平行线地判定及性质
- 格式:doc
- 大小:537.37 KB
- 文档页数:10
平行线与平行线的性质及判定方法平行线是指在同一平面内永远不会相交的两条直线。
在数学中,平行线有着许多独特的性质和判定方法,对于几何学的研究和实际应用都具有重要意义。
一、平行线的性质1. 平行线上的两个点到另一直线的距离相等:如果两条直线L₁和L₂平行,那么这两条线上的任意两个点A和B到第三条直线L的距离都是相等的。
2. 平行线的内角和为180度:当一条直线与两条平行线相交时,两对内角之和是180度。
这可以通过数学证明得出。
3. 平行线的外角相等:当两条平行线被一条横截线相交时,这两条平行线的对应外角是相等的。
4. 平行线的平行线仍然平行:如果两条直线L₁和L₂平行,而L₃与L₁平行,那么L₃也与L₂平行。
二、平行线的判定方法1. 直角判定法:如果两条直线上的任意一对相邻内角之一是直角,那么这两条直线是平行线。
这种判定方法是由两条直线的垂直性质推导出来的。
2. 三角形内角和判定法:如果一条直线与一条平行线相交,那么直线上的一对内角与平行线上的一对内角之和为180度时,这两条直线是平行线。
3. 平行线定理:如果两条直线分别与第三条直线相交,并且两对同位角分别相等,那么这两条直线是平行线。
这个定理也被称为同位角定理。
4. 夹角判定法:如果两条直线分别与第三条直线相交,而且同位角相等或互补,则这两条直线是平行线。
5. 平行线公理(欧几里德公理):如果直线上的一点和直线外一点,有且只有一条通过这两个点的平行线。
这个公理是建立在欧几里德几何的基础上的。
以上是常见的一些关于平行线性质的说明和判定方法,通过这些性质和方法,我们可以在几何学中更好地理解和应用平行线。
在实际生活中,平行线也有着广泛的应用,例如建筑设计、道路规划、制图等领域都需要运用到平行线的概念和性质。
总结:在数学中,平行线是指在同一平面内永远不会相交的两条直线。
平行线有许多独特的性质,如平行线上的两个点到另一直线的距离相等、平行线的内角和为180度等等。
平行线的特征平行线在几何学中具有重要的作用,它们是指在同一个平面上,永远不会相交的直线。
本文将探讨平行线的特征,以及与平行线相关的性质和定理。
一、平行线的定义平行线的定义是两条直线在同一个平面上,并且永远不会相交。
这意味着两条平行线之间的距离始终相等。
二、平行线的特征1. 方向相同:平行线在平面上具有相同的方向,它们始终在相同的方向上延伸。
2. 永不相交:平行线永远不会相交。
无论延长多远,它们仍然保持平行的形状。
3. 距离相等:平行线之间的任意两点到两条平行线的距离始终相等。
这是平行线的一个重要性质。
4. 平行四边形的对边平行性:在平行四边形中,对边是平行的。
这是平行线特征的一个重要应用。
三、平行线的判定1. 同位角判定:如果两条直线被一条截线所切,并且同位角相等,那么这两条直线平行。
2. 转换判定:如果一条线与两条平行线分别相交,形成相等的内错角或外错角,那么这条线与这两条平行线平行。
3. 斜率判定:如果两条直线的斜率相等,那么这两条直线平行。
斜率是直线在坐标系中的倾斜度量。
四、平行线的应用1. 平行线与横向交错线条:在道路规划和交通设计中,平行线经常用于构建车道和交通流线的布局。
2. 平行线与角度构造:在建筑设计中,平行线被广泛应用于角度构造。
通过平行线的布局,可以创建出各种角度和形状。
3. 平行线与等距关系:平行线之间的距离相等,这一性质在几何学和测量中具有重要的应用。
五、平行线的定理1. 交替内角定理:如果两条平行线被一条截线所切,那么两条平行线上的交替内角是相等的。
2. 内错角定理:如果两条平行线被一条截线所切,那么两条平行线上的内错角是补角。
3. 锐角和钝角定理:如果两条平行线被一条截线所切,那么两条平行线上的锐角和钝角的和是180度。
六、平行线的重要性平行线的研究对几何学和应用数学具有重要意义。
它们为解决实际问题提供了基础,而且在建筑、工程、地图制作等领域也有广泛的应用。
综上所述,平行线作为几何学中的一个重要概念,具有方向相同、永不相交和距离相等等特征。
授课主题平行线教学目的1.理解平行线的概念;掌握平行公理及其推论;2.掌握平行线的判定方法及性质;并能进行简单的推理3. 掌握命题的定义;知道一个命题是由“题设”和“结论”两部分组成;对于给定的命题;能找出它的题设和结论;教学重点平行线的判定及性质教学内容知识梳理要点一、平行线1.定义:在同一平面内;不相交的两条直线叫做平行线;如果直线a与b平行;记作a∥b.要点诠释:1平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交;三者缺一不可;2有时说两条射线平行或线段平行;实际是指它们所在的直线平行;两条线段不相交并不意味着它们就平行.3在同一平面内;两条直线的位置关系只有相交和平行两种.特别地;重合的直线视为一条直线;不属于上述任何一种位置关系.2.平行公理:经过直线外一点;有且只有一条直线与这条直线平行.3.推论:如果两条直线都与第三条直线平行;那么这两条直线也互相平行.要点诠释:1平行公理特别强调“经过直线外一点”;而非直线上的点;要区别于垂线的第一性质.2公理中“有”说明存在;“只有”说明唯一.3“平行公理的推论”也叫平行线的传递性.要点二、直线平行的判定判定方法1:同位角相等;两直线平行.如上图;几何语言:∵∠3=∠2∴AB∥CD同位角相等;两直线平行判定方法2:内错角相等;两直线平行.如上图;几何语言:∵∠1=∠2∴AB∥CD内错角相等;两直线平行判定方法3:同旁内角互补;两直线平行.如上图;几何语言:∵∠4+∠2=180°∴AB∥CD同旁内角互补;两直线平行要点诠释:平行线的判定是由角相等或互补;得出平行;即由数推形.要点三、平行线的性质性质1:两直线平行;同位角相等;性质2:两直线平行;内错角相等;性质3:两直线平行;同旁内角互补.要点诠释:1“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容;切不可忽视前提“两直线平行”.2从角的关系得到两直线平行;是平行线的判定;从平行线得到角相等或互补关系;是平行线的性质.要点四、两条平行线的距离同时垂直于两条平行线;并且夹在这两条平行线间的线段的长度;叫做这两条平行线的距离.要点诠释:1求两条平行线的距离的方法是在一条直线上任找一点;向另一条直线作垂线;垂线段的长度就是两条平行线的距离.2两条平行线的位置确定后;它们的距离就是个定值;不随垂线段的位置的改变而改变;即平行线间的距离处处相等.要点五、命题、定理、证明1.命题:判断一件事情的语句;叫做命题.要点诠释:1命题的结构:每个命题都由题设、结论两部分组成;题设是已知事项;结论是由已知事项推出的事项.2命题的表达形式:“如果……;那么…….”;也可写成:“若……;则…….”3真命题与假命题:真命题:题设成立结论一定成立的命题;叫做真命题.假命题:题设成立而不能保证结论一定成立的命题;叫做假命题.2.定理:定理是从真命题公理或其他已被证明的定理出发;经过推理证实得到的另一个真命题;定理也可以作为继续推理的依据.3.证明:在很多情况下;一个命题的正确性需要经过推理;才能作出判断;这个推理过程叫做证明.要点诠释:1证明中的每一步推理都要有根据;不能“想当然”;这些根据可以是已知条件;学过的定义、基本事实、定理等.2判断一个命题是正确的;必须经过严格的证明;判断一个命题是假命题;只需列举一个反例即可.要点六、平移1. 定义:在平面内;将一个图形沿某个方向移动一定的距离;图形的这种移动叫做平移.要点诠释:1图形的平移的两要素:平移的方向与平移的距离.2图形的平移不改变图形的形状与大小;只改变图形的位置.