33-D .3或﹣3考点四、科学记数法、近似数、有效数字【例4】2023年,我国财政性教育经费支出实现了占国内生产总值比例达4%的目标,其中在促进义务教育均衡方面,安排农村义务教育经费保障机制改革资金达865.4亿元,数据“865.4亿元”用科学记数法可表示为()元.A .865×108B .8.65×109C .8.65×1010D .0.865×1011方法总结1.用科学记数法表示数,当原数的绝对值大于或等于1时,n 等于原数的整数位数减1;当原数的绝对值小于1时,n 是负整数,它的绝对值等于原数中左起第一位非零数字前零的个数.2.取一个数精确到某一位的近似数时,应对“某一位”后的第一个数进行四舍五入,而之后的数不予考虑.3.用科学记数法表示的近似数,乘号前面的数(即a )的有效数字即为该近似数的有效数字;而这个近似数精确到哪一位,应将用科学记数法表示的数还原成原来的数,再看最后一个有效数字处于哪一个数位上.举一反三2023年,我国上海和安徽首先发现“H8N9”禽流感,H8N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为()A .1.2×10-9米B .1.2×10-8米C .12×10-8米D .1.2×10-7米考点五、非负数性质的应用A .0B .1C .-1D .±1方法总结常见的非负数的形式有三种:|a|,a (a≥0),a 2,若它们的和为零,则每一个式子都为0.举一反三设a 、b 、c 都是实数,且满足2)2(a -+c b a ++2+|8|+c =0,ax 2+bx+c=0,求代数式x 2+x+1的值.考点六、实数的运算点拨:(1)根据负整数指数幂的意义可把负整数指数幂转化为正整数指数幂运算,即a -p =1a p (a≠0).(2)a 0=1(a≠0).方法总结提高实数的运算能力,首先要认真审题,理解有关概念;其次要正确、灵活地应用零指数、负整数指数的定义、特殊角的三角函数、绝对值、相反数、倒数等相关知识及实数的六种运算法则,根据运算律及顺序,选择合理、简捷的解题途径.要特别注意把好符号关.举一反三120100(60)(1)|2(301)cos tan -¸-+--- 考点七、实数的大小比较A .1与2之间B .2与3之间C .3与4之间D .4与5之间方法总结实数的各种比较方法,要明确应用条件及适用范围.如:“差值比较法”用于比较任意两数的大小,而“商值比较法”一般适用于比较符号相同的两个数的大小,还有“平方法”、“倒数法”等.要依据数值特点确定合适的方法.举一反三已知26,622,12-=-=-=c b a 那么a ,b ,c 的大小关系是()A .a <b <cB .b <a <cC .c <b <aD .c <a <b一、选择题1.据统计,某市去年接待国际旅游入境者共800160人次,800160用科学记数法表示是()A .8.0016×104B .8.0016×105C .8.0016×106D .8.0016×1072.比较三个数10,,3---p 的大小,下列结论正确的是()A .103->->-pB .310->->-p C .p->->-310D .103->->-p3.16的值等于()A .4B .4±C .2D .2±4)A .4B .2C .4±D .2±5.若代数式M =3x 2+8,N =2x 2+4x ,则M 与N 的大小关系是()A .M ≥N B .M ≤NC .M >ND .M <N二、填空题1.据统计,杭州市注册志愿者人数已达109万人,将109万人用科学记数法表示应为.2.若a 2﹣3a=4,则6a ﹣2a 2+8=.3.(1012p -æö-+-+ç÷èø4.计算221--=5.古时候,猎人通过结绳的方法来统计猎物的个数,如图,一位猎人在排列的绳子上从右到左依次打结,满八进一,用来记录一段时间内猎物的数量,由图可知,猎物的数量是.三、解答题1.一个数的算术平方根为2M﹣6,平方根为±(M﹣2),求这个数.2.计算6÷(﹣),方方同学的计算过程如下,原式=6+6=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.3.(1)计算:3﹣[6﹣(2﹣3)2](2)因式分解:4m2﹣16n2.1.下列各数中,最小的数是()A.0B.1C.-1D.-22.4的算术平方根是()±A.2B.±2C.2D.23.已知一个数的两个平方根分别是a+3与2a﹣15,这个数的值为()A.4B.±7C.﹣7D.494.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④-是17的平方根.其中正确的有()17A.0个B.1个C.2个D.3个5.我们知道,一元二次方程x 2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数“i”,使其满足i 2=﹣1(即方程x 2=﹣1有一个根为i ).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i 1=i ,i 2=﹣1,i 3=i 2•i=(﹣1)•i=﹣i ,i 4=(i 2)2=(﹣1)2=1,从而对于任意正整数n ,我们可以得到i 4n+1=i 4n •i=(i 4)n •i=i ,同理可得i 4n+2=﹣1,i 4n+3=﹣i ,i 4n =1.那么i+i 2+i 3+i 4+…+i 2012+i 2013的值为()A .0B .1C .﹣1D .i 6.若﹣2x m ﹣n y 2与3x 4y 2m+n 是同类项,则m ﹣3n 的立方根是.7.若两个连续整数x 、y 满足x <+1<y ,则x+y 的值是.8.阅读下列材料:设 333.03.0==·x ①,则10x=3.333…②,则由②﹣①得:9x=3,即31=x .所以31333.03.0==·.根据上述提供的方法把下列两个数化成分数.·7.0=,·3.1=.9.规定:log a b (a >0,a≠1,b >0)表示a ,b 之间的一种运算.现有如下的运算法则:n na a=log ,NnMnMNlog log log =(a >0,a≠1,N >0,N≠1,M >0).例如:log 223=3,21051052log log log =,则log 1001000=.10.为了表述方便,本题取0.ba 表示小数.其中a 、b 只在1、2、3、…、9这9个数字中选取,例如当a 取2,b 取3时,0.ba 就表示0.32.我们知道无限循环小数可以化为分数,一般地,9.0aa =·,那么=·23.0,=·a b .0.11.已知a 、b 分别是6﹣的整数部分和小数部分.(1)分别写出a 、b 的值;(2)求3a ﹣b 2的值.12.阅读理解题:定义:如果一个数的平方等于﹣1,记为i 2=﹣1,这个数i 叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi (a ,b 为实数),a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(5+i)×(3﹣4i)=19﹣17i.(1)填空:i3=,i4=.(2)计算:(3+i)2;(3)试一试:请利用以前学习的有关知识将化简成a+bi的形式.第2讲整式与因式分解考纲要求命题趋势1.能求代数式的值;能根据特定问题找到所需要的公式,并会代入具体的值进行计算.2.了解整数指数幂的意义和基本性质;了解整式的概念和有关法则,会进行简单的整式加、减、乘、除运算.3.会推导平方差公式和完全平方公式,会进行简单的计算;会用提公因式法、公式法、十字相乘进行因式分解.