第二章 矩阵变换和计算.
- 格式:doc
- 大小:1.23 MB
- 文档页数:21
矩阵的变换与运算矩阵的乘法与逆矩阵矩阵的变换与运算:矩阵的乘法与逆矩阵矩阵在数学中扮演着重要的角色,它可以用于描述线性变换或者表示线性系统的方程组。
本文将讨论矩阵的变换与运算,重点介绍矩阵的乘法与逆矩阵两个关键概念。
一、矩阵的乘法(Matrix Multiplication)矩阵的乘法是矩阵运算中的一种基本运算,表示为A * B,其中A 和B分别为两个矩阵。
在进行矩阵乘法时,需要满足乘法的条件:A 矩阵的列数等于B矩阵的行数。
矩阵乘法的计算方法是将A矩阵的每一行与B矩阵的每一列进行内积运算,并将结果填入一个新的矩阵C中。
具体计算过程如下:C[i][j] = A[i][1]*B[1][j] + A[i][2]*B[2][j] + ... + A[i][n]*B[n][j]其中,C[i][j]表示矩阵C中第i行第j列的元素,A[i][k]表示矩阵A 中第i行第k列的元素,B[k][j]表示矩阵B中第k行第j列的元素。
矩阵乘法的重要性在于可以描述线性变换的复合效果,同时也有利于解决线性方程组。
在实际应用中,矩阵乘法广泛运用于计算机图形学、信号处理、最优化等领域。
二、逆矩阵(Inverse Matrix)逆矩阵是指对于一个可逆矩阵A,存在一个矩阵B,使得A * B = B * A = I,其中I为单位矩阵。
逆矩阵的存在与否与矩阵的行列式密切相关。
判断矩阵A是否可逆的条件是行列式不等于零,即|A| ≠ 0。
若矩阵A可逆,则可以通过一系列行变换将其转化为单位矩阵,对应的变换矩阵为逆矩阵。
逆矩阵的计算可以使用伴随矩阵法或者初等行变换法。
例如,对于一个2x2的矩阵A:A = [a b][c d]若|A| ≠ 0,即ad - bc ≠ 0,则A的逆矩阵存在,并可表示为:A^-1 = 1/(ad - bc) * [d -b][-c a]逆矩阵的应用广泛,例如求解线性方程组、计算矩阵的行列式与秩、求解微分方程等。
三、矩阵的变换(Matrix Transformation)矩阵的变换是指通过矩阵的乘法,对向量进行线性变换。
矩阵运算与变换总结矩阵是线性代数中的重要工具,广泛应用于各个领域。
通过矩阵运算和变换,我们可以进行向量的线性组合、线性变换以及解线性方程组等操作。
本文将从矩阵的基本定义、运算法则、常见变换等方面进行总结。
一、矩阵的基本定义与表示矩阵是由数个数字按照矩形排列形成的表格。
矩阵有不同的维度,通常用m×n表示,其中m表示矩阵的行数,n表示矩阵的列数。
矩阵中的每个数字称为元素,常用小写字母表示。
例如,一个3×4的矩阵可以表示为:A = [a11, a12, a13, a14;a21, a22, a23, a24;a31, a32, a33, a34]其中每个元素aij表示矩阵A中第i行第j列的元素。
二、矩阵的运算法则1. 矩阵的加法两个具有相同维度的矩阵相加,只需要将对应位置的元素相加即可。
例如,对于两个3×4的矩阵A和B,它们的和C可以表示为:C = A + B = [a11+b11, a12+b12, a13+b13, a14+b14;a21+b21, a22+b22, a23+b23, a24+b24;a31+b31, a32+b32, a33+b33, a34+b34]2. 矩阵的数乘将一个矩阵的每个元素乘以一个常数称为数乘。
例如,对于一个3×4的矩阵A和一个常数k,它们的数乘D可以表示为:D = kA = [ka11, ka12, ka13, ka14;ka21, ka22, ka23, ka24;ka31, ka32, ka33, ka34]3. 矩阵的乘法矩阵的乘法是将一个矩阵的行与另一个矩阵的列进行对应元素的乘法和求和得到新矩阵的元素。
例如,对于一个m×n的矩阵A和一个n×p的矩阵B,它们的乘积C可以表示为:C = AB = [c11, c12, ..., c1p;c21, c22, ..., c2p;...cm1, cm2, ..., cmp]其中ci1, ci2, ..., cip表示C中第i行第j列的元素,计算公式为ci1 = a1j*bj1 + a2j*bj2 + ... + anj*bjn。