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离;平移不改变线段、角的大小;具体来说:1平移后;对应线段平行且相等;2平移后;对应角相等;3平移后;对应点所连线段平行且相等;4平移后;新图形与原图形是一对全等图形.典型例题类型一、平行线例1.下列说法正确的是A.不相交的两条线段是平行线.B.不相交的两条直线是平行线.C.不相交的两条射线是平行线.D.在同一平面内;不相交的两条直线叫做平行线.答案D例2.在同一平面内;下列说法:1过两点有且只有一条直线;2两条直线有且只有一个公共点;3过一点有且只有一条直线与已知直线垂直;4过一点有且只有一条直线与已知直线平行..其中正确的个数为:A.1个B.2个C.3个D.4个答案B解析正确的是:13.变式1下列说法正确的个数是1直线a、b、c、d;如果a∥b、c∥b、c∥d;则a∥d.2两条直线被第三条直线所截;同旁内角的平分线互相垂直.3两条直线被第三条直线所截;同位角相等.4在同一平面内;如果两直线都垂直于同一条直线;那么这两直线平行.A.1个 B .2个C.3个D.4个答案B类型二、两直线平行的判定例3. 如图;给出下列四个条件:1AC=BD; 2∠DAC=∠BCA;3∠ABD=∠CDB;4∠ADB=∠CBD;其中能使AD∥BC的条件有.A.12 B.34 C.24 D.134答案C变式2一个学员在广场上驾驶汽车;两次拐弯后;行驶的方向与原来的方向相同;这两次拐弯的角度可能是A.第一次向左拐30°;第二次向右拐30°B.第一次向右拐50°;第二次向左拐130°C.第一次向右拐50°;第二次向右拐130°D.第一次向左拐50°;第二次向左拐130°例4.如图所示;已知∠B=25°;∠BCD=45°;∠CDE=30°;∠E=10°.试说明AB∥EF的理由.解法1:如图所示;在∠BCD的内部作∠BCM=25°;在∠CDE的内部作∠EDN=10°.∵∠B=25°;∠E=10°已知;∴∠B=∠BCM;∠E=∠EDN等量代换.∴AB∥CM;EF∥DN内错角相等;两直线平行.又∵∠BCD=45°;∠CDE=30°已知;∴∠DCM=20°;∠CDN=20°等式性质.∴∠DCM=∠CDN等量代换.∴CM∥DN内错角相等;两直线平行.∵AB∥CM;EF∥DN已证;∴AB∥EF平行线的传递性.解法2:如图所示;分别向两方延长线段CD交EF于M点、交AB于N点.∵∠BCD=45°;∴∠NCB=135°.∵∠B=25°;∴∠CNB=180°-∠NCB-∠B=20°三角形的内角和等于180°.又∵∠CDE=30°;∴∠EDM=150°.又∵∠E=10°;∴∠EMD=180°-∠EDM-∠E=20°三角形的内角和等于180°.∴∠CNB=∠EMD等量代换.所以AB∥EF内错角相等;两直线平行.变式3已知;如图;BE平分∠ABD;DE平分∠CDB;且∠1与∠2互余;试判断直线AB、CD的位置关系;请说明理由.解:AB∥CD;理由如下:∵BE平分∠ABD;DE平分∠CDB;∴∠ABD=2∠1;∠CDB=2∠2.又∵∠1+∠2=90°;∴∠ABD+∠CDB=180°.∴AB∥CD同旁内角互补;两直线平行.变式4已知;如图;AB⊥BD于B;CD⊥BD于D;∠1+∠2=180°;求证:CD//EF.答案证明:∵AB⊥BD于B;CD⊥BD于D;∴AB∥CD.又∵∠1+∠2=180°;∴AB∥EF.∴CD//EF.类型三、平行线的性质例5.如图所示;如果AB∥DF;DE∥BC;且∠1=65°.那么你能说出∠2、∠3、∠4的度数吗为什么.解:∵DE∥BC;∴∠4=∠1=65°两直线平行;内错角相等.∠2+∠1=180°两直线平行;同旁内角互补.∴ ∠2=180°-∠1=180°-65°=115°.又∵ DF ∥AB 已知;∴ ∠3=∠2两直线平行;同位角相等.∴ ∠3=115°等量代换.变式5如图;已知1234//,//l l l l ;且∠1=48°;则∠2= ;∠3= ;∠4= .答案48°;132°;48°变式6如图所示;直线l 1∥l 2;点A 、B 在直线l 2上;点C 、D 在直线l 1上;若△ABC 的面积为S 1;△ABD 的面积为S 2;则A .S 1>S 2B .S 1=S 2C .S 1<S 2D .不确定答案B类型四、命题例6.判断下列语句是不是命题;如果是命题;是正确的 还是错误的①画直线AB ;②两条直线相交;有几个交点;③若a ∥b;b ∥c;则a ∥c ;④直角都相等;⑤相等的角都是直角;⑥如果两个角不相等;那么这两个角不是对顶角.答案①②不是命题;③④⑤⑥是命题;③④⑥是正确的命题;⑤是错误的命题.变式8把下列命题改写成“如果……;那么……”的形式.1两直线平行;同位角相等;2对顶角相等;3同角的余角相等.答案解:1如果两直线平行;那么同位角相等.2如果两个角是对顶角;那么这两个角相等.3如果有两个角是同一个角的余角;那么它们相等.类型四、平移例7.湖南益阳如图所示;将△ABC 沿直线AB 向右平移后到达△BDE 的位置;若∠CAB =50°;∠ABC =100°;则∠CBE 的度数为________.答案30°变式9 上海静安区一模如图所示;三角形FDE 经过怎样的平移可以得到三角形ABCA .沿EC 的方向移动DB 长B .沿BD 的方向移动BD 长C .沿EC 的方向移动CD 长D .沿BD 的方向移动DC 长答案A类型五、平行的性质与判定综合应用例8、如图所示;AB∥EF;那么∠BAC+∠ACE+∠CEF=A.180°B.270°C.360°D.540°答案C解析过点C作CD∥AB;∵CD∥AB;∴∠BAC+∠ACD=180°两直线平行;同旁内角互补又∵EF∥AB∴EF∥CD.∴∠DCE+∠CEF=180°两直线平行;同旁内角互补又∵∠ACE=∠ACD+∠DCE∴∠BAC+∠ACE+∠CEF=∠BAC+∠ACD+∠DCE+∠CEF=180°+180°=360°课后作业一、选择题1.下列说法中正确的有①一条直线的平行线只有一条.②过一点与已知直线平行的直线只有一条.③因为a∥b;c∥d;所以a∥d.④经过直线外一点有且只有一条直线与已知直线平行.A.1个B.2个C.3个D.4个2.如果两个角的一边在同一直线上;另一边互相平行;则这两个角A.相等B.互补C.互余D.相等或互补3.如图;能够判定DE∥BC的条件是A.∠DCE+∠DEC=180°B.∠EDC=∠DCBC.∠BGF=∠DCB D.CD⊥AB;GF⊥AB4.一辆汽车在广阔的草原上行驶;两次拐弯后;行驶的方向与原来的方向相同;那么这两次拐弯的角度可能是.A.第一次向右拐40°;第二次向右拐140°.B.第一次向右拐40°;第二次向左拐40°.C.第一次向左拐40°;第二次向右拐140°.D.第一次向右拐140°;第二次向左拐40°.5.如图所示;下列条件中;不能推出AB∥CE成立的条件是A.∠A=∠ACE B.∠B=∠ACE C.∠B=∠ECD D.∠B+∠BCE=180°6.绍兴学习了平行线后;小敏想出了过已知直线外一点画这条直线的平行线的新方法;她是通过折一张半透明的纸得到的如图;1—4:从图中可知;小敏画平行线的依据有①两直线平行;同位角相等.②两直线平行;内错角相等.③同位角相等;两直线平行.④内错角相等;两直线平行.A.①②B. ②③C. ③④D. ④①二、填空题7. 在同一平面内的三条直线;它们的交点个数可能是________.8.如图;DF平分∠CDE;∠CDF=55°;∠C=70°;则________∥________.9.