第七章 光路计算及(实)
- 格式:ppt
- 大小:3.01 MB
- 文档页数:21
第二篇像差理论由球面和平面系统的光路特征和成像特性,可见,只有平面反射镜是唯一能对物体成完善像的光学元件。
单个球面透镜或任意组合的光学系统,只能对近轴物点以细光束成完善像。
随着视场和孔径的增大,成像的光束的同心性将遭到破坏,产生各种成像缺陷,使像的形状与物不再相似。
这些成像缺陷可用若干种像差来描述。
如果只考虑单色光成像,光学系统可能产生五种性质不同的像差,即球差、慧差、像散、像面弯曲和畸变,统称为单色像差。
但是,绝大多数光学系统是用白光或复色光成像,由于色散存在,会使其中不同的色光有不同的传播光路,由于这种光路差别而引起的像差称为色差,包括位置色差和倍率色差。
实际上,用白光成像时,由于其所包含的各种单色光有各自的传播光路,它们的单色像差也是各不相同的。
为了便于分析,将其分成单色像差和色像差两类。
其中,单色像差是对光能接收器最灵敏的色光而言的,色差是对接收器的有效波段内接近边缘的两种色光来考虑的。
事实上我们不可能获得对整个空间都能良好成像的万能光学系统,只能为适应某种单一用途而设计专门的光学系统;同时,即使这样的光学系统,也不能将各种像差完全校正和消除。
但是由于人眼和所有其他的光能接收器也具有一定的缺陷,只要将像差校正到某一限度以内,人眼和其他接收器就觉察和反映不出其成像的缺陷,这样的光学系统从实用意义上来说即可认为是完善的。
第七章光线的光路计算在设计光学系统时,为了获得像差的最佳校正和平衡,要不断地修改结构参数,包括表面的曲率半径、间隔和透镜的材料等。
每修改一次,都必须计算出有关像差,以便进行综合的分析和评价,确定是否需要进一步修改及修改方向。
光学自动设计或称优化设计只是借助于计算机来完成这些繁复的运算与分析,其基本过程并无本质的区别。
所以设计光学系统需要反复作大量光线的光路计算。
通常需作如下四类光线的光路计算:作近轴光线的光路计算,以确定像的理想状态;作含轴面内光线的光路计算,以求得大部分像差;作沿主光线的细光束像点的计算,以求得细光束像差;作空间光线的光路计算,以全面了解系统的像质。
光路计算以及像差理论光路计算和像差理论是光学领域中重要的理论和计算方法,用于研究和描述光在光学系统中的传播和成像过程。
本文将详细介绍光路计算和像差理论的基本概念和原理,并进一步分析它们的应用和意义。
光路计算是指通过对光线的追踪和计算,来确定光线在光学系统中的传播路径和成像效果。
光线是一种理论上的模型,用于描述光的传播。
光线在光学系统中的传播路径可以通过光线传播的三个基本规律来描述:一是光线沿直线路径传播,即自由传播定律;二是光线在分界面上发生折射,即折射定律;三是光线在反射面上发生反射,即反射定律。
根据这些规律,可以利用向量法对光线进行计算和分析,确定其传播路径和成像位置。
光路计算主要用于分析和设计光学系统,如透镜组、反射镜、光纤等。
通过对光路的计算,可以确定图像的位置、放大倍率和畸变等参数。
例如,在透镜组中,可以通过光路计算来确定光线在透镜组中的光路和成像位置,进而优化透镜组的设计,并实现清晰准确的成像效果。
光路计算还可以应用于光学传感器和光学通信系统等领域。
在光学传感器中,可以通过光路计算来确定光源到传感器的传输路径和成像效果,从而提高传感器的灵敏度和分辨率。
在光学通信系统中,可以通过光路计算来确定光信号在光纤中的传输路径和衰减情况,从而优化光通信系统的传输性能和距离。
像差理论是描述光学系统成像质量的理论框架。
在光学系统中,由于折射、反射以及光学元件的形状等因素的影响,光线在成像过程中会发生一些畸变和偏差,导致最终成像结果与理想成像有差异,这种差异称为像差。
像差理论主要研究和描述这些差异的产生原因和影响程度。
常见的像差包括球面像差、色差、像散、畸变等。
球面像差是由于透镜的球面形状导致光线在透镜中的聚焦位置发生变化,使得不同位置的物体成像位置不同。
色差是由于光线的折射率随着波长的变化而变化,导致不同波长的光线成像位置发生偏差。
像散是由于光线在透镜中的色散效应导致不同波长的光线在成像后的位置不同。
习 题 七7-1 如图所示,O S O S 21=。
若在O S 1中放入一折射率为n ,厚度为e 的透明介质片,求O S 1与O S 2之间的光程差。