整式及因式分解主要考查用代数式表示数量关系,单项式的系数及次数,多项式的项和次数,整式的运算,多项式的因式分解等内容.中考题型以选择题、填空题为主,同时也会设计一些新颖的探索型问题.一、整式的有关概念1.整式整式是单项式与多项式的统称.2.单项式单项式是指由数字或字母的乘积组成的式子;单项式中的数字因数叫做单项式的系数;单项式中所有3.多项式几个单项式的和叫做多项式;多项式中,每一个单项式叫做多项式的项,其中不含字母的项叫做常数项;多项式中次数最高项的次数就是这个多项式的次数.二、整数指数幂的运算正整数指数幂的运算法则:n m a n a m a +=,mn a n m a =)(,m b m a m ab =)(,n m a na ma -=(m ,n是正整数).三、同类项与合并同类项1.所含字母相同,并且相同字母的指数也分别相同的单项式叫做同类项.2.把多项式中的同类项合并成一项叫做合并同类项,合并的法则是系数相加,所得的结果作为合并后的系数,字母和字母的指数不变.四、求代数式的值1.一般地,用数值代替代数式里的字母,按照代数式指明的运算关系计算出的结果就叫做代数式的值.2.求代数式的值的基本步骤:(1)代入:一般情况下,先对代数式进行化简,再将数值代入;(2)计算:按代数式指明的运算关系计算出结果.五、整式的运算1.整式的加减(1)整式的加减实质就是合并同类项;(2)整式加减的步骤:有括号,先去括号;有同类项,再合并同类项.注意去括号时,如果括号前面是负号,括号里各项的符号要变号.2.整式的乘除(1)整式的乘法①单项式与单项式相乘:把系数、同底数幂分别相乘,作为积的因式,只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.②单项式与多项式相乘:m(a+b+c)=ma+mb+mc.③多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb.(2)整式的除法①单项式除以单项式:把系数、同底数幂相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.②多项式除以单项式:(a+b)÷m=a÷m+b÷m.3.乘法公式(1)平方差公式:(a+b)(a-b)=a2-b2;(2)完全平方公式:(a±b)2=a2±2ab+b2.六、因式分解1.因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解.2.因式分解的方法(1)提公因式法公因式的确定:第一,确定系数(取各项整数系数的最大公约数);第二,确定字母或因式底数(取各项的相同字母);第三,确定字母或因式的指数(取各相同字母的最低次幂).(2)运用公式法①运用平方差公式:a2-b2=(a+b)(a-b).②运用完全平方公式:a2±2ab+b2=(a±b)2.(3)十字相乘A.a=2,b=3B.a=1,b=2C.a=1,b=3D.a=2,b=22.下列运算正确的是()A.a2•a3=a6B.﹣2(a﹣b)=﹣2a﹣2b C.2x2+3x2=5x4D.(﹣)﹣2=43.若(a m b n)3=a9b15,则m、n的值分别为()A.9;5B.3;5C.5;3D.6;124.下列各式能用平方差公式分解因式的有()①x2+y2;②x2﹣y2;③﹣x2﹣y2;④﹣x2+y2;⑤﹣x2+2xy﹣y2.A.1个B.2个C.3个D.4个5.下列从左到右边的变形,是因式分解的是()A.(3﹣x)(3+x)=9﹣x2B.(y+1)(y﹣3)=﹣(3﹣y)(y+1)C.4yz﹣2y2z+z=2y(2z﹣yz)+z D.﹣8x2+8x﹣2=﹣2(2x﹣1)26.计算(a﹣b)(a+b)(a2+b2)(a4﹣b4)的结果是()A.a8+2a4b4+b8B.a8﹣2a4b4+b8C.a8+b8D.a8﹣b87.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2)B.a(x﹣3)(x+4)C.a(x2﹣4x﹣12)D.a(x+6)(x﹣2)8.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.考点一、整数指数幂的运算【例1】1.若2x+5y﹣3=0,求4x•32y的值.2.已知a3m=3,b3n=2.求(a2m)3+(b n)3﹣a2m b n•a4m b2n的值.方法总结幂的运算问题除了注意底数不变外,还要弄清幂与幂之间的运算是乘、除还是乘方,以便确定结果的指数是相加、相减还是相乘.举一反三1.已知:x3m=4,y3n=5,求(x2m)3+(y n)6﹣x2m•y n•x4m•y5n的值;2.若x=2m﹣1,y=1+4m+1,用含x的代数式表示y为.考点二、整式的运算【例2】1.若a ﹣b=1,则代数式a 2﹣b 2﹣2b 的值为.2.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足()A .a=52b B .a=3b C .a=72b D .a=4b方法总结对于整式的运算主要把握好整式的乘法公式及因式分解等的应用举一反三1.已知a+b=2,ab=﹣1,则3a+ab+3b=;a 2+b 2=.2.将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的数学公式是()A .(a+b )2=a 2+2ab+b 2B .(a ﹣b )2=a 2﹣2ab+b 2C .a 2﹣b 2=(a+b )(a ﹣b )D .(a+2b )(a ﹣b )=a 2+ab ﹣2b 2考点三、乘法公式【例3】1.下列乘法中,不能运用平方差公式进行运算的是()A .(x+a )(x ﹣a )B .(a+b )(﹣a ﹣b )C .(﹣x ﹣b )(x ﹣b )D .(b+m )(m ﹣b )2.若m 为正实数,且31=-m m ,则=-221mm .方法总结本题考查了完全平方公式、平方差公式,求出m 的值代入前,一定要把代数式分解完全,可简化计算步骤.举一反三1.填空:(a ﹣b )(a +b )=a 2﹣b 2;(a ﹣b )(a 2+ab +b 2)=a 3﹣b 3;(a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4;……(1)(a ﹣b )(a 2022+a 2021b +…+ab 2021+b 2022)=a 2023﹣b 2023;(2)猜想:(a ﹣b )(a n ﹣1+a n ﹣2b +⋯+ab n ﹣2+b n ﹣1)=a n ﹣b n ;(其中n 为正整数,且n ≥2)(3)利用(2)中的猜想的结论计算:22023+22022+22021+⋯+22+2+1;2.如果41224|11|-++-=--++b a c b a ,那么a+2b ﹣3c=.3.已知(2008﹣a )2+(2007﹣a )2=1,则(2008﹣a )•(2007﹣a )=.考点四、因式分解【例4】分解因式:(1)20a 3x ﹣45ay 2x (2)1﹣9x 2(3)4x 2﹣12x+9(4)4x 2y 2﹣4xy+1(5)p 2﹣5p ﹣36方法总结因式分解的一般步骤:(1)“一提”:先考虑是否有公因式,如果有公因式,应先提公因式;(2)“二套”:再考虑能否运用公式法分解因式.一般根据多项式的项数选择公式,二项式考虑用平方差公式,三项式考虑用完全平方公式;(3)分解因式,必须进行到每一个多项式因式都不能再分解为止.举一反三分解因式(1)y 2﹣7y+12(2)3﹣6x+3x 2(3)﹣a+2a 2﹣a 3(4)m 3﹣m 2﹣20m一、选择题1.下列运算正确的是()A .2x 2+x =3x 3B .2x 2﹣7x 2=﹣5C .