规律探究:同一平面内有直线a1;a2;a3…;a100;若a1⊥a2;a2∥a3;a3⊥a4…;按此规律;a1和a100的位置是________.10.已知两个角的两边分别平行;其中一个角为40°;则另一个角的度数是11.直线l同侧有三点A、B、C;如果A、B两点确定的直线l'与B、C两点确定的直线l''都与l平行;则A、B、C三点;其依据是12.如图;AB⊥EF于点G;CD⊥EF于点H;GP平分∠EGB;HQ平分∠CHF;则图中互相平行的直线有.三、解答题13.如图;∠1=60°;∠2=60°;∠3=100°;要使AB∥EF;∠4应为多少度说明理由.14.小敏有一块小画板如图所示;她想知道它的上下边缘是否平行;而小敏身边只有一个量角器;你能帮助她解决这一问题吗15.如图;把一张长芳形纸条ABCD沿AF折叠;已知∠ADB=20°;那么∠BAF为多少度时;才能使AB′∥BD16.如图所示;由∠1=∠2;BD平分∠ABC;可推出哪两条线段平行;写出推理过程;如果推出另两条线段平行;则应将以上两条件之一作如何改变答案与解析一、选择题1. 答案A解析只有④正确;其它均错.2. 答案D3. 答案B解析内错角相等;两直线平行.4. 答案B5. 答案B解析∠B和∠ACE不是两条直线被第三条直线所截所得到的角.6. 答案C解析解决本题关键是理解折叠的过程;图中的虚线与已知的直线垂直;过点P的折痕与虚线垂直.二、填空题7. 答案0或1或2或3个;8. 答案BC; DE;解析∠CFD=180°-70°-55°=55°;而∠FDE=∠CDF=55°;所以∠CFD=∠FDE.9. 答案a1∥a100;解析为了方便;我们可以记为a1⊥a2∥a3⊥a4∥a5⊥a6∥a7⊥a8∥a9⊥a10…∥a97⊥a98∥a99⊥a100;因为a1⊥a2∥a3;所以a1⊥a3;而a3⊥a4;所以a1∥a4∥a5.同理得a5∥a8∥a9;a9∥a12∥a13;…;接着这样的规律可以得a1∥a97∥a100;所以a1∥a100.10.答案40°或140°11.答案共线;平行公理;解析此题考查是平行公理;它是论证推理的基础;应熟练应用.12.答案AB∥CD;GP∥HQ;解析理由:∵AB⊥EF;CD⊥EF.∴∠AGE=∠CHG=90°.∴AB∥CD.∵AB⊥EF.∴∠EGB=∠2=90°.∴GP平分∠EGB.∴∠1=12EGB=45°.∴∠PGH=∠1+∠2=135°.同理∠GHQ=135°;∴∠PGH=∠GHQ.∴GP∥HQ.三、解答题13. 解析解:∠4=100°.理由如下:∵∠1=60°;∠2=60°;∴∠1=∠2;∴AB∥CD又∵∠3=∠4=100°;∴CD∥EF;∴AB∥EF.14.解析解:如图所示;用量角器在两个边缘之间画一条线段MN;用量角器测得∠1=50°;∠2=50°;因为∠1=∠2;所以由内错角相等;两直线平行;可知画板的上下边缘是平行的.15. 解析解:要使AB′∥BD;只要∠B′AD=∠ADB=20°;∠B′AB=∠BAD+∠B′AD=90°+20°=110°.∴∠BAF=12∠B′AB=12×110°=55°.16.解析解:可推出AD∥BC.∵BD平分∠ABC已知.∴∠1=∠DBC角平分线定义.又∵∠1=∠2已知;∴∠2=∠DBC等量代换.∴AD∥BC内错角相等;两直线平行.。
平行线的9种判定方法
平行线的9种判定方法如下:
1. 同位角相等:两个直线被一条横截线截断,同位角相等的两条直线仍然互相平行。
2. 对边相等:平行线的性质之一,对边相等的两条直线仍然互相平行。
3. 内错角相等:两个直线被一条横截线截断,内错角相等的两条直线仍然互相平行。
4. 同旁内角互补:两个直线被一条横截线截断,同旁内角互补的两条直线仍然互相平行。
5. 平行线性质2:平行线的性质,如果两条直线被一条横截线截断,那么它们的对边的中点互相平分。
6. 平行线性质3:平行线的性质,如果两条直线被一条横截线截断,那么它们的尾巴互相平分。
7. 同位角定理:对于两条平行线,同位角相等意味着它们互相平行,同位角定理定理:如果两条直线被一条横截线截断,同位角相等的两条直线仍然互相平行,那么对于任意一条横截线,其两个对边的中点所产生的两个内角相等。
8. 对边中点定理:对于两条平行线,对边的中点互相平分意味着它们互相平行,对边中点定理定理:如果两条直线被一条横截线截断,对边的中点互相平分的两条直线仍然互相平行,那么对于任意一条横截线,其两个中点所产生的两个内角相等。
9. 尾巴中点定理:对于两条平行线,尾巴中点互相平分意味着它们互相平行,尾巴中点定理定理:如果两条直线被一条横截线截断,尾巴中点互相平分的两条直线仍然互相平行,那么对于任意一条横截线,其两个尾巴中点所产生的两个内角相等。
平行线的性质平行线是几何学中重要的概念之一,它们有着独特的性质和特点。
本文将介绍平行线的性质,包括定义、判定方法以及与其他几何对象的关系。
一、定义及判定方法平行线是指在同一平面上永不相交的直线。
根据平行线的定义可以得出以下性质:1. 平行线具有相同的斜率:如果两条直线的斜率相等,那么这两条直线是平行线。
反之,如果两条直线平行,那么它们的斜率一定相等。
2. 平行线具有相同的夹角:如果两条直线分别与一条横穿它们的直线相交,且交角相等,那么这两条直线是平行线。
反之,如果两条直线平行,那么它们与同一条横穿它们的直线的交角一定相等。
3. 平行线具有相同的倾斜角:倾斜角指直线与水平线之间的夹角。
如果两条直线的倾斜角相等,那么这两条直线是平行线。
反之,如果两条直线平行,它们与水平线的倾斜角一定相等。
二、平行线与其他几何对象的关系1. 平行线与角的关系:当一条直线与两条平行线相交时,所对应的内角或外角具有特定的关系。
如果同时给定两条直线为平行线,以及一条与它们相交的第三条直线,那么我们可以根据角的性质计算出交角的大小。
2. 平行线与三角形的关系:如果一条直线与一个三角形的两条边分别平行,那么这条直线将会将这两条边分成对应的等分线段,从而形成一组相似三角形。
3. 平行线与平行四边形的关系:平行四边形是指具有两对平行边的四边形。
在平行四边形中,对角线相交于一点,并且相交点将对角线等分。
同时,两对相对边及相对角也具有相等关系。
三、应用举例平行线的性质在实际应用中有着广泛的应用。
以下是一些例子:1. 建筑工程:在建造房屋或桥梁等结构时,工程师需要利用平行线的性质来确保构件的平行度和垂直度。
2. 地理测量:地理测量中使用的经纬线是地球表面上的平行线,它们能够提供位置和方向信息。
3. 电路布局:在电路设计中,平行线的性质被应用于布线和电路板设计,以确保信号传输的稳定性和减少电磁干扰。
4. 图形学:在计算机图形学中,平行线的性质被用于3D渲染和投影算法,以模拟真实世界中的透视效果。