如果1S 和2S 是两个波长为λ的同相位的相干光源,求两光在O 点的相位差。
[解] O S 1与O S 2的几何路程相等 光程差为()e n 1-=δ 位相差为()e n 122-==∆λπδλπϕ7-2 一束绿光照射到两相距 0.6mm 的双缝上,在距双缝2.5m 处的屏上出现干涉条纹。
测得两相邻明条纹中心间的距离为2.27mm ,试求入射光的波长。
[解] 由杨氏双缝干涉知,dD x λ=∆ 所以5448m 10448.55.21060.01027.2733=⨯=⨯⨯⨯=∆=---D xd λÅ7-3 如图所示,在双缝干涉实验中,21SS SS =,用波长为λ的单色光照S ,通过空气后在屏幕E 上形成干涉条纹。
已知点P 处为第3级干涉明条纹,求1S 和2S 到点P 的光程差。
若整个装置放于某种透明液体中,点P 为第4级干涉明条纹,求该液体的折射率。
[解] 1S 和2S 到P 点的光程差满足λλδ312==-=k r r 整个装置放置于液体中,1S 和2S 到P 点的光程差满足()λδ412=-=r r nλλ43=n 所以得到 33.134==n7-4 如习题7-1图所示,1S 和2S 是两个同相位的相干光源,它们发出波长λ=5000Å的光波,设O 是它们中垂线上的一点,在点1S 与点O 之间的插入一折射率n =1.50的薄玻璃,点O 恰为第4级明条纹的中心,求它的厚度e 。
[解] 在O 点是第4级明条纹的中心 光程差 λδ4=-=e ne所以 410414⨯=-=n e λÅ7-5 初位相相同的两相干光源产生的波长为6000Å的光波在空间某点P 相遇产生干涉,其几何路径之差为6102.1-⨯m 。
如果光线通过的介质分别为空气(11=n )、水(=2n 1.33)或松节油(=3n 1.50)时,点P 的干涉是加强还是减弱。
第七章原子吸收与原子荧光光谱法1.解释下列名词:(1)原子吸收线和原子发射线;(2)宽带吸收和窄带吸收;(3)积分吸收和峰值吸收;(4)谱线的自然宽度和变宽;(5)谱线的热变宽和压力变宽;(6)石墨炉原子化法和氢化物发生原子化法;(7)光谱通带;(8)基体改进剂;(9)特征浓度和特征质量;(10)共振原子荧光和非共振原子荧光。
答:(1)原子吸收线是基态原子吸收一定辐射能后被激发跃迁到不同的较高能态产生的光谱线;原子发射线是基态原子吸收一定的能量(光能、电能或辐射能)后被激发跃迁到较高的能态,然后从较高的能态跃迁回到基态时产生的光谱线。
(2)分子或离子的吸收为宽带吸收;气态基态原子的吸收为窄带吸收。
(3)积分吸收是吸收线轮廓的内的总面积即吸收系数对频率的积分;峰值吸收是中心频率ν0两旁很窄(dν= 0)范围内的积分吸收。
(4)在无外界条件影响时,谱线的固有宽度称为自然宽度;由各种因素引起的谱线宽度增加称为变宽。
(5)谱线的热变宽是由原子在空间作相对热运动引起的谱线变宽;压力变宽是由同种辐射原子间或辐射原子与其它粒子间相互碰撞产生的谱线变宽,与气体的压力有关,又称为压力变宽。
(6)以石墨管作为电阻发热体使试样中待测元素原子化的方法称为石墨炉原子化法;反应生成的挥发性氢化物在以电加热或火焰加热的石英管原子化器中的原子化称为氢化物发生原子化法。
(7)光谱通带是指单色器出射光束波长区间的宽度。
(8)基体改进剂是指能改变基体或被测定元素化合物的热稳定性以避免化学干扰的化学试剂。
(9)把能产生1%吸收或产生0.0044吸光度时所对应的被测定元素的质量浓度定义为元素的特征浓度;把能产生1%吸收或产生0.0044吸光度时所对应的被测定元素的质量定义为元素的特征质量。
(10)共振原子荧光是指气态基态原子吸收的辐射和发射的荧光波长相同时产生的荧光;气态基态原子吸收的辐射和发射的荧光波长不相同时产生的荧光称为非共振原子荧光。
光路计算一、 对计算像差有特征意义的光线主要有三类:1、子午面内光路计算。
包括:1)近轴区轴上点光路计算,可以求得理想高斯像点(面)位置,系统焦距; 2)近轴区轴外点光路计算,可以求得出瞳位置,理想像高;3)远轴区实际光线-轴上点光线光路计算,可以求得实际像点的位置(孔径取点系数分别为0.3,0.5,0.707,0,85,1);4)远轴区实际光线-轴外点光线光路计算,可以求得不同物视场时实际像高,进而求得相应像差(视场取点系数为0.3,0.5,0.707,0,85,1)。