习题课一 (第二章) 内容介绍一、 第二章基本内容回顾 二、 讲评第二章练习题 三、 讲评第二章部分习题四、 讲评辅导材料第二章中部分典型题一、 第二章矩阵基本内容回顾§2.1 基本内容2.1.1 矩阵的运算1.矩阵的加法设,][,][n m ij n m ij b B a A ⨯⨯==则.][n m ij ij b a B A ⨯+=+2.矩阵的数乘.][n m ij ka kA ⨯=矩阵的加法与数乘统称为矩阵的线性运算,它们满足以下算律: ∙ ;A B B A +=+∙ );()(C B A C B A ++=++ ∙ );()(lA k A kl = ∙ ;)(lA kA A l k +=+∙ 。
A A k kA n为阶方阵|,|||= 3.矩阵的乘法设,][,][p n kj n m ik b B a A ⨯⨯==则,][,][p n kj n m ik b B a A ⨯⨯== 其中.,,2,1,,,2,1,1p j m i b aC kjnk ik ij ===∑=即矩阵C 的第i 行第j 列的元素等于A 的第i 行的元素与B 的第j 列对应元素乘积这和。
两个矩阵可乘的条件是:左边矩阵A 的列数等于右边矩阵B 的行数。
矩阵乘法与数的乘法有很大差异,它体现在∙ 矩阵乘法不满足交换律,即一般地,.BA AB ≠∙ 矩阵乘法含有非零的零因子,即既使0,0≠≠B A ,可能有.0AB =∙ 矩阵乘法不满足消去律,即由0,≠=A AC AB 不能导出.C B =矩阵乘法满足以下运 算律:∙ );()(BC A C AB =∙ ;)(,)(CA BA A C B AC AB C B A +=++=+ ∙ );()()(kB A B kA AB k == ∙ B A B A AB ,|,|||||=为同阶方阵。
4.矩阵的转置 设nn n n n a a a a a a a a a A2121222111211=则A 的转置为nnn nm m Ta a a a a a a a a A212222112111=矩阵转置满足以下算律: ∙ ;)(A A TT =∙ ;)(TTTB A B A +=+ ∙ ;)(TTTA B AB +=∙ |A ||A |T =,此时A 为阶方阵。
·第二章 矩阵变换和计算一、内容提要本章以矩阵的各种分解变换为主要内容,介绍数值线性代数中的两个基本问题:线性方程组的求解和特征系统的计算,属于算法中的直接法。
基本思想为将计算复杂的一般矩阵分解为较容易计算的三角形矩阵. 要求掌握Gauss (列主元)消去法、矩阵的(带列主元的)LU 分解、平方根法、追赶法、条件数与误差分析、QR 分解、Shur 分解、Jordan 分解和奇异值分解.(一) 矩阵的三角分解及其应用 1.矩阵的三角分解及其应用考虑一个n 阶线性方程组b Ax =的求解,当系数矩阵具有如下三种特殊形状:对角矩阵D ,下三角矩阵L 和上三角矩阵U ,这时方程的求解将会变得简单. ⎪⎪⎪⎪⎪⎭⎫⎝⎛=n d dd D21, ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nnn n l l l l l l L21222111, ⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n u u u u u u U22212111. 对于b Dx =,可得解为i i i d b x /=,n i ,,2,1 =.对于b Lx =,可得解为1111/l b x =,ii i k k iki i l x lb x /)(11∑-=-=,n i ,,3,2 =.对于b Ux =,可得解为nn n n l b x /=,ii ni k k iki i l x lb x /)(1∑+=-=,1,,2,1 --=n n i .