平行线及其性质和判定核心纲要1.平行线(1)定义:在同一平面内,不相交的两条直线叫做平行线,直线a与直线b互相平行,记作a∥b.(2)平行公理:经过直线外一点,有且只有一条直线与已知直线平行.注:点必须在直线外,而不是在直线上.(3)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即“平行于同一条直线的两条直线平行".2.两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:(1)相交;(2)平行.注:判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,两直线平行;3.两直线平行的判定方法(1)平行线的定义.(2)平行公理的推论.(3)同位角相等,两直线平行.(4)内错角相等,两直线平行.(5)同旁内角互补,两直线平行.4.平行线的性质(1)两直线平行,同位角相等.(2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.本节重点讲解:一个定义(平行线),一个位置,五个判定,三个性质.基础演练1.在同一平面内,两条直线的位置关系可能是( )A.平行或相交B.垂直或相交C.垂直或平行D.平行、垂直或相交2.下列说法正确的是( )A.经过一点有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有且只有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行.3.如图所示,下列推理中错误的是( )A.∵∠A+∠ADC=180°,∴AB∥CD B.∵∠DCE=∠ABC,∴AB∥CDC.∵∠3=∠4,∴AD∥BC D.∵∠1=∠2,∴AD∥BC4.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度可能是()A.第一次右拐50°,第二次左拐130°B.第一次左拐50°,第二次右拐50°C.第一次左拐50°,第二次左拐130°D.第一次右拐50°,第二次右拐50°5.(1)如图1所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D’,C’的位置.若∠EFB=65°,则∠AED’等于__________.(2)如图2所示,AD∥EF,EF∥BC,且EG∥AC.那么图中与∠1相等的角(不包括∠1)的个数是__________.(3)如图3所示,AB∥CD,直线AB,CD与直线l相交于点E,F,EG平分∠AEF,FH平分∠EFD,则GE与FH的位置关系为__________.图1 图2 图36.解答题.(1)填写推理理由如图所示,D、F、E分别是BC、AC、AB上的点,DF∥AB,DE∥AC,试说明:∠EDF=∠A.解:∵DF∥AB( )∴∠A+__________=180°( )∵DE∥AC(已知)∴∠AFD+__________=180°()∴∠EDF=∠A( )(2)推理填空,如图所示,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的度数过程填写完整:解:∵EF∥AD()∴∠2=__________()又∵∠1=∠2( )∴∠1=∠3( )∴AB∥__________( )∴∠BAC+__________=180°( )又∵∠BAC=70°( )∴∠AGD=__________7.已知:如图所示,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.求证:AD平分∠BAC.能力提升8.若α和β是同位角,且a=30°,则β的度数是( )A.30°B.150°C.30°或150°D.不能确定9.如果一个角的两边分别平行于另一个角的两边,且其中一个角比另一个角的4倍少30°,那么这两个角分别是( )A.30°和150°B.42°和138°C.都等于10°D.42°和138°或都等于10°10.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的,如图所示.从图中可知,小敏画平行线的依据可能有( )①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①②B.②③C.③④D.①④11.如图所示,点E在CA延长线上,DE、AB交于点F,且∠BDE=∠AEF,∠B=∠C,∠EFA比∠FDC的余角小10°,P为线段DC上一动点,Q为PC上一点,且满足∠FQP=∠QFP,FM为∠EFP的平分线.则下列结论:①AB∥CD,②FQ平分∠AFP,③∠B+∠E=140°,④∠QEM的角度为定值.其中正确的结论有( )个数A.1 B.2 C.3 D.412.如图所示,AB∥EF,EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,则∠GEF=__________.13.在同一平面内有2002条直线a1,a2,…,a2002,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,那么a1与a2002的位置关系是__________.14.如图所示,AB∥CD,∠1=∠2,∠3=∠4,试说明:AD∥BE.15.已知,如图所示,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB∥DC.16.如图所示,已知∠DBF=∠CAF,CE⊥FE.垂足为E,∠BDA+∠ECA=180°,求证:DA⊥EF17.已知,如图所示,∠1+∠2=180°,∠1+∠EFD=180°,∠3=∠B,试判断∠AED与∠C的关系,并证明你的结论.18.已知,如图所示,AC∥DE,DC∥EF,CD平分∠BCA.求证:EF平分∠BED.19.阅读材料:材料1:如图(a)所示,科学实验证明:平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.即∠1=∠2.材料2:如图(b),已知△ABC,过点A作AD∥BC则∠DAC=∠C.又∵AD∥BC,∴∠DAC+∠BAC+∠B=180°,∴∠BAC+∠B+∠C=180°.即三角形内角和为180°.根据上述结论,解决下列问题:(1)如图(c)所示,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b 反射出的光线n平行于m,且∠1=50°,则∠2=_________,∠3=__________;(2)在(1)中,若∠1=40°,则∠3=__________,若∠1=55°,则∠3=__________;(3)由(1)(2)请你猜想:当∠3=__________时,任何射到平面镜a上的光线m经过平面镜a和b 的两次反射后,入射光线m与反射光线n总是平行,请说明理由.20.已知直线MN∥BC,点A在直线MN上,点D在线段BC上,AB平分∠MAD,AC平分∠NAD(1)如图(a)所示,若DE⊥AC于E,求证:∠1=∠2.(2)若点F为线段AB上不与点A、B重合的一动点,点H在线段AC上,FQ平分∠AFD交AC于点Q,设∠HFQ=x,∠MAB=α,∠BDF=β,∠AFD=∠FBD+∠FDB,点D在线段BC上(不与B、C两点重合),问当α、β、x之间满足怎样的等量关系时,FH∥MN(如图(b)所示)?试写出α、β、x 之间满足的某种等量关系,并以此为条件证明FH∥MN.21.如图所示,已知射线CB∥OA,AB∥OC,∠C=∠OAB=100°,点E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数.(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.中考连接22.如图所示,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是( ) A.17°B.34°C.56°D.68°23.如图所示,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A.30°B.25°C.20°D.15°巅峰突破24.如图所示,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a∥b的条件序号为( )A.①②B.①③C.③④D.①②④25.如图所示,在△ABC中,CE⊥AB于点E,DF⊥AB于点F,AC∥ED,CE是△ACB的角平分线.求证:∠EDF=∠BDF.平行线及其性质和判定26.平面上有5条直线,其中任意两条都不平行,那么在这5条直线两两相交所成的角中,至少有一个角不超过36°,请说明理由.11 / 11。
