南邮课内实验-运筹学-线性规划-第一次0407
- 格式:doc
- 大小:116.50 KB
- 文档页数:7
课内实验报告
课程名:系统工程
任课教师:
专业:市场营销
学号:
姓名:
二○一三至二○一四年度第 1 学期南京邮电大学经济与管理学院
初始区域分布:
第一次执行go命令:
执行change-vote-if-tied为on 时的状态:setup按钮再次恢复状态:
执行change-vote-if-tied为on的状态:setup按钮再次回复状态:
执行change-vote-if-tied为on,以及change-vote-if-tied为on时的状态:
模型中首先分别为参数0、1代表两种选举情况的分布结果图,结果图是用蓝色与绿色来进行代表。
如果是参数1,则显示的是绿色,反则是蓝色。
初始时屏幕的显示区域是呈现的两者均分的情况,当按下setup按钮时,显。
课内实验报告
课程名:运筹学
任课教师:邢光军
专业:
学号:
姓名:
2012/2013学年第 2 学期
南京邮电大学经济与管理学院
x1+x2+x3+x6+x7>=31
x1+x2+x3+x4+x7>=28
x1,x2,x3,x4,x5,x6,x7>=0
1.计算过程
用excel软件进行计算,过程如下:
先在工具中加载宏,然后按题设填好表格再进行规划求解,如下图
得到如下最优解
所以最优解为x1=12,x2=0,x3=11,x4=1,x5=4,x6=4,x7=4,min w=36
2.结果分析
在实际问题中,通常数据较多而复杂,约束条件也比较繁琐,利用excel软件大大提高了效率,并且降低了错误率。
我们应该将excel软件最大程度的应用到现实生活中,很多生产厂商很需要这样的软件来制定最优计划,提高工作效率
成绩评定:。
运筹学实验指导书-CAL-FENGHAI.-(YICAI)-Company One1实验一、线性规划综合性实验一、实验目的与要求:使学生掌握线性规划建模的方法以及至少掌握一种线性规划软件的使用,提高学生应用线性规划方法解决实际问题的实践动手能力。
通过实验,使学生更深入、直观地理解和掌握线性规划的基本概念及基本理论和方法。
要求学生能对一般的线性规划问题建立正确的线性规划数学模型,掌握运筹学软件包线性规划模块的操作方法与步骤,能对求解结果进行简单的应用分析。
二、实验内容与步骤:1.选择合适的线性规划问题学生可根据自己的建模能力,从本实验指导书提供的参考选题中或从其它途径选择合适的线性规划问题。
2.建立线性规划数学模型学生针对所选的线性规划问题,运用线性规划建模的方法,建立恰当的线性规划数学模型。
3.用运筹学软件求解线性规划数学模型学生应用运筹学软件包线性规划模块对已建好的线性规划数学模型进行求解。
4.对求解结果进行应用分析学生对求解结果进行简单的应用分析。
三、实验例题:(一)线性规划问题某集团摩托车公司产品年度生产计划的优化研究1)问题的提出某集团摩托车公司是生产各种类型摩托车的专业厂家,有30多年从事摩托车生产的丰富经验。
近年来,随着国内摩托车行业的发展,市场竞争日趋激烈,该集团原有的优势逐渐丧失,摩托车公司的生存和发展面临严峻的挑战。
为此公司决策层决心顺应市场,狠抓管理,挖潜创新,从市场调查入手,紧密结合公司实际,运用科学方法对其进行优化组合,制定出1999年度总体经济效益最优的生产计划方案。
2)市场调查与生产状况分析1998年,受东南亚金融风暴的影响,国内摩托车市场出现疲软,供给远大于需求,该集团的摩托车生产经营也出现开工不足、库存增加和资金周转困难等问题。
该集团共有三个专业厂,分别生产轻便摩托车、普通两轮车和三轮摩托车三大系列产品。
20000辆和22000辆。
为1600万元。
根据以上情况,该公司应如何制定1999年度总体经济效益最优的生产计划方案(二)线性规划建模设X j表示生产M j型摩托车的数量(j=1,2,…,9),则总利润最大的摩托车产品生产计划数学模型为:MaxZ=×+×+×+×+×+×+×+×+×=++++++++满足 X1+X2+X3≤50000 (1)X4+X5+X6≤60000 (2)X7+X8+X9≤10000 (3)++++++++≤4000×5 (4)X3≤20000 (5)X6≤22000 (6)×(X1+X2+X3)+×(X4+X5+X6)+×3(X7+X8+X9)≤3000 (7)++++++++≤1600(8)X j≥0(j=1,2,3,4…9)模型说明:约束(1)、(2)、(3)分别表示三种系列摩托车的最大生产能力限制;约束(4)表示摩托车的生产受流动资金的限制;约束(5)和(6)表示M3和M6两种车产量受发动机供应量限制;约束 (7)表示未销售的产量受库存能力的限制;约束(8)表示未销售产品占用资金的限制。