虽然对角矩阵的计算最为简单,但是过于特殊,任意非奇异矩阵并不都能对角化,因此较为普适的方法是对矩阵进行三角分解.1).Gauss 消去法只通过一系列的初等行变换将增广矩阵)|(b A 化成上三角矩阵)|(c U ,然后通过回代求与b Ax =同解的上三角方程组c Ux =的解.其中第k 步消元过程中,在第1-k 步得到的矩阵)1(-k A 的主对角元素)1(-k kka 称为主元.从)1(-k A 的第j 行减去第k 行的倍数)1()1(--=k kkk jkjk a a l (n j k ≤<)称为行乘数(子).2).矩阵A 的LU 分解对于n 阶方阵A ,如果存在n 阶单位下三角矩阵L 和n 阶上三角矩阵U ,使得LU A =, 则称其为矩阵A 的LU 分解,也称为Doolittle 分解.Gauss 消去法对应的矩阵形式即为LU 分解, 其中L 为所有行乘子组成的单位下三角矩阵, U 为Gauss 消去法结束后得到的上三角矩阵. 原方程组b Ax =分解为两个三角形方程组⎩⎨⎧==yUx b Ly .3).矩阵LU 分解的的存在和唯一性如果n 阶矩阵A 的各阶顺序主子式),,2,1(n k k =D 均不为零, 则必有单位下三角矩阵L 和上三角矩阵U ,使得LU A =, 而且L 和U 是唯一存在的.4).Gauss 列主元消去法矩阵每一列主对角元以下(含主对角元)的元素中, 绝对值最大的数称为列主元. 为避免小主元作除数、或0作分母,在消元过程中,每一步都按列选主元的Guass 消去法称为Gauss 列主元消去法.由于选取列主元使得每一个行乘子均为模不超过1的数,因此它避免了出现大的行乘子而引起的有效数字的损失.5).带列主元的LU 分解Gauss 列主元消去法对应的矩阵形式即为带列主元的LU 分解,选主元的过程即为矩阵的行置换. 因此, 对任意n 阶矩阵A ,均存在置换矩阵P 、单位下三角矩阵L 和上三角矩阵U ,使得LU PA =.由于选列主元的方式不唯一, 因此置换矩阵P 也是不唯一的. 原方程组b Ax =两边同时乘以矩阵P 得到Pb PAx =, 再分解为两个三角形方程组⎩⎨⎧==y Ux PbLy .5).平方根法(对称矩阵的Cholesky 分解)对任意n 阶对称正定矩阵A ,均存在下三角矩阵L 使T LL A =,称其为对称正定矩阵A 的Cholesky 分解. 进一步地, 如果规定L 的对角元为正数,则L 是唯一确定的.原方程组b Ax =分解为两个三角形方程组⎩⎨⎧==y x L bLy T .利用矩阵乘法规则和L 的下三角结构可得21112⎪⎪⎭⎫ ⎝⎛-=∑-=j k jkjj jjla l , jj j k jkikij ij l l la l /11⎪⎪⎭⎫⎝⎛-=∑-=, i=j +1, j +2,…,n , j =1,2,…,n . 计算次序为nn n n l l l l l l l ,,,,,,,,,2322212111 .由于jj jk a l ≤,k =1,2,…,j .因此在分解过程中L 的元素的数量级不会增长,故平方根法通常是数值稳定的,不必选主元.6).求解三对角矩阵的追赶法 对于三对角矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=---n nn n n b a c b a c b a c b 11122211A , 它的LU 分解可以得到两个只有两条对角元素非零的三角形矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=--n n n nu d u d u d u l l l 11221132,1111U L . 其中⎪⎪⎩⎪⎪⎨⎧=-====-==--n i c l b u n i u a l b u n i c d i i i i i i i i i ,,3,2,,,3,2,/1,,2,1,1111计算次序是n n u l u l u l u →→→→→→→ 33221. 