平行线的性质知识点总结平行线是我们在几何学中经常遇到的概念,它具有一些独特的性质和特点。
本文将对平行线的性质进行总结,帮助读者更好地理解和运用这些知识点。
一、定义和标记方式平行线是在同一个平面上,永不相交的两条直线。
我们通常用符号"//"来表示两条平行线,例如AB//CD。
二、判断平行线的方法平行线的判断方法有以下几种:1. 同位角相等法则:如果两条直线被一条横截线所截,且同位角相等,则这两条直线平行。
2. 内错角相等法则:如果两条直线被一条横截线所截,且内错角相等,则这两条直线平行。
3. 外错角相等法则:如果两条直线被一条横截线所截,且外错角相等,则这两条直线平行。
4. 平行线特性法则:如果两条直线的斜率相等或两条直线的倾斜角相等,则这两条直线平行。
三、平行线的性质1. 平行线与转角线的夹角关系:当两条直线被一条横截线所截,且转角线与一个平行线垂直,那么它与另一条平行线也垂直。
2. 平行线与同位角的关系:同位角是指两条直线被一条横截线所截,且位于同一侧的内角。
对于平行线来说,同位角相等。
3. 平行线与内错角的关系:内错角是指两条直线被一条横截线所截,且位于同一侧的相对角。
对于平行线来说,内错角相等。
4. 平行线与外错角的关系:外错角是指两条直线被一条横截线所截,且位于不同侧的相对角。
对于平行线来说,外错角相等。
5. 平行线向平面的投影:如果一条直线与一个平面平行,那么这条直线在这个平面上的投影与原直线平行。
6. 平行线间的距离关系:平行线间的距离是沿垂直于这两条平行线的线段的长度。
四、平行线的应用平行线的性质在几何学中有着广泛的应用,特别是在解决角度、线段关系和图形相似性等问题时。
以下是一些典型的应用场景:1. 平行线用于证明两条线段相等或不相等。
2. 平行线用于证明某个角是直角或等角。
3. 平行线用于证明图形的相似性。
4. 平行线用于推导和证明其他几何性质和定理。
总结起来,平行线是在同一个平面上永不相交的两条直线,具有一系列独特的性质。
平行线的判定及性质 Prepared on 22 November 2020平行线的判定及性质(一)【知识要点】一.余角和补角:1、如果两个角的和是直角,称这两个角互余. ∵αβ+= 90o ∴αβ与互为余2、如果两个角的和是平角,称这两个角互补. ∵αβ+= 180o ∴αβ与互为补角 二.余角和补角的性质: 同角或等角的余角相等 同角或等角的补角相等. 三.对顶角的性质: 对角相等.四.“三线八角” :1、同位角 2、内错角 3、同旁内角 五.平行线的判定: 1、同位角相等, 两直线平行.2、内错角相等, 两直线平行.3、同旁内角互补, 两直线平行.4、同平行于一条条直线平行.5、同垂直一条直线的两条直线平行. 六.平行线的性质:1. 两直线平行,同位角相等;2. 两直线平行, 内错角相等;3. 两直线平行, 同旁内角互补.【典型例题】一、余角和补角例1. 如图所示,互余角有_________________________________; 互补角有_________________________________;变式训练:1. 一个角的余角比它的的13还少20o ,则这个角为_____________。
2. 如图所示,已知∠AOB 与∠COB 为补角,OD是∠AOB 的角平分线,OE 在∠BOC 内,∠BO=12∠EOC, ∠DOE=72o, 求∠EOC 的度数。
二、“三线八角”例2 (1) 如图,哪些是同位角内错角同旁内角(2) 如图,下列说法错误的是( )A. ∠1和∠3是同位角B. ∠1∠5是同角C. ∠1和∠2是内角D. ∠5和∠6是内错角(3)如图,⊿ABC 中,DE 分别交B 、A 于D 和E,则图中共有ED CB A O AB C DE F1 2 3 4 567 8 2 3 4 5 6 11 23同位角 对,内错角 对,同旁内角 。
三、平行线的判定例3如右图 ① ∵ ∠1=∠2∴ _____∥_____, ( ) ② ∵ ∠2=_____∴ ____∥____, (同位角相等,两直线平行) ③ ∵∠3+∠4=180o∴ ____∥_____, ( ) ∴ AC ∥FG , ( )变式训练:1.如图, ∵ ∠1=∠B∴ ∥_____, ( ) ∵ ∠1/∠2∴ _____∥_____, ( ) ∵ ∠B +_____=180o ,∴ AB ∥EF ( )例4. 如图,已知AE 、CE 分别平分∠BAC 和∠ACD, ∠1和∠2互余,求AB ∥CD ,变式训练:如图,已知直线a 、b 、e ,且∠1=∠2,∠3+∠4=180o, 则a ∥c 平行吗五、平行线的性质例5 如图所示,AB ∥EF ,若∠ABE=32°,∠ECD=160°,求 ∠BEC 的度数。
判定平行线的6种方式对于平面几何学来说,平行线的概念是基础中的基础。
如何判定两条直线是否平行,一直都是学生们学习的难点。
在这篇文章中,我们将会介绍6种判定平行线的方式,并按照类别进行归纳总结,希望能够为广大学生提供一些实用的方法。
一、基于定义判断平行线的定义为两条直线不相交,且在同一平面内没有交点的直线。
因此,我们可以通过观察直线是否相交来判定它们是否平行。
如果两条直线相交,那么它们就不是平行线。
二、基于性质判断1. 同位角性质同位角性质是指:两条直线被一条截线所切割时,同位角之和为180度。
如果两条直线被同一条截线所切割,而它们的同位角之和为180度,那么这两条直线就是平行线。
2. 夹角性质夹角性质是指:两条平行线被截割时所形成的相对角相等。
如果两条直线被一条截线所切割,而它们所形成的相对角相等,那么这两条直线就是平行线。
3. 垂线性质垂线性质是指:一条直线和另一直线的垂线重合时,这两条直线就是垂直的。
如果两条直线互为垂直关系,那么它们所在的直线就是平行线。
三、基于画法判断1. 平移法平移法是指:先画出一条直线,然后保持这条直线不动,在其上方或下方平行地画一条新的直线,那么这两条直线就是平行线。
2. 垂线法垂线法是指:画出一条直线和另一直线的垂线,如果垂线和另一直线所在的直线重合,那么这两条直线就是平行线。
3. 三角形法三角形法是指:从这两条直线上任取一点,分别向另一条直线作垂线。
如果这两条垂线所在的直线重合,那么这两条直线就是平行线。
通过以上6种判定平行线的方式,我们可以更加准确地判断两条直线是否平行。
学习这些方法可以让我们更加轻松地应对平行线的相关题目,且有助于我们对平面几何学的深入了解。
平行线和垂直线的性质和判定平行线和垂直线是几何中常见的概念和性质,在数学学科中扮演着重要的角色。
本文将详细介绍平行线和垂直线的性质以及如何进行判定,旨在帮助读者更好地理解和应用这些概念。
一、平行线的性质和判定平行线是指在同一个平面上没有任何交点的直线。
下面我们将介绍平行线的一些性质和判定方法。
1. 平行线的性质:(1)平行线与同一直线的交线对应的内角相等。
例如,直线AB和直线CD平行,则直线AB和直线CD分别与第三条直线EF相交,在这种情况下,角A和角E相等,角B和角F相等,角C和角D相等。
(2)平行线与同一直线的交线对应的同位角相等。
同位角是指两条直线上相对于同一直线的对应角。
如果直线AB和直线CD平行,它们与第三条直线EF相交,那么角A和角C是同位角,角B和角D是同位角,它们的度数相等。
2. 平行线的判定方法:(1)同位角相等法:如果两条直线上同位角相等,则它们是平行线。