2、轴外点沿主光线的细光束光路计算,可以求像散和场曲。
3、子午面外的空间光路计算,另一套公式。
今天主要说明第一类-子午面内光路计算。
二、需要用到的主要公式:1、近轴区轴上点/近轴区轴外点11111()/(0,/)'/''''('/')i l r u r l u i h r i ni n u u i i l i r u r=-=-∞====+-=+特殊起算:时,过渡公式: 1111'''k k k k k k k l l d u u n n ----=-== 校对公式: '''''h lu l u nuy n u y J ====2、远轴区实际光线轴上点/轴外点11111sin ()sin /(0,sin /)sin 'sin /''''sin '/sin 'I L r U r L U I h r I n I n U U I I L r r I U =-=-∞===+-=+当时,=过渡公式: 1111'''k k k k k k k L L d U U n n ----=-==校对公式: 11cos ('')cos ('')sin 22'1sin 'sin 'cos ()2I U I U L U L PA U U I U --==⨯- 3、遇到折射平面和反射面的计算 1)折射平面 实际光线:sin 'sin /''''tan /tan 'I UI n I n U I L L U U =-==-= 当U 角较小的时候,有'cos ''cos n U L L n U =近轴光线:'/''''/'ln'/i ui ni n u i l lu u n=-==-==注意:球面校对公式依然适用 2、反射面前面公式不变,但要注意: 1)'n n =-2)反射面以后的间隔d 取为负值,然后使用折射面公式计算。
实验名称:实验一 光线的光路计算一、实验目的:1、对光线光路计算的目的和方法有初步的了解;2、对子午面内的光线光路计算进行训练以加深理解;3、对像质危害和像差产生的原因获得较为感性的认识。
二、实验原理:(一)、球差的定义1、轴向球差: 轴上点发出的同心光束经光学系统后,不再是同心光束,不同入射高度的光线交光轴于不同的位置,相对近轴像点有不同程度的偏离,这种偏离称为轴向球差,简称球差。
2、垂轴像差: 由于球差的存在,在高斯像面上的像点已不是一个点,而是一个圆形的弥散斑,弥散斑的半径称为垂轴球差。
3、球差的性质:⑴球差是入射高度的函数;⑵球差具有对称性;⑶球差与视场无关。
4、单正透镜产生负球差,单负透镜产生正球差;单透镜无法校正球差。
正负透镜组合才有可能校正球差。
5、对于仅含初级球差、二级球差的光学系统,当边缘带的球差为0时,在0.707带有最大的剩余球差。
6、单个折射球面的不晕点(齐明点):不产生像差的共轭点。
(1)L =0,即L ’=0,β=1。
即物点和像点均位于球面顶点。
(2) ,即I =I ’=0。
表示物点和像点均位于球面的曲率中心。
或L=L ’=r ,则β=n/n ’。
(3),β=(n/n ’)2。
(二)、球差的计算1、子午面内的光线光路计算:(1)、近轴光线光路计算:求出理想像的位置和大小,轴上 计算公式:u rr l i -= (11111r h i 0u l ==∞=,时,当) (1)u n n i ''=·..........................................(2) ''i i u u -+= (3)0I I ='-sin sin)''('u i 1r l +=·············································(4) 过渡公式:i i 1i d l l -=+'············································· (5) 'i 1i u u =+·················································(6) '!i i n n =+·················································(7) 2、远轴光线光路计算轴上点远轴光线光路计算:求出实际像点的位置。