﹣8x 3•4x 2=﹣32x 6D .=x 22.下列计算正确的是()A .523mm m =+B .623m m m =×C .1)1)(1(2-=+-m m m D .12)1(24-=--m m 3.在下列各式的变形中,正确的是()A .()()22x y y x x y---+=--B .()413222--=--x x x C .111x x-=-D .()xy y x -=-1-4.将多项式4x 2+1再加上一项,使它能分解因式成(a +b )2的形式,以下是四位学生所加的项,其中错误的是()A .2xB .﹣4xC .4x 4D .4x5.下列运算正确的是()A .(a 4)3=a 7B .a 6÷a 3=a 2C .(2ab )3=6a 3b 3D .﹣a 5•a 5=﹣a 106.因式分解:a 2﹣4=()A .(a ﹣2)(a +2)B .(2﹣a )(2÷a )C .(a ﹣2)2D .(a ﹣2)(﹣a +2)7.下列运算正确的是()A .ba b a 33)(=B .3a 3•2a 2=6a 6C .4a 6÷2a 2=2a 3D .(3a 2)3=27a 68.设a ,b 是实数,定义@的一种运算如下:a@b=(a+b )2﹣(a ﹣b )2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c )=a@b+a@c③不存在实数a ,b ,满足a@b=a 2+5b 2④设a ,b 是矩形的长和宽,若矩形的周长固定,则当a=b 时,a@b 最大.其中正确的是()A .②③④B .①③④C .①②④D .①②③9.(1+y )(1﹣y )=()A .1+y 2B .﹣1﹣y 2C .1﹣y 2D .﹣1+y 2二、填空题1.若整式x 2+ky 2(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是(写出一个即可).2.在实数范围内分解因式:4424+-x x =.3.分解因式:2a 2﹣4a+2=.4.分解因式:a 3b ﹣2a 2b+ab=.5.因式分解:(a ﹣b )2﹣(b ﹣a )=.6.在化简求(a +3b )2+(2a +3b )(2a ﹣3b )+a (5a ﹣6b )的值时,亮亮把a 的值看错后代入得结果为10,而小莉代入正确的a 的值得到正确的结果也是10,经探究后,发现所求代数式的值与b 无关,则他们俩代入的a 的值的和为.7.已知a =,则(4a +b )2﹣(4a ﹣b )2为.8.因式分解:a 3﹣4a =.三、解答题1.先化简,再求值:2)2()1)(1(++-+a a a ,其中41=a .2.设m =2a ﹣1,n =﹣2a ﹣1,若41=a ,求mn +m +n +1的值.3.先化简,再求值:(2﹣a )(3+a )+(a ﹣5)2,其中a =4.1.要使二次三项式x 2﹣2x+m 在整数范围内能进行因式分解,那么整数m 的值可取()A .1B .﹣3C .1或﹣3D .有无数个2.若多项式x 4+mx 3+nx ﹣16含有因式(x ﹣2)和(x ﹣1),则mn 的值是()A .100B .0C .﹣100D .503.现有一列式子:①552﹣452;②5552﹣4452;③55552﹣44452…则第⑧个式子的计算结果用科学记数法可表示为()A.1.1111111×1016B.1.1111111×1027C.1.111111×1056D.1.1111111×10174.下列从左到右的变形是因式分解的是()A.4yz﹣2y2+z=2y(2z﹣y)+zB.(3﹣x)(3+x)=9﹣x2C.x(x﹣y)﹣y(x﹣y)=(x﹣y)2D.x3﹣3x2+x=x(x2﹣3x)5.已知a,b,c分别是△ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则△ABC是()A.等腰三角形B.等腰直角三角形C.直角三角形D.等腰三角形或直角三角形6.已知a=2005x+2004,b=2005x+2005,c=2005x+2006,多项式a2+b2+c2﹣ab﹣bc﹣ac的值为()A.0B.1C.2D.37.如图所示,有三种卡片,其中边长为a的正方形1张,边长为a、b的矩形卡片4张,边长为b的正方形4张用这9张卡片刚好能拼成一个正方形,则这个正方形的面积为()A.a2+4ab+4b2B.42+8ab+4b2C.4a2+4ab+b2D.a2+2ab+b28.南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)9展开式中所有项的系数和是()A.128B.256C.512D.10249.多项式x2+mx+5因式分解得(x+5)(x+n),则m=,n=.10.因式分解:x2﹣y2+6y﹣9=.11.计算(1﹣)()﹣(1﹣﹣)()的结果是.12.将多项式x2+4加上一个整式,使它成为完全平方式,试写出满足上述条件的三个整式:,,.13.若n满足(n﹣2019)2+(2020﹣n)2=1,则(n﹣2019)(2020﹣n)=.14.如果关于x的二次三项式x2﹣4x+m在实数范围内不能分解因式,那么m的取值范围是.15.因式分解:(1)4m2n﹣8mn2﹣2mn;(2)m2(m+1)﹣(m+1);(3)4x2y+12xy+9y;(4)(x2﹣6)2+2(x2﹣6)﹣15.16.阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:(x﹣1)2+3、(x﹣2)2+2x、(x﹣2)2+x2是x2﹣2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项﹣﹣见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2﹣4x+2三种不同形式的配方;(2)将a2+ab+b2配方(至少两种形式);(3)已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求a+b+c的值.第3讲分式考纲要求命题趋势1.能确定分式有意义、无意义和分式的值为零时的条件.2.能熟练应用分式的基本性质进行分式的约分和通分.3.能熟练进行分式的四则运算及其混合运算,并会解决与之相关的化简、求值问题.命题反映在分式中主要涉及分式的概念、性质、运算法则及其应用,题型表现为填空题、选择题、化简求值题等形式.一、分式1.分式的概念形如AB (A ,B 是整式,且B 中含有字母,B≠0)的式子叫做分式.2.与分式有关的“三个条件”(1)分式AB 无意义的条件是B =0;(2)分式AB 有意义的条件是B≠0;(3)分式AB 值为零的条件是A =0且B≠0.二、分式的基本性质分式的分子与分母同乘(或除以)一个相同的整式,分式的值不变.用式子表示是:A B =A×M B×M ,A B =A÷M B÷M (其中M 是不等于0的整式).三、分式的约分与通分1.约分根据分式的基本性质将分子、分母中的相同的整式约去,叫做分式的约分.2.通分根据分式的基本性质将几个异分母的分式化为分母相同的分式,这种变形叫分式的通分.四、分式的运算A.2个B.3个C.4个D.5个2.若把分式中的x和y都扩大到原来的3倍,那么分式的值()A.扩大3倍B.缩小3倍C.缩小6倍D.不变3.先化简再求值:,其中.4.已知:A=xy﹣x2,B=,C=,若A÷B=C×D,求D.5.如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式中,是和谐分式(填写序号即可);(2)若分式为和谐分式,且a为整数,请写出所有a的值;(3)在化简时,小东和小强分别进行了如下三步变形:小东:原式===小强:原式===.