这个方法基于平行线的性质,通过观察同位角的度数是否相等来判断直线的平行性。
(2)斜率相等法:如果两条直线的斜率相等,则它们是平行线。
直线的斜率是斜率运算对直线的特定定义,利用斜率相等可以判断直线是否平行。
二、垂直线的性质和判定垂直线是指两条直线之间的夹角为90度的直线。
下面我们将介绍垂直线的一些性质和判定方法。
1. 垂直线的性质:(1)垂直线与同一直线的交线对应的内角为90度。
例如,直线AB和直线CD垂直,则直线AB和直线CD分别与第三条直线EF相交,在这种情况下,角A与角E之间的夹角、角B与角F之间的夹角以及角C与角D之间的夹角都是90度。
2. 垂直线的判定方法:(1)斜率互为负倒数法:如果两条直线的斜率互为负倒数,则它们是垂直线。
这个方法基于垂直线的性质,通过观察直线的斜率是否满足斜率互为负倒数的关系来判断直线是否垂直。
(2)直角三角形判定法:如果两条直线上某一对对应角的度数之和为90度,则它们是垂直线。
通过观察直线与第三条直线所形成的直角三角形,判断其内角的度数之和是否为90度,从而确定直线的垂直性。
平行线的性质与判定平行的传递性如果两条直线都与第三条直线平行,那么这两条直线互相平行.平行线的判定:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等.那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.这三个条件都是由角的数量关系(相等或互补)来确定直线的位置关系(平行)的,因此能否找到两直线平行的条件,关键是能否正确地找到或识别出同位角,内错角或同旁内角. 常见的几种两条直线平行的结论:(1)两条平行线被第三条直线所截,一组同位角的角平分线平行;(2)两条平行线被第三条直线所截,一组内错角的角平分线互相平行.尺规作图只用没有刻度的直尺和圆规的作图的方法称为尺规作图.用尺规可以作一条线段等于已知线段,也可以作一个角等于已知角.利用这两种两种基本作图可以作出两条线段的和或差,也可以作出两个角的和或差.考点例析:题型一, 平行线的性质与判定例2(盐城市)已知:如图1,l 1∥l 2,∠1=50°,则∠2的度数是( )A.135°B.130°C.50°D.40°分析 要求∠2的度数,由l 1∥l 2可知∠1+∠2=180°,于是由∠1=50°,即可求解. 解 因为l 1∥l 2,所以∠1+∠2=180°,又因为∠1=50°,所以∠2=180°-∠1=180°-50°=130°.故应选B .说明 本题是运用两条直线平行,同旁内角互补求解.例3(重庆市)如图2,已知直线l 1∥l 2,∠1=40°,那么∠2= 度.分析 如图2,要求∠2的大小,只要能求出∠3,此时由直线l 1∥l 2,得∠3=∠1即可求解. 解 因为l 1∥l 2,∠1=40°,所以∠1=∠3=40°.又因为∠2=∠3,所以∠2=40°.故应填上40°.说明 本题在求解过程中运用了两条直线平行,同位角相等求解.例4(烟台市)如图3,已知AB ∥CD ,∠1=30°,∠2=90°,则∠3等于( )A.60°B.50°C.40°D.30°分析 要求∠3的大小,为了能充分运用已知条件,可以过∠2的顶点作EF ∥AB ,由有∠1=∠AEF ,∠3=∠CEF ,再由∠1=30°,∠2=90°求解.解 如图3,过∠2的顶点作EF ∥AB .所以∠1=∠AEF ,图2 图 1 E又因为AB ∥CD ,所以EF ∥CD ,所以∠3=∠CEF ,而∠1=30°,∠2=90°,所以∠3=90°-30°=60°.故应选A .说明 本题在求解时连续两次运用了两条直线平行,内错角相等求解.例5(南通市)如图4,AB ∥CD ,直线EF 分别交AB ,CD 于E ,F 两点,∠BEF 的平分线交CD 于点G ,若∠EFG =72°,则∠EGF 等于( )A.36°B.54°C.72°D.108°分析 要求∠EGF 的大小,由于AB ∥CD ,则有∠BEF +∠EFG =180°,∠EGF =∠BEG ,而EG 平分∠BEF ,∠EFG =72°,所以可以求得∠EGF =54°.解 因为AB ∥CD ,所以∠BEF +∠EFG =180°,∠EGF =∠BEG ,又因为EG 平分∠BEF ,∠EFG =72°,所以∠BEG =∠FEG =54°.故应选B .说明 求解有关平行线中的角度问题,只要能熟练掌握平行线的有关知识,灵活运用对顶角、角平分线等知识就能简洁获解.题型三 尺规作图例6(杭州市)已知角α和线段c 如图5所示,求作等腰三角形ABC ,使其底角∠B =α,腰长AB =c ,要求仅用直尺和圆规作图,写出作法,并保留作图痕迹.分析 要作等腰三角形ABC ,使其底角∠B =α,腰长AB =c ,可以先作出底角∠B =α,再在底角的一边截取BA =c ,然后以点A 为圆心,线段c 为半径作弧交BP 于点C ,即得.作法(1)作射线BP ,再作∠PBQ =∠α;(2)在射线BQ 上截取BA =c ;(3)以点A 为圆心,线段c 为半径作弧交BP 于点C ;(4)连接AC .则△ABC 为所求.如图6.例7(长沙市)如图7,已知∠AOB 和射线O ′B ′,用尺规作图法作∠A ′O ′B ′=∠AOB (要求保留作图痕迹).分析 只要再过点O ′作一条射线O ′A ′,使得∠A ′O ′B ′=∠AOB 即可.作法(1)以O 为圆心,任意长为半径,画弧,交OA 、OB 于点C 、D ;(2)以O ′为圆心,同样长为半径画弧,交O ′B ′于点D ′;A AO B ′ 图7 D C 图5 c α A图6 c α c B C P(3)以D′为圆心,CD长为半径画弧与前弧交于点C′;(4)过点O′C′作一条射线O′A′.如图7中的∠A′O′B′即为所求作.说明在实际答题时,根据题目的要求只要保留作图的痕迹即可了.相交线与平行线测试题一、选择题(本大题共12小题,每小题3分,共36分.•在每小题所给出的四个选项中,只有一项是符合题目要求的)1.下列说法中,正确的是()A.一条射线把一个角分成两个角,这条射线叫做这个角的平分线;B.P是直线L外一点,A、B、C分别是L上的三点,已知PA=1,PB=2,PC=3,则点P•到L的距离一定是1;C.相等的角是对顶角; D.钝角的补角一定是锐角.2.如图1,直线AB、CD相交于点O,过点O作射线OE,则图中的邻补角一共有()A.3对 B.4对 C.5对 D.6对(1) (2) (3)3.若∠1与∠2的关系为内错角,∠1=40°,则∠2等于()A.40° B.140° C.40°或140° D.不确定4.如图,哪一个选项的右边图形可由左边图形平移得到()5.a,b,c为平面内不同的三条直线,若要a∥b,条件不符合的是()A.a∥b,b∥c; B.a⊥b,b⊥c;C.a⊥c,b∥c; D.c截a,b所得的内错角的邻补角相等6.如图2,直线a、b被直线c所截,现给出下列四个条件:(1)∠1=∠5;(2)∠1=•∠7;(3)∠2+∠3=180°;(4)∠4=∠7,其中能判定a∥b的条件的序号是()A.(1)、(2) B.(1)、(3) C.(1)、(4) D.(3)、(4)7.如图3,若AB∥CD,则图中相等的内错角是()A.∠1与∠5,∠2与∠6; B.∠3与∠7,∠4与∠8;C.∠2与∠6,∠3与∠7; D.∠1与∠5,∠4与∠88.如图4,AB∥CD,直线EF分别交AB、CD于点E、F,ED平分∠BEF.若∠1=72°,•则∠2的度数为()A.36° B.54° C.45° D.68°(4) (5) (6)9.已知线段AB的长为10cm,点A、B到直线L的距离分别为6cm和4cm,•则符合条件的直线L的条数为()A.1 B.2 C.3 D.410.