实验报告一、实验名称:线性规划问题二、实验目的:通过本实验,能掌握Spreadsheet方法,会熟练应用Spreedsheet建模与求解方法。
在Excel(或其他)背景下就所需解决的问题进行描述与展平,然后建立线性规划模型,并用Excel的命令与功能进行运算与分析。
三、实验设备计算机、Excel 四、实验内容1、线性规划其中,目标函数为求总利润的最大值。
B11=SUMPRODUCT(B6:C6,B9:C9);B14=SUMPRODUCT(B3:C3,$B$9:$C$9); B15=SUMPRODUCT(B4:C4,$B$9:$C$9); B16=SUMPRODUCT(B5:C5,$B$9:$C$9); D14=D3; D15=D4; D16=D5; 用规划求解工具求解:目标单元格为B11,求最大值,可变单元格为$B$9:$C$9,约束条件为B14:B16<=D14:D16。
在【选项】菜单中选择“采用线性模型”“假定非负”。
即可进行求解得结果,即确定产品A的产量为20,产品B的产量为24,可实现最大总利润为428。
2、灵敏度分析在【可变单元格】表中:在【可变单元格】表中:“终值”表示最优解,即产品A 产量为20,产品B 产量为24。
“递减成本”表示产品的边际收入与按影子价格折算的边际成本的差,当递减成本小于0时,表示不应该安排该产品的生产,在表中的情况反映了产品A 产品、B 都进行生产,因为在产品A 与产品B 产量增加的同时利润也是在增加的。
产量增加的同时利润也是在增加的。
“目标式系数”是在目标函数中变量的系数,也是产品A 与产品B 的单位利润。
的单位利润。
“允许的增量”“允许的增量”和“允许的减量”表示在不改变最优解结构的前提下,和“允许的减量”表示在不改变最优解结构的前提下,和“允许的减量”表示在不改变最优解结构的前提下,单个目标系数可变的单个目标系数可变的上下限。
也就是说,在目标函数中,产品A 的价值系数在(3.6,9.6】内,产品B 的价值系数不变,或者产品A 的价值不变,产品B 的价值系数在【23.3,8.75】内,最有的生产方案依旧为产品A 产量为20,产品B 产量为24,以达到最大利润。
南邮运筹学运输问题实验报告南邮运筹学运输问题实验报告1.实验目的:本次实验旨在通过针对不同运输问题的建模和解决过程,掌握运筹学在实际运输问题中的应用方法,提高运筹学实践能力。
2.实验内容:本次实验包括两个部分:单源最短路径问题和车辆路径规划问题。
(1)单源最短路径问题:通过建立带权有向图模型,使用Dijkstra算法和Bellman-Ford算法求解从起点到终点的最短路径及其长度。
(2)车辆路径规划问题:通过建立车辆路径规划模型,使用模拟退火算法和遗传算法求解最短路径和最短时间路径。
3.实验结果:(1)单源最短路径问题:使用Dijkstra算法求解起点到终点的最短路径和长度如下图所示:路径:1->3->4->5->7,路径长度为23。
使用Bellman-Ford算法求解起点到终点的最短路径和长度如下图所示:路径:1->3->4->5->7,路径长度为23。
(2)车辆路径规划问题:使用模拟退火算法求解最短路径和最短时间路径如下图所示:最短路径:1->4->5->2->3->1,路径长度为33;最短时间路径:1->3->4->5->2->1,路径时间为15。
使用遗传算法求解最短路径和最短时间路径如下图所示:最短路径:1->4->5->2->3->1,路径长度为33;最短时间路径:1->3->4->5->2->1,路径时间为15。
4.实验结论:本次实验通过求解单源最短路径问题和车辆路径规划问题,掌握了Dijkstra算法、Bellman-Ford算法、模拟退火算法和遗传算法等运筹学方法在实际运输问题中的应用,提高了运筹学实践能力。
5.反思与改进:在实验过程中,我们发现需求和条件的准确描述很重要。
在建模过程中,不光需要理解题目中提供的条件,还需要利用常识和实际情况对模型进行适当的修正和完善。
实验一:规划求解操作(线性规划问题)一、实验目的在Excel 软件中加载规划求解工具,使用Excel 软件求解线性规划问题。
二、实验内容1. 在Excel 软件中,加载“规划求解”工具。
2. 在Excel 窗体上输入问题的数据及计算公式。
3. 使用规划求解进行分析,找出线性规划问题的最优解。
4. 对结果进行简单分析。
某营养师建议一位缺铁质与维生素B 的病人,应在一段时间内摄取至少2400mg 的铁质、2100mg 的维生素B1与1500mg 的维生素B2。
现在考虑A, B 两个牌子的维生素,A 牌的维生素每颗含40mg 铁质、10mg 维生素B1与5mg 维生素B2;B 牌的维生素每颗含10mg 铁质,以及各15mg 的维生素B1与B2。
已知A 牌维生素每颗6元,B 牌每颗为8元。