显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:,请你接着小强的方法完成化简.考点一、分式有意义、无意义、值为零的条件为零且分母不为零.举一反三要使分式有意义,则x 的取值范围为.考点二、分式的基本性质【例2】若分式的x 和y 均扩大为原来各自的10倍,则分式的值()A .不变B .缩小到原分式值的C .缩小到原分式值的D .缩小到原分式值的方法总结运用分式的基本性质解题必须理解和掌握分式的基本性质:A B =A·m B·m ,A B =A÷mB÷m (其中m ≠0)和分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任意两个,分式的值不变.举一反三已知﹣=3,则分式的值为.考点三、分式的约分与通分【例3】设=2,则=()A .B .﹣C .D .﹣方法总结1.分式约分的步骤:(1)找出分式的分子与分母的公因式,当分子、分母是多项式时,要先把分式的分子与分母分解因式;(2)约去分子与分母的公因式.2.通分的关键是确定最简公分母.求最简公分母的方法是:(1)将各个分母分解因式;(2)找各分母系数的最小公倍数;(3)找出各分母中不同的因式,相同因式中取次数最高的,满足(2)(3)的因式之积即为各分式的最简公分母.举一反三先化简,再求值:(+2﹣x )÷,其中x 满足x 2﹣4x+3=0.考点四、分式的运算【例4】计算:.方法总结在分式运算的过程中,要注意对分式的分子、分母进行因式分解,然后简化运算,再运用四则运算法则进行求值计算.分式混合运算的顺序是先乘方,后乘除,最后加减,有括号的先算括号内的,其乘除运算归根到底是乘法运算,实质是约分,分式加减实质是通分,结果要化简.关于化简求值,近年来出现了一种开放型问题,题目中给定几个数字,要考虑分母有意义的条件,不要盲目代入.举一反三先化简,然后从1、、﹣1中选取一个你认为合适的数作为a的值代入求值.一、选择题1.若241()142w a a+=-- ,则()A .2(2)a a +¹-B .2(2)a a -+¹C .2(2)a a -¹D .2(2)a a --¹-2.将分式方程13)1(251+=++-x x x x 去分母,整理后得()A .018=+xB .038=-xC .0272=+-x x D .0272=--x x 3.化简的结果是()A .x ﹣1B .C .x+1D .4.下列变形正确的是()A .=B .C .D .二、填空题1.函数y =的自变量x 的取值范围.2.当2x =时,分式x mx m -+没有意义,则m =.3.当3=x 时,分式bx ax +-没有意义,则=b .三、解答题1.已知îíì=+=+65316156y x y x ,求代数式222()x x xy x y x y x y-¸--++1的值.2.(1)将下列各式进行分解因式:①142++x x ;②22818b a -(2)先化简,再求值:(1-1212+-x x )÷(122--x x -2),其中34=x ;完成对分式的化简求值后,填空:要使该分式有意义,x 的取值应满足.3.计算:aba bb a ---21,并求当3=a ,b=1时原式的值.4.先化简代数式(1+)÷,然后在0≤a <4范围选取一个适当的整数作为a 的值代入求值.5.计算﹣x+2,乐乐同学的计算过程如下:﹣x+2=﹣=﹣=﹣请判断计算过程是否正确,若不正确,请写出正确的计算过程.6.化简:﹣﹣1圆圆的解答如下:﹣﹣1=4x﹣2(x+2)﹣(x2﹣4)=﹣x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.1.若分式不论x取何值总有意义,则m的取值范围是()A.m≥1B.m>1C.m≤1D.m<12.若ab=1,m=+,则m2023=()A.2013B.0C.1D.23.已知=﹣,其中A、B为常数,则4A﹣B的值为()A.7B.9C.13D.54.若的值为,则的值为()A.1B.﹣1C.﹣D.5.已知△ABC的三边长分别为a,b,c,且,则△ABC一定是()A.等边三角形B.腰长为a的等腰三角形C.底边长为a的等腰三角形D.等腰直角三角形6.若恒成立,则A+B=.7.若,则的值为.9.已知a,b,c是不为0的实数,且,那么的值是.10.已知关于x的方程的解是负数,则m的取值范围为.11.先化简分式(﹣)÷,再从不等式组的解集中取一个合适的值代入,求原分式的值.12.先化简分式,然后在0,1,2,3中选一个你认为合适的a值,代入求值.。
尖子生假期培优有理数考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量. 2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( )A . -18%B . -8%C . +2%D . +8% 02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( )A . -5吨B . +5吨C . -3吨D . +3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间l 5:00,纽约时问是____【例2】在-227,π,0.033.3这四个数中有理数的个数( )A . 1个B . 2个C . 3个D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0.1 5,-12,-301.31.25,-18,100.l ,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-19,215,-138,0.1.-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14.-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.击归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007.【变式题组】 01.(湖北宜宾)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四十数是17=9+8…观察并精想第六个数是 . 02.(毕节)毕选哥拉斯学派发明了一种“馨折形”填数法,如图则?填____. 03.(茂名)有一组数l ,2,5,10,17,26…请观察规律,则第8个数为____.【例4】(2008年河北张家口)若l +m2的相反数是-3,则m 的相反数是____.【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反数,本题m2=-4,m =-8【变式题组】01.(四川宜宾)-5的相反数是( )A .5B . 15C . -5D . -1502.已知a 与b 互为相反数,c 与d 互为倒数,则a +b +cd =______03.如图为一个正方体纸盒的展开图,若在其中的三个正方形A 、B 、C 内分别填人适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填人正方形A 、B 、C 内的三个数依次为( )A . - 1 ,2,0B . 0,-2,1C . -2,0,1D . 