如图5,四边形ABCD中,∠B=65°,∠C=115°,∠D=100°,则∠A的度数为(• )A.65° B.80° C.100° D.115°11.如图6,AB⊥EF,CD⊥EF,∠1=∠F=45°,那么与∠FCD相等的角有()A.1个 B.2个 C.3个 D.4个12.若∠A和∠B的两边分别平行,且∠A比∠B的2倍少30°,则∠B的度数为()A.30° B.70° C.30°或70° D.100°二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)13.如图,一个合格的弯形管道,经过两次拐弯后保持平行(即AB∥DC).•如果∠C=60°,那么∠B的度数是________.14.已知,如图,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°.将下列推理过程补充完整:(1)∵∠1=∠ABC(已知),∴AD∥______(2)∵∠3=∠5(已知),∴AB∥______,(_______________________________)(3)∵∠ABC+∠BCD=180°(已知),∴_______∥________,(________________________________)16.已知直线AB、CD相交于点O,∠AOC-∠BOC=50°,则∠AOC=_____度,•∠BOC=___度.17.如图7,已知B、C、E在同一直线上,且CD∥AB,若∠A=105°,∠B=40°,则∠ACE 为_________.(7) (8) (9)18.如图8,已知∠1=∠2,∠D=78°,则∠BCD=______度.19.如图9,直线L 1∥L 2,AB ⊥L 1,垂足为O ,BC 与L 2相交于点E ,若∠1=43°,•则∠2=_______度.20.如图,∠ABD=•∠CBD ,•DF•∥AB ,•DE•∥BC ,•则∠1•与∠2•的大小关系是________.三、解答题(本大题共6小题,共40分,解答应写出文字说明,•证明过程或演算步骤)22.(7分)如图,AB ∥A ′B ′,BC ∥B ′C ′,BC 交A ′B ′于点D ,∠B 与∠B•′有什么关系?为什么?23.(6分)如图,已知AB ∥CD ,试再添上一个条件,使∠1=∠2成立(•要求给出两个答案).24.(6分)如图,AB ∥CD ,∠1:∠2:∠3=1:2:3,说明BA 平分∠EBF 的道理.25.(7分)如图,CD ⊥AB 于D ,点F 是BC 上任意一点,FE ⊥AB 于E ,且∠1=∠2,•∠3=80°.求∠BCA 的度数.26.(8分)如图,EF⊥GF于F.∠AEF=150°,∠DGF=60°,试判断AB和CD的位置关系,并说明理由.。
要点诠释:(1)“同位角相等、错角相等”、“同旁角互补”都是平行线的性质的一部分容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点四、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点五、命题、定理、证明1.命题:判断一件事情的语句,叫做命题.要点诠释:(1)命题的结构:每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.(2)命题的表达形式:“如果……,那么…….”,也可写成:“若……,则…….”(3)真命题与假命题:真命题:题设成立结论一定成立的命题,叫做真命题.假命题:题设成立而不能保证结论一定成立的命题,叫做假命题.2.定理:定理是从真命题(公理或其他已被证明的定理)出发,经过推理证实得到的另一个真命题,定理也可以作为继续推理的依据.3.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.要点诠释:(1)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等.(2)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.要点六、平移1. 定义:在平面,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行且相等;(4)平移后,新图形与原图形是一对全等图形.【典型例题】类型一、平行线例1.下列说确的是 ( )A.不相交的两条线段是平行线.B.不相交的两条直线是平行线.C.不相交的两条射线是平行线.D.在同一平面,不相交的两条直线叫做平行线.【答案】D例2.在同一平面,下列说法:(1)过两点有且只有一条直线;(2)两条直线有且只有一个公共点;(3)过一点有且只有一条直线与已知直线垂直;(4)过一点有且只有一条直线与已知直线平行。
其中正确的个数为:( )A.1个 B.2个 C.3个 D.4个【答案】B【解析】正确的是:(1)(3).【变式1】下列说确的个数是 ( )(1)直线a、b、c、d,如果a∥b、c∥b、c∥d,则a∥d.(2)两条直线被第三条直线所截,同旁角的平分线互相垂直.(3)两条直线被第三条直线所截,同位角相等.(4)在同一平面,如果两直线都垂直于同一条直线,那么这两直线平行.A.1个 B .2个 C.3个 D.4个【答案】B类型二、两直线平行的判定例3. 如图,给出下列四个条件:(1)AC=BD;(2)∠DAC=∠BCA;(3)∠ABD=∠CDB;(4)∠ADB=∠CBD,其中能使AD∥BC的条件有().A.(1)(2) B.(3)(4) C.(2)(4) D.(1)(3)(4)【答案】C【变式2】一个学员在广场上驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130°例4.如图所示,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°.试说明AB∥EF的理由.解法1:如图所示,在∠BCD的部作∠BCM=25°,在∠CDE的部作∠EDN=10°.∵∠B=25°,∠E=10°(已知),∴∠B=∠BCM,∠E=∠EDN(等量代换).∴ AB∥CM,EF∥DN(错角相等,两直线平行).又∵∠BCD=45°,∠CDE=30°(已知),∴∠DCM=20°,∠CDN=20°(等式性质).∴∠DCM=∠CDN(等量代换).∴ CM∥DN(错角相等,两直线平行).∵ AB∥CM,EF∥DN(已证),∴ AB∥EF(平行线的传递性).解法2:如图所示,分别向两方延长线段CD交EF于M点、交AB于N点.∵∠BCD=45°,∴∠NCB=135°.∵∠B=25°,∴∠CNB=180°-∠NCB-∠B=20°(三角形的角和等于180°).又∵∠CDE=30°,∴∠EDM=150°.又∵∠E=10°,∴∠EMD=180°-∠EDM-∠E=20°(三角形的角和等于180°).∴∠CNB=∠EMD(等量代换).所以AB∥EF(错角相等,两直线平行).【变式3】已知,如图,BE平分ÐABD,DE平分ÐCDB,且Ð1与Ð2互余,试判断直线AB、CD的位置关系,请说明理由.解:AB∥CD,理由如下:∵ BE平分∠ABD,DE平分∠CDB,∴∠ABD=2∠1,∠CDB=2∠2.又∵∠1+∠2=90°,∴∠ABD+∠CDB=180°.∴ AB∥CD(同旁角互补,两直线平行).【变式4】已知,如图,AB^BD于B,CD^BD于D,Ð1+Ð2=180°,求证:CD//EF.【答案】证明:∵AB^BD于B,CD^BD于D,∴AB∥CD.又∵Ð1+Ð2=180°,∴AB∥EF.∴CD//EF.类型三、平行线的性质例5.