试问在满足营养师建议的情况下,A 与B 两种厂牌的维生素各应服用多少才能使花费的费用最少?1212121212min 684010240010152100 .5151500,0z x x x x x x s t x x x x =++≥⎧⎪+≥⎪⎨+≥⎪⎪≥⎩ 三、实验步骤1. 加载规划求解工具,如图1-1a~图1-1c 。
2. 在窗体上输入问题数据及模块,服用量可先输入任意数值,如图1-2。
3. 输入目标函数和约束的计算公式,如图1-3。
4. 打开规划求解工具,如图1-4。
5. 完成规划求解的参数设定,如图1-5a~图1-5d。
6. 找出线性规划问题的最优解,如图1-6a与图1-6b。
图1-1a 加载规划求解工具图1-1b 加载规划求解工具图1-1c 加载规划求解工具图1-2 输入问题数据与模块图1-3 输入公式图1-4 打开规划求解工具图1-5a 参数设定图1-5b 参数设定图1-5c 参数设定图1-5d 参数设定图1-6 找出线性规划问题的最优解图1-6b 线性规划问题的敏感性报告。
第一章线性规划1、由图可得:最优解为2、用图解法求解线性规划:Min z=2x1+x2解:由图可得:最优解x=1.6,y=6.43用图解法求解线性规划:Max z=5x1+6x2解:由图可得:最优解Max z=5x1+6x2, Max z= +4用图解法求解线性规划:Maxz = 2x 1 +x 2 由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.6将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3 解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’7将线性规划模型化为标准形式Min Z =x1+2x2+3x3解:令Z’ = -z,引进松弛变量x4≥0,引进剩余变量x5≥0,得到一下等价的标准形式。
x2’=-x2 x3=x3’-x3’’Z’ = -min Z = -x1-2x2-3x39用单纯形法求解线性规划问题:Max Z =70x1+120x2解: Max Z =70x1+120x2单纯形表如下Max Z =3908.11.解:(1)引入松弛变量X4,X5,X6,将原问题标准化,得max Z=10X1+6X2+4X3X1+X2+X3+X4=10010 X1+4X2+5X3+X5=6002 X1+2X2+6X3+X6=300X1,X2,X3,X4,X5,X6≥0得到初始单纯形表:(2)其中ρ1 =C1-Z1=10-(0×1+0×10+0×2)=10,同理求得其他根据ρmax =max{10,6,4}=10,对应的X1为换入变量,计算θ得到,θmin =min{100/1,600/10,300/2}=60,X5为换出变量,进行旋转运算。
(3)重复(2)过程得到如下迭代过程ρj≤0,迭代已得到最优解,X*=(100/3,200/3,0,0,0,100)T,Z* =10×100/3+6×200/3+4×0 =2200/3。
实验一:线性规划问题1、实验目的:(1)学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。
(2)掌握利用计算机软件求解线性规划最优解的方法。
2、实验任务:(1)结合已学过的理论知识,建立正确的数学模型;(2)应用运筹学软件求解数学模型的最优解(3)解读计算机运行结果,结合所学知识给出文字定性结论3、实验仪器设备:计算机4、实验步骤:步骤一:打开管理运筹学软件,并选择线性规划,显示如下界面:步骤二:求目标函数值为最小值的唯一最优解,题目为课本上P47习题一1.1(a):步骤三:求目标函数值为最大值的唯一最优解,此题为P47习题一1.1(c):步骤四:求目标函数值为最大值有无穷多最优解:步骤五:求目标函数值为最大值无可行解,题目为课本P47习题一1.1(a):步骤六:求目标函数值为最大值无界解,此题为课本P47习题一1.1(d)5、实验心得:线性规划问题主要要确定决策变量,约束条件,目标函数。
其中,决策变量为可控的连续变量,目标函数和约束条件都是线性的,这类模型为线性规划问题的数学模型。
通过实验,我们学会了除了用笔算的方式求线性规划问题,懂得了用借助计算机求得问题,可以检验我们的计算结果。
应该开说,这个试验比较简单,计算过程不复杂,结果简略的可分为五种:最小值的唯一最优解,最大值的唯一最优解,最大值的无界解,最大值的无可行解,最大值的无穷多最优解。
应该来说,线性规划问题是整个运筹学最基本、最简单的问题。
实验二:整数规划与运输问题1、实验目的:(1)学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。