2,1,0【例5】(湖北)a 、b 为有理数,且a >0,b <0,|b |>a ,则a ,b 、-a ,-b 的大小顺序是( )A . b <-a <a <-bB . –a <b <a <-bC . –b <a <-a <bD . –a <a <-b <b【解法指导】理解绝对值的几何意义:一个数的绝对值就是数轴上表示a 的点到原点的距离,即|a |,用式子表示为|a |=0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩(.本题注意数形结合思想,画一条数轴标出a 、b ,依相反数的意义标出-b ,-a ,故选A .【变式题组】01.推理①若a =b ,则|a |=|b |;②若|a |=|b |,则a =b ;③若a ≠b ,则|a |≠|b |;④若|a |≠|b |,则a ≠b ,其中正确的个数为( )A . 4个B . 3个C . 2个D . 1个 02.a 、b 、c 三个数在数轴上的位置如图,则|a |a +|b |b +|c |c= .03.a 、b 、c 为不等于O 的有理散,则a |a |+b |b |+c|c |的值可能是____.【例6】(江西课改)已知|a -4|+|b -8|=0,则a +bab的值.【解法指导】本题主要考查绝对值概念的运用,因为任何有理数a 的绝对值都是非负数,即|a |≥0.所以|a -4|≥0,|b -8|≥0.而两个非负数之和为0,则两数均为0.解:因为|a -4|≥0,|b -8|≥0,又|a -4|+|b -8|=0,∴|a -4|=0,|b -8|=0即a -4=0,b -8=0,a =4,b =8.故a +b ab =1232=38【变式题组】01.已知|a |=1,|b |=2,|c |=3,且a >b >c ,求a +b +C . 02.(毕节)若|m -3|+|n +2|=0,则m +2n 的值为( )A . -4B . -1C . 0D . 403.已知|a |=8,|b |=2,且|a -b |=b -a ,求a 和b 的值【例7】(第l 8届迎春杯)已知(m +n )2+|m |=m ,且|2m -n -2|=0.求mn 的值. 【解法指导】本例关键是通过分析(m +n )2+|m |的符号,挖掘出m 的符号特征,从而把问题转化为(m +n )2=0,|2m -n -2|=0,找到解题途径.解:∵(m +n )2≥0,|m |≥O∴(m +n )2+|m |≥0,而(m +n )2+|m |=m ∴ m ≥0,∴(m +n )2+m =m ,即(m +n )2=0 ∴m +n =O ① 又∵|2m -n -2|=0 ∴2m -n -2=0 ②由①②得m =23,n =-23,∴ mn =-49【变式题组】01.已知(a +b )2+|b +5|=b +5且|2a -b –l |=0,求a -B . 02.(第16届迎春杯)已知y =|x -a |+|x +19|+|x -a -96|,如果19<a <96.a ≤x ≤96,求y的最大值.演练巩固·反馈提高01.观察下列有规律的数12,16,112,120,130,142…根据其规律可知第9个数是( )A .156 B . 172 C . 190 D . 111002.(芜湖)-6的绝对值是( )A . 6B . -6C . 16D . -1603.在-227,π,8..0.3四个数中,有理数的个数为( )A . 1个B . 2个C . 3个D . 4个 04.若一个数的相反数为a +b ,则这个数是( )A . a -bB . b -aC . –a +bD . –a -b 05.数轴上表示互为相反数的两点之间距离是6,这两个数是( )A . 0和6B . 0和-6C . 3和-3D . 0和3 06.若-a 不是负数,则a ( )A . 是正数B . 不是负数C . 是负数D . 不是正数 07.下列结论中,正确的是( )①若a =b ,则|a |=|b | ②若a =-b ,则|a |=|b | ③若|a |=|b |,则a =-b ④若|a |=|b |,则a =b A . ①② B . ③④ C . ①④ D . ②③08.有理数a 、b 在数轴上的对应点的位置如图所示,则a 、b ,-a ,|b |的大小关系正确的是( )A . |b |>a >-a >bB . |b | >b >a >-aC . a >|b |>b >-aD . a >|b |>-a >b09.一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是____.10.已知|x +2|+|y +2|=0,则xy =____.11.a 、b 、c 三个数在数轴上的位置如图,求|a |a +|b |b +|abc |abc +|c |c12.若三个不相等的有理数可以表示为1、a 、a +b 也可以表示成0、b 、ba的形式,试求a 、b 的值.13.已知|a|=4,|b|=5,|c|=6,且a>b>c,求a+b-C.14.|a|具有非负性,也有最小值为0,试讨论:当x为有理数时,|x-1|+|x-3|有没有最小值,如果有,求出最小值;如果没有,说明理由.15.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a-b| 当A、B两点都不在原点时有以下三种情况:①如图2,点A、B都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如图4,点A、B在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;综上,数轴上A、B两点之间的距离|AB|=|a-b|.回答下列问题:⑴数轴上表示2和5的两点之间的距离是, 数轴上表示-2和-5的两点之间的距离是, ,数轴上表示1和-3的两点之间的距离是;⑶当代数式|x+1|+|x-2|取最小值时,相应的x的取值范围是.培优升级·奥赛检测01.(重庆市竞赛题)在数轴上任取一条长度为199919的线段,则此线段在这条数轴上最多能盖住的整数点的个数是( )A . 1998B . 1999C . 2000D . 2001 02.(第l 8届希望杯邀请赛试题)在数轴上和有理数a 、b 、c 对应的点的位置如图所示,有下列四个结论:①abc <0;②|a -b |+|b -c |=|a -c |;③(a -b )(b -c )(c -a )>0;④|a |<1-bc .其中正确的结论有( )A . 4个B . 3个C . 2个D . 1个 03.如果a 、b 、c 是非零有理数,且a +b +c =0.那么a |a |+b |b |+c |c |+abc|abc |的所有可能的值为( )A . -1B . 1或-1C . 2或-2D . 0或-2 04.已知|m |=-m ,化简|m -l |-|m -2|所得结果( )A . -1B . 1C . 2m -3D . 3- 2m05.如果0<p <15,那么代数式|x -p |+|x -15|+|x -p -15|在p ≤x ≤15的最小值( )A . 30B . 0C . 15D . 一个与p 有关的代数式 06.|x +1|+|x -2|+|x -3|的最小值为 .07.若a >0,b <0,使|x -a |+|x -b |=a -b 成立的x 取值范围 . 08.(武汉市选拔赛试题)非零整数m 、n 满足|m |+|n |-5=0所有这样的整数组(m ,n )共有 组 09.若非零有理数m 、n 、p 满足|m |m +|n |n +|p |p =1.则2mnp |3mnp |= .10.(19届希望杯试题)试求|x -1|+|x -2|+|x -3|+…+|x -1997|的最小值.11.已知(|x +1|+|x -2|)(|y -2|+|y +1|)(|z -3|+|z +1|)=36,求x +2y +3的最大值和最小值.12.电子跳蚤落在数轴上的某点k0,第一步从k0向左跳1个单位得k1,第二步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4…按以上规律跳100步时,电子跳蚤落在数轴上的点k100新表示的数恰好19.94,试求k0所表示的数.13.某城镇,沿环形路上依次排列有五所小学,它们顺扶有电脑15台、7台、1l台、3台,14台,为使各学校里电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最小?并求出调出电脑的最少总台数.。