如图所示,如果AB ∥DF ,DE ∥BC ,且∠1=65°.那么你能说出∠2、∠3、∠4的度数吗?为什么. 解:∵ DE ∥BC ,∴ ∠4=∠1=65°(两直线平行,错角相等).∠2+∠1=180°(两直线平行,同旁角互补).∴ ∠2=180°-∠1=180°-65°=115°.又∵ DF ∥AB(已知),∴ ∠3=∠2(两直线平行,同位角相等).∴ ∠3=115°(等量代换).【变式5】如图,已知1234//,//l l l l ,且∠1=48°,则∠2= ,∠3= ,∠4= .【答案】48°,132°,48°【变式6】如图所示,直线l 1∥l 2,点A 、B 在直线l 2上,点C 、D 在直线l 1上,若△ABC 的面积为S 1,△ABD 的面积为S 2,则( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .不确定【答案】B类型四、命题例6.判断下列语句是不是命题,如果是命题,是正确的? 还是错误的?①画直线AB ;②两条直线相交,有几个交点;③若a ∥b ,b ∥c ,则a∥c ;④直角都相等;⑤相等的角都是直角;⑥如果两个角不相等,那么这两个角不是对顶角.【答案】①②不是命题;③④⑤⑥是命题;③④⑥是正确的命题;⑤是错误的命题.【变式8】把下列命题改写成“如果……,那么……”的形式.(1)两直线平行,同位角相等;(2)对顶角相等;(3)同角的余角相等.【答案】解:(1)如果两直线平行,那么同位角相等.(2)如果两个角是对顶角,那么这两个角相等.(3)如果有两个角是同一个角的余角,那么它们相等.类型四、平移例7.()如图所示,将△ABC 沿直线AB 向右平移后到达△BDE 的位置,若∠CAB =50°,∠ABC =100°,则∠CBE 的度数为________.【答案】30°【变式9】 (静安区一模)如图所示,三角形FDE经过怎样的平移可以得到三角形ABC( ) A.沿EC的方向移动DB长B.沿BD的方向移动BD长C.沿EC的方向移动CD长D.沿BD的方向移动DC长【答案】A类型五、平行的性质与判定综合应用例8、如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=( )A.180° B.270° C.360° D.540°【答案】C【解析】过点C作CD∥AB,∵ CD∥AB,∴∠BAC+∠ACD=180°(两直线平行,同旁角互补)又∵ EF∥AB∴ EF∥CD.∴∠DCE+∠CEF=180°(两直线平行,同旁角互补)又∵∠ACE=∠ACD+∠DCE∴∠BAC+∠ACE+∠CEF=∠BAC+∠ACD+∠DCE+∠CEF=180°+180°=360°【课后作业】一、选择题1.下列说法中正确的有( )①一条直线的平行线只有一条.②过一点与已知直线平行的直线只有一条.③因为a∥b,c∥d,所以a∥d.④经过直线外一点有且只有一条直线与已知直线平行.A.1个 B.2个 C.3个 D.4个2.如果两个角的一边在同一直线上,另一边互相平行,则这两个角( )A.相等 B.互补 C.互余 D.相等或互补3.如图,能够判定DE∥BC的条件是 ( )A.∠DCE+∠DEC=180° B.∠EDC=∠DCBC.∠BGF=∠DCB D.CD⊥AB,GF⊥AB4.一辆汽车在广阔的草原上行驶,两次拐弯后,行驶的方向与原来的方向相同,那么这两次拐弯的角度可能是 ( ) .A.第一次向右拐40°,第二次向右拐140°.B.第一次向右拐40°,第二次向左拐40°.C.第一次向左拐40°,第二次向右拐140°.D.第一次向右拐140°,第二次向左拐40°.5.如图所示,下列条件中,不能推出AB∥CE成立的条件是 ( )A.∠A=∠ACE B.∠B=∠ACE C.∠B=∠ECD D.∠B+∠BCE=180°6.()学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一半透明的纸得到的(如图,(1)—(4)):从图中可知,小敏画平行线的依据有()①两直线平行,同位角相等.②两直线平行,错角相等.③同位角相等,两直线平行.④错角相等,两直线平行.A.①②B. ②③C. ③④D. ④①二、填空题7. 在同一平面的三条直线,它们的交点个数可能是________.8.如图,DF平分∠CDE,∠CDF=55°,∠C=70°,则________∥________.9.规律探究:同一平面有直线a1,a2,a3…,a100,若a1⊥a2,a2∥a3,a3⊥a4…,按此规律,a1和a100的位置是________.10.已知两个角的两边分别平行,其中一个角为40°,则另一个角的度数是11.直线l同侧有三点A、B、C,如果A、B两点确定的直线l'与B、C两点确定的直线l''都与l平行,则A、B、C三点,其依据是12. 如图,AB⊥EF于点G,CD⊥EF于点H,GP平分∠EGB,HQ平分∠CHF,则图中互相平行的直线有.三、解答题13.如图,∠1=60°,∠2=60°,∠3=100°,要使AB∥EF,∠4应为多少度?说明理由.14.小敏有一块小画板(如图所示),她想知道它的上下边缘是否平行,而小敏身边只有一个量角器,你能帮助她解决这一问题吗?15.如图,把一长芳形纸条ABCD沿AF折叠,已知∠ADB=20°,那么∠BAF为多少度时,才能使AB′∥BD?16.如图所示,由∠1=∠2,BD平分∠ABC,可推出哪两条线段平行,写出推理过程,如果推出另两条线段平行,则应将以上两条件之一作如何改变?【答案与解析】一、选择题1. 【答案】A【解析】只有④正确,其它均错.2. 【答案】D3. 【答案】B【解析】错角相等,两直线平行.4. 【答案】B5. 【答案】B【解析】∠B和∠ACE不是两条直线被第三条直线所截所得到的角.6. 【答案】C【解析】解决本题关键是理解折叠的过程,图中的虚线与已知的直线垂直,过点P的折痕与虚线垂直.二、填空题7. 【答案】0或1或2或3个;8. 【答案】BC, DE;【解析】∠CFD=180°-70°-55°=55°,而∠FDE=∠CDF=55°,所以∠CFD=∠FDE.9. 【答案】a1∥a100;【解析】为了方便,我们可以记为a1⊥a2∥a3⊥a4∥a5⊥a6∥a7⊥a8∥a9⊥a10…∥a97⊥a98∥a99⊥a100,因为a1⊥a2∥a3,所以a1⊥a3,而a3⊥a4,所以a1∥a4∥a5.同理得a5∥a8∥a9,a9∥a12∥a13,…,接着这样的规律可以得a1∥a97∥a100,所以a1∥a100.10.【答案】 40°或140°11.【答案】共线,平行公理;【解析】此题考查是平行公理,它是论证推理的基础,应熟练应用.12.【答案】AB∥CD,GP∥HQ;【解析】理由:∵ AB⊥EF,CD⊥EF.∴∠AGE=∠CHG=90°.∴ AB∥CD.∵ AB⊥EF.∴∠EGB=∠2=90°.∴ GP平分∠EGB.∴∠1=12EGB=45°.∴∠PGH=∠1+∠2=135°.同理∠GHQ=135°,∴∠PGH=∠GHQ.∴ GP∥HQ.三、解答题13. 【解析】解:∠4=100°.理由如下:∵∠1=60°,∠2=60°,∴∠1=∠2,∴ AB∥CD又∵∠3=∠4=100°,∴ CD∥EF,∴ AB∥EF.14.【解析】解:如图所示,用量角器在两个边缘之间画一条线段MN,用量角器测得∠1=50°,∠2=50°,因为∠1=∠2,所以由错角相等,两直线平行,可知画板的上下边缘是平行的.15. 【解析】解:要使AB′∥BD,只要∠B′AD=∠ADB=20°,∠B′AB=∠BAD+∠B′AD=90°+20°=110°.∴∠BAF=12∠B′AB=12×110°=55°.。