(2)掌握利用计算机软件求解最优物资调运方案的方法。
(3)掌握利用计算机软件求解整数规划的方法。
2、实验任务(1)结合已学过的理论知识,建立正确的数学模型;(2)应用运筹学软件求解数学模型的最优解(3)解读计算机运行结果,结合所学知识给出文字定性结论3、实验仪器设备:计算机4、实验步骤:(1)运输问题:步骤一:打开管理运筹学软件,并选择运输问题,显示如下界面:步骤二:根据产销平衡表与单位运价表,求出产销平衡运输问题的最佳运输方案,此题为课本运输问题的例题:步骤三:根据产销平衡表与单位运价表,求出产销不平衡(产量大于销量)运输问题的最佳运输方案,此题为课本P101习题三3.1表3-36:步骤四:根据产销平衡表与单位运价表,求出产销不平衡(销量大于产量)运输问题的最佳运输方案,此题为课本P101习题三3.1表3-37:(2)整数规划问题:步骤一:打开管理运筹学软件,并选择整数规划,显示如下界面:步骤二:根据整数规划模型,求出0-1整数规划问题的最优解:步骤三:根据整数规划模型,求出纯整数规划的最优值,此题为课本P107整数规划与分配问题的例题:步骤四:根据整数规划模型,求出混合整数规划的最优值:5、实验心得:整数规划与分配问题主要包括二个部分:运输问题,整数规划问题。
南邮课内实验-运筹学-线性规划-第一次0407
课内实验报告
课程名:运筹学
任课教师:邢光军
专业:
学号:
姓名:
/学年第学期
南京邮电大学管理学院
实验背景:某商场是个中型的百货商场,它对售货人员的需求经过统计分析如表1所示。
休息两天,并要求休息的两天是连续的,问应该如何安排售货人员的作息,既满足了工作需要,又使配备的售货人员人数最少?
实验结果:一:问题分析和建立模型:
解:设xi表示星期i开始上班的售货人员数,建立如下求解模型:目标函数:Min f(x)=x1+x2+x3+x4+x5+x6+x7
约束条件:s.t. X3+x4+x5+x6+x7≥28
X1+x4+x5+x6+x7≥15
X1+x2+x5+x6+x7≥24
X1+X2+x3+x6+x7≥25
X1+X2+X3+x4+x7≥19
X1+X2+X3+X4+x5≥31
X2+X3+X4+X5+X6≥28
二:计算过程:
下面利用Spreadsheet来求解该问题:
在Excel2003版本中,单击“工具”栏中“加载宏”命令,在弹出的的“加载宏”对话框选择“规划求解”,在“工具”下拉菜单中会增加“规划求解”命
令,这样就可以使用了。
1、将求解模型及数据输入至Spreadsheet工作表中。
在工作表中的B1~H1单元格分别输入x1,x2,x3,x4,x5,x6,x7,B2~H2单元格分别表示决策变量的取值。
B3~H10单元格数据为技术系数矩阵,I3~I10单元格值为目标函数及约束1~7不等式符号左边部分,如I3=SUMPRODUCT(B3:H3,B2:H2),即I3=1*x1+1*x2+1*x3+1*x4+1*x5+1*x6+1*x7,其余I4~I10含义雷同。
K4~K10单元格数据为约束1~7不等式符号右端系数。
(如图①)
图①
2、单击“工具”菜单中的“规划求解”命令,弹出“规划求解参数”对话框。
在“规划求解参数”对话框中设置目标单元格为I3,选中“最小值”前的单选按钮,设置可变单元格为B2:H2。
单击“规划求解参数”对话框中的“添加”按钮,打开“添加约束”对话框,单击单元格引用位置文本框,然后选定工作表的I4单元格,则在文本框中显示“$I$4”,选择“>=”的约束条件,在约束值文本框中输入K4单元格,则在文本框中显示“$K$4”。
单击“添加”按钮,把所有的约束条件都添加到“规划求解参数”对话框的“约束”列表框中。
其余6条约束不等式的输入方法雷同。
按照同样的方法继续输入决策变量的非负约束、整数约束。
(如图②)
图②
3、在“规划求解参数”对话框中单击“求解”按钮,弹出“规划求解结果”对话框,选中“保存规划求解结果”前的单选按钮,单击“确定”按钮,工作表中就显示规划求解的结果。
(如图③)
图
三:结果分析:
从上图可以看出,该百货商场7个班次开始上班的售货人员数分别为5、3、12、0、11、2、3人,既能满足工作需要,又配备最少的售货人员,配备最少售货人员数位36人。
四:实验心得:
本次实验我们使用的Excel及其当中的规划求解模块非常快速、准确地解出了笔头上运用单纯型法或其它线性规划方法计算起来非常复杂的线性规划问题。
是我们解决各种线性规划问题的好帮手。
而且,Spreadsheet具有操作简便、界面友好的特点。
听了邢老师的一遍讲解和再看了一遍书上的讲解后,我便可以掌握基本的操作流程了。
所以,Spreadsheet十分适合于企业日常管理决策工作的需要。