初一数学第一章有理数教案(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--个性化教学辅导教案学科: 数学 年级: 初一 任课教师: 李春雨 总课时: 共 16 讲第一讲 有理数一、 教学目标1、 掌握正数和负数的概念及其意义2、 掌握有理数的概念,会对有理数按照一定的标准进行分类3、 掌握数轴的概念,理解数轴上的点和有理数的对应关系,正确地画出数轴,会用数轴上的点表示给定的有理数4、 掌握相反数的概念,进一步理解数轴上的点与数的对应关系5、 掌握绝对值的概念,有理数大小比较法则,学会绝对值的计算,会比较两个或多个有理数的大小6、 体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想二、 教学重难点重点:1、正确区分两种不同意义的量2、数轴的概念和用数轴上的点表示有理数3、相反数、绝对值的概念难点:1、正确理解有理数的概念及分类2、归纳相反数在数轴上表示的点的特征3、两个负数大小的比较三、 教学过程导入:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数),在生活中,仅有整数和分数够用了吗?(简单讲解天气预报中的气温为零下的情况,引入负数)1、 正数和负数正数:像+,+12,,258这样大于0的数(“+”通常省略不写)叫正数。
负数:像-5,-3,这样在正数前加上“-”的数叫做负数,负数小于0。
例题:把下列各数填在相应的集合内:15,-6,-,21,0,,-411,51,8,-2,27,71,-43,正数集:{ };负数集:{ };正分数集:{ };负分数集:{ };整数集:{ };自然数集:{ }.(1)为了用数表示具有相反意义的量,我们把某种量的一种意义规定为正的,而把与它相反的一种意义规定为负的。
负数是根据实际需要而产生的。
如:收入1000元与支出500元、向东走2km与向西走3km,上升与下降,规定收入为正则收入记做+1000,支出记做-500,规定向东走为正则向东走2km记做+2km,向西走记做-3km,上升与下降让学生解答。
第一讲 有理数的概念一:知识点精析:1、正数、负数、零、非负数;正数与负数表示一对具有相反意义的量;2、整数和分数统称为有理数;3、数轴:规定了原点、正方向、单位长度的一条直线叫做数轴。
在数轴上,正数在原点的右侧,负数在原点左侧;数轴上右边的数总比大;数形结合,。
4、相反数:只有符号不同的两个数互为相反数,互为相反数的两个数和为零,正数的相反数是负数,负数的相反数是正数,零的,相反数是零,a 的相反数是a -,互为相反数的两个数到原点的距离相等。
5、绝对值:一个数的绝对值就是这个数在数轴上的点到原点的距离,(这是绝对值的几何意义)(1)正数的绝对值等于它本身,负数的绝对值等于它的相反,数零的绝对值是零,⎪⎪⎩⎪⎪⎨⎧<-=>=0000a a a a a a(2)一个数的绝对值永远为非负数,(3)几个非负数的和为零,则这几个数同时为零,(4)()a x a a x ±=≥=则,0(5)比较两个数大小的方法:两个负数做比较,绝对值大的反而小,(6)中点公式:在数轴b a 、对应的点的中点为2b a + 二、典型例题:1、a -表示负数吗?为什么?下列数,表示正数的有___________,表示负数的有_______3-π,2-2π,a ,12+x ,12+-x ,a a 1+,a1- 2、若记向东50米记作50+,一天,出租车王师傅从A 地出发,沿笔直的公路向东走了3500米,接着又向西走了6200米,接着又向东走了4500米,最后又向西走了3500米,请问王师傅最后在A 地的__________(东、西)方向_________米。
3、若b a >,则0____b a -;若b a <,则0____b a -;若b a =,则0____b a -4、比较大小:(1)651______431--;(2)ππ-4______3-;(3)若10<<a ,比较大小:32,,,1,a a a a a -(4)若01<<-a ,比较大小:32,,,1,a a a aa -5、(1)数轴上与-3距离17个单位的数是___________(2)数轴上有B A 、两点,如果点A 对应的数是-6,且B A 、两点的距离为7,那么点B 对应的数是_______6、点B A 、分别是数-3、21-在数轴上的对应点,使线段AB 沿数轴向右移动到AB ,且线段AB 的中点对应的数是3,则点A 对应的数是_________,点A 移动的距离是_____7、有理数c b a 、、在数轴上的位置如图,化简c a b a c b a --+--+228、设c b a 、、为非负数,化简abcabc c c b b a a +++ 9、若00<>b a ,,则使得b a b x a x -=-+-成立的x 的取值范围是________10、已知()05432=++++-z y x ,则=++zy x 111_________ A 层次1、若09819=+b a ,则ab 是( )A 正数B 非正数C 负数D 非负数2、有理数a 等于它的倒数,有理数b 等于它的相反数,则20162016b a +等于_______3、2017个不全相等的有理数之和为零,则这1997个有理数中()A 至少有一个是零B 至少有1008个正数C 至少有一个负数D 至多有2015个负数4、数轴上坐标是整数的点称为整点,某数轴的单位长度是1cm ,若在这个数轴上随意画出一条长为2107cm 的线段AB ,则线段AB 盖住的整点有()个A 2106或2017B 2106或2018C 2107或2018D 2107或20195、有如下结论;甲:c b a 、、中至少有两个互为相反数,则0=++c b a ;乙:c b a 、、中至少有两个互为相反数,则()()()0222=-++++a c c b b a ; 丙:c b a 、、中至少有两个互为相反数,则()()()0=-++a c c b b a其中正确的结论个数是()A 0B 1C 2D 3 6、已知有理数a 在数轴上原点的右方,有理数b 在数轴上原点的左方,那么() A b ab < B b ab > C 0>+b a D 0>-b aB 层次7、已知有理数c b a 、、在数轴上的对应位置如图:则b a c a c -+-+-1化简后的结果是__________8、已知数轴上有B A 、两点,B A 、之间的距离为1,点A 与原点O 的距离为3,那么所有满足条件的点B 与原点O 的距离和为_______9、如果数轴上点A 与原点O 的距离为3,点B 与原点O 的距离为5,那么B A 、两点间的距离为__________10、计算机利用的是二进制,他它共有两个数码0,1,将一个十进制数转化为二进制数,只需把该数写成若干n 2的和,依次写出1或0即可,如:1001121212020211901234=⨯+⨯+⨯+⨯+⨯=为二进制的五位数,则十进制的240化为二进制,是_________位数11、问题:不,你能比较2016201721072016与的大小吗?为了解决这个问题,写出它的一般形式,即比较()nn n n 11++与的大小(n 是自然数),然后我们从分析Λ,,,321===n n n ,这些较简单的情形入手,从中发现规律,经过归纳猜想得出结论:,(1)通过计算:比较下列各组数的大小,在横线上填写><=56453423126____5;5____4;4____3;3____2;2____1(2)从第(1)题的结果归纳,可以猜想出()nn n n 11++与的大小关系是__________ (3)根据上面归纳,猜想到的结论,比较下列两个数的大小:201620172107_____201612、一张纸片第一次将它撕成6片,第二次又将其中一小块撕成6片,如此继续下去,第二次撕后共得小纸片______片,第三次共得小纸片______片,第十次后共得小纸片______片,第n 次后共得小纸片______片。
1代数第一讲 数(1) 凡能写成)0p q ,p (pq≠为整数且形式的数,都是___________.思考:小数怎么化成分数?是不是所有小数都可以化成分数?如果不是,请说明理由。
正整数、0是___________是正数;π(2)有理⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧分数有理数2___________动动手:0.3.相反数:①在数学中,我们通常用负号来表示___________意义的量;②a 的相反数是___________. (1)只有___________不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其___________,0的绝对值是0,负数的绝对值是它的___________;注意:绝对值的意义是数轴上表示某数的点离___________的距离; (2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;思考:绝对值的问题经常分类讨论,请问按照什么来进行分类?并举例说明。
; 比左边的数 _________ 0. _________; a1大于a ?还有其他情况吗?7. 有理数加法法则:(1)同号两数相加,取___________符号,并把___________相加;(2)异号两数相加,取___________的符号,并用较大2的绝对值减去___________;(3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=___________ ;(2)加法的结合律:(a+b )+c=___________. 1+5+999=___________.5+(-1)+(-999)=___________.思考:①1+2+3+4+ (100)②1+2+3+4+③1+3+5+7+9___________10 (1)相乘;(2(3⨯⨯⨯-(534111 (1(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .)35()5.2(53-⨯+⨯-)416131(12--⨯-12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:___________不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是___________;(2)负数的奇次幂是___________;负数的偶次幂是___________;注意:当n 为正奇数时: (-a)n =-a n , 当n 为正偶数时: (-a)n =a n . 14.乘方的定义:(1)求相同因式___________的运算,叫做乘方; (2)乘方中,相同的因式叫做___________,相同因式的个数叫做___________,乘方的结果叫做___________; a ×10n 的形位的数,这种到精确的.,最后加减. .3.已知a 与b 互为相反数且0a ≠,c 与d 互为倒数,m 的绝对值是最小的正整数,求:()220132014a b a m cd b +-+-的值.34. (1)17-23÷(-2)×3;(2)2×(-3(3)(-3)3(4)20081--(5)45513⨯(6)20141--5. 已知|m |=4,|n |=1,且|m −n |=m −n ,求m n 的值。
第一讲 有 理 数一、有理数的概念及分类。
二、有理数的计算:1、善于观察数字特征;2、灵活运用运算法则;3、掌握常用运算技巧(凑整法、分拆法等)。
三、例题示范1、数轴与大小例1、已知数轴上有A、B两点,A、B之间的距离为1,点A与原点O 的距离为3,那么满足条件的点B与原点O的距离之和等于多少?满足条件的点B有多少个?例2、将这四个数按由小到大的顺序,用“”连结起来。
提示1:四个数都加上1不改变大小顺序;提示2:先考虑其相反数的大小顺序;提示3:考虑其倒数的大小顺序。
例3、观察图中的数轴,用字母a、b、c依次表示点A、B、C对应的数。
试确定三个数的大小关系。
分析:由点B在A右边,知b-a0,而A、B都在原点左边,故ab0,又c10,故要比较的大小关系,只要比较分母的大小关系。
例4、在有理数a与b(ba)之间找出无数个有理数。
提示:P=(n为大于是的自然数)注:P的表示方法不是唯一的。
2、符号和括号在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。
例5、在数1、2、3、…、1990前添上“+”和“ —”并依次运算,所得可能的最小非负数是多少?提示:造零:n-(n+1)-(n+2)+(n+3)=0注:造零的基本技巧:两个相反数的代数和为零。
3、算对与算巧例6、计算 123 (200020012002)提示:1、逆序相加法。
2、求和公式:S=(首项+末项)项数2。
例7、计算 1+234+5+678+9+…2000+2001+2002提示:仿例5,造零。
结论:2003。
例8、计算提示1:凑整法,并运用技巧:199…9=10n+99…9,99…9=10n 1。
例9、计算提示:字母代数,整体化:令,则例10、计算(1);(2)提示:裂项相消。
常用裂项关系式:(1);(2);(3);(4)。
例11 计算(n为自然数)例12、计算 1+2+22+23+…+22000提示:1、裂项相消:2n=2n+12n;2、错项相减:令S=1+2+22+23+…+22000,则S=2SS=220011。
第一讲:认识有理数模块一 正数与负数在小学时我们学过像1、9、3.81、12.56、32、436这样的数,在小学时,老师给我们说,它们分别是整数、小数、分数,进入初中以后,我们把像1、9、3.81、12.56、32、436这样的数叫 ;如果我们把在小学学过的整数、小数、分数前面加一个“—”,比如像这些数,-3,-2,-1,-0.58,41-......,我们把它们叫 。
把下列具有相反意义的量有用线边起来:(1)收入20元 前进100米 后退100米 支出20元 高于海平面155米 亏损6万元 盈余6万元 低于海平面155米(2)零上10C ︒运出50筐梨高于海平面8848米 低于海平面392米运进80筐梨 零下5C ︒学习与归纳:①为了表示具有相反意义的量,我们通常把其中一个数前面加上 号,把另一 个数前面加上 号来进行区分;前面带 号的数叫做正数,前面 的 号经常可以省略不写,前面带 号的数叫做负数,前 面的 号不可以省略;② 既不是正数也不是负数,是正数和负数的分界点; ③ 大于零, 小于零,正数 一切负数。
现在我们就把正数与负数的概念总结如下: 像5,2.1,21,⋅⋅⋅这样的数叫做正数,它们都比0大。
在正数前面加上“—”号的数叫做负数,如:13-,6.1-,32-,⋅⋅⋅ 0既不是正数,也不是负数。
典型例题讲解(理解新知识) 例1:填空:(1)如果收入50元记作50+元,那么支出50元,记作 ,80-元表示 。
(2)手表的指针顺时针旋转︒90记作︒-90,那么逆时针旋转︒60则记作 。
(3)如果比海平面高规定为正,那么珠穆朗玛峰海拨8848米记作 ,吐鲁番盆地海拨155-米表示 。
变式练习: 判断题:(1)前进100米和前进-30米是两个相反意义的量( ) (2)前进100米和后退-100米是两个相反意义的量( )(3)零上10C ︒和支出20元是两个相的反意义的量( )解题方法点拨:(1)用正数和负数表示具有相反意义的量时,可以根据实际,规定哪种意义的量为正数,那么具有相反意义的量就为负数。
(2)一般情况下,正、负规定如下:模块二 有理数及其分类试一试:把下列各数分别填在相应的大括号内7, 25.9-, 109-, 274, 106, 15-, 157, 31.25, 301-, 5.3- 0 , 2.1 , 10% , 314-。
正整数集合{ …}; 负整数集合{ …}; 整数集合{ …}; 正分数集合{ …}; 负分数集合{ …}; 有理数集合{ …};学习归纳:①像1,2,3,4,5,…这样的数叫 ,像5-,4-,3-,2-,1-这样的 数叫 ; 0, 统称为整数; ②像21,0.8,45,327的数叫 ,像21-,—0.8,45-,327-的数叫 ; , 统称为分数; ③ 和 统称为有理数;有理数常用的两种分类方式:注意:在所有含“正”、“负”字眼的集合中,都不能出现“0”.因为“0”既不是正数也不是负数.在有理数的分类中,未出现小学学过的“小数”“自然数”,是因为有 理数中的小数都可以化成分数的形式;而“自然数”又包含在整数的范围内.典型例题讲解(理解新知识)例2:把下列各数填在相应的括号内。
5-, +31, 1.62, 4, 0, 1-, 1, 61, 7-, 371-, 7, π 。
(1)正整数集合:( )(2)分数集合:( )(3)负数集合:( )(4)有理数集合:( )(5)非负数集合:( )解题方法点拨:认识有理数,我们只要根据概念直接理解就可以了,同时,我们也要注意以下几点: (1)0不是正数也不是负数,它是正数和负数的分界,更是一个整数。
(2)正数集合包括正整数、正分数;整数集合包括正整数、0和负整数;π不是有理数,但14.3是有理数哦。
(3)通常把正数和0统称为非负数;负数和0统称为非正数;正整数和0统称为非负整数 (也叫做自然数);负整数和0统称为非正整数。
(4)在对有理数进行分类时,必须按同一标准进行分类,不能混淆标准。
课堂练习1. _____________、_____________、_____________统称整数;分数有___________,___________; __________和__________统称有理数2. 珠穆朗玛峰高出海平面8.848km ,记为海拔+8.848km ,那么吐鲁番盆地低于海平面155m ,应记为海拔_______________.3. 如果从成都出发向西走175km 记作+175km ,那么-120km 表示__________________.4. 关于0的叙述错误的是( ) A .零大于所有的负数 B .零小于所有的正数 C .零是整数D .零既是正数,也是负数5. -3不是( ) A .有理数B .自然数C .负整数D .整数6. 负数是指( )A .把某个数的前边加上“-”号B .不大于0的数C .除去正数的其它数D .小于0的数 7. 非负数是( ) A .正数B .零C .正数和零D .自然数8. 下列四句话中,错误的是( )A .存在最小的自然数B .存在最小的正有理数C .不存在最大的正有理数D .不存在最大的负有理数 9. 在0,21,-51,-8,+10,+19,+3,-3.4中整数的个数是( ) A .6B .5C .4D .310. 关于0的一些说法正确的有__________________.(将序号填在横线上)① 0既不是正数也不是负数;② 0是最小的自然数;③ 0是最小的正数;④ 0是最 小的非负数;⑤ 0既不是奇数也不是偶数;⑥ 0是整数。
11. 最小的自然数是____________,最大的负整数是______________. 12.下列各关系中,不具有相反意义的量的是( )A 。
物价上涨3元与下降2元。
B 。
收入增加6.9%和减少3.4%。
C 。
升温5C ︒与降温5C ︒。
D 。
亏本10元与胜利10场。
13.零上C ︒5比零下C ︒3高 C ︒。
14.有七个数:5-,0,312,1.0-,34,41-,14.3,其中正数有 个,负整数有 个,非负数有 个。
15.地图上标有甲地海拔高度34米,乙地海拔高度23米,丙地海拔高度12-米,其中最低处为 地,最高处为 地,它们相差 米。
16. 某次考试成绩90分以上为优秀,以90分不标准把三名同学的成绩记为5+,0,10-, 那么这三名同学的实际成绩分别为 。
17. 写出3个大于1-的负分数 。
课后作业 A 组练习题1。
(1)如果零上5C ︒记作+5C ︒,那么零下3C ︒记作 ;(2)东、西为两个相反方向,如果4-米表示一个物体向西运动4米,那么+2米表示 ,物体原地不动记为 。
2.(1)如果节约了15万元记作15+万元,那么浪费了6万元,记作 。
(2)有理数中,最小的正整数为 ,最大的负整数为 。
3.(1)如果节约20千瓦时电记作20千瓦时,那么浪费10千瓦时电记作 ; (2)如果+20%表示增加20%,那么%6-表示 ; (3)如果50.20-元表示亏本20.50元,那么+100.27表示 。
4.下列说法中错误的是( )A .正有理数是正整数和正分数的统称。
B .偶数包括正偶数、负偶数和零。
C .整数是正整数和负整数的统称。
D .1-是最大的负整数。
5.在4个不同时刻,对同一水池中的水位进行测量,记录如下: 上升3厘米; 下降6厘米; 下降1厘米; 不升不降。
如果上升3厘米记为+3厘米,那么其余3个记录分别记为什么?6.把下列各数:%10- , 43-, 031.0, 210, 7-, 0,542, 1312-, 9.6, 3.6-, 5+, 21-。
填入它所属于的集合内:正数集合:{ }; 负数集合:{ }; 整数集合:{ }; 负分数集合:{ } 非正数集合:{ }。
B 组练习题1.某日傍晚,黄山风景区的气温由中午的零上2C ︒下降了7C ︒,这天傍晚黄山风景区的气温是 。
2.冬季某天北京的气温是C ︒-10,长春气温是C ︒-18, 气温比 气温低。
3.下例说法:①正有理数和负有理数统称为有理数。
②存在最小的整数。
③存在最小的自然数。
④0表示什么也没有。
⑤正数、负数统称为有理数。
⑥0是最小的正数。
⑦0既不是整数也不是分数。
⑧0是最小的整数。
⑨最小的正整数是1。
正确的序号是: 。
4.按规律,写出后面的3个数,并指出第199个数是什么。
(1)1,31-,51,71-, , , ,第199个数是 。
(2)2,1-,3,1-,4,1-, , , ,第199个数是 。
5.一名足球守门员练习折返跑,从守门员位置出发,向前记作正数,返回记作负数。
他的记录如下(单位:米):5+,3-,10+,8-,6-,12+,10-。
(1)守门员是否回到守门的位置?(2)守门员离开守门的位置最远是多少?(3)守门员离开守门位置达10米以上(包括10米)的次数是多少?6.请问:(1)该公司今年第一季度总收入与总支出各多少万元? (2)如果收入用正数表示,则总收入与总支出应如何表示? (3)该公司第一季度利润为多少万元?。