原方程组b Ax =分解为两个三角形方程组⎩⎨⎧==y Ux b Ly . 计算公式为n i y l b y b y i i i i ,,3,2,,111 =-==-,.1,,2,1,/)(,/1 --=-==+n n i u x c y x u y x i i i i i nn n该计算公式称为求解三对角形方程组的追赶法.当A 严格对角占优时,方程组b Ax =可用追赶法求解, 解存在唯一且数值稳定.7).矩阵的条件数设A 为非奇异矩阵,⋅为矩阵的算子范数,称1)(cond -=A A A 为矩阵A 的条件数.矩阵的条件数是线性方程组b Ax =, 当A 或b 的元素发生微小变化,引起方程组解的变化的定量描述, 因此是刻画矩阵和方程组性态的量. 条件数越大, 矩阵和方程组越为病态, 反之越小为良态.常用的矩阵条件数为∞-条件数: ∞-∞∞=1)(cond AA A ,1-条件数: 1111)(cond -=AAA ,2-条件数: )()()(cond mi n max 2122A A A A AAA HHλλ==-.矩阵的条件数具有如下的性质: (1) 1)(cond ≥A ;(2) )(cond )(cond 1-=A A ;(3) )(cond )(cond A A =α,0≠α,R ∈α;(4) 如果U 为正交矩阵,则1)(cond 2=U ,)(cond )(cond )(cond 222A AU UA ==.一般情况下,系数矩阵和右端项的扰动对解的影响为定理 2.5 设b Ax =,A 为非奇异矩阵,b 为非零向量且A 和b 均有扰动.若A 的扰动δA 非常小,使得11<-A A δ,则)()(cond 1)(cond bδb AδA AA A A xδx +-≤δ.关于近似解的余量与它的相对误差间的关系有定理2.6 设b Ax =,A 为非奇异矩阵,b 为非零向量,则方程组近似解x ~的事后估计式为bx A b A xx x bx A b A ~)cond(~~)cond(1-≤-≤-.其中称x A b ~-为近似解x ~的余量,简称余量。
线性代数与矩阵的运算与变换线性代数是数学中的一个分支,研究了向量空间与线性映射等概念的代数结构。
矩阵是线性代数中的一种重要工具,它可以用来表示线性变换以及解决线性方程组等计算问题。
本文将重点探讨线性代数中的矩阵运算与变换。
一、矩阵的基本定义与运算在线性代数中,矩阵被定义为一个由m行n列所组成的矩形数表。
通常用大写字母来表示矩阵,如A、B等。
矩阵的元素可以是实数或复数。
矩阵的行数与列数分别称为其维数,记作m×n。
矩阵的运算主要包括加法、减法和乘法三种。
矩阵加法定义为对应元素相加,两个矩阵必须具有相同的维数才能进行加法运算。
而矩阵的减法与加法相似,只是将对应元素相减而已。
矩阵的乘法是一种比较复杂的运算,需要满足一定的条件。
矩阵A的列数必须等于矩阵B的行数,才能进行乘法运算。
乘法的结果是一个新的矩阵C,其维数为A的行数与B的列数,记作C=A×B。
乘法运算的定义是,矩阵C的第i行第j列元素等于矩阵A的第i行与矩阵B的第j列对应元素乘积的和。
二、矩阵的转置与逆矩阵矩阵的转置是一种基本的矩阵变换操作,定义为将矩阵的行与列对调。
如果矩阵A的维数为m×n,那么其转置矩阵记作Aᵀ,其维数为n×m。
转置矩阵的性质有:(Aᵀ)ᵀ=A,(A+B)ᵀ=Aᵀ+Bᵀ,(kA)ᵀ=kAᵀ等。
逆矩阵是与原矩阵相乘等于单位矩阵的矩阵。
如果对于矩阵A 存在逆矩阵A^(-1),则称矩阵A可逆。
可逆矩阵的定义要求矩阵A的行列式不为零。
逆矩阵的性质有:(AB)^(-1)=B^(-1)A^(-1),(A^(-1))^(-1)=A,(kA)^(-1)=(1/k)A^(-1)等。
三、矩阵的行变换与列变换矩阵的行变换与列变换是一种重要的矩阵变换操作。
矩阵的行变换包括交换两行、某一行乘以非零常数、某一行加上另一行的若干倍等操作。
类似地,矩阵的列变换也有相应的定义。
矩阵的行变换与列变换可以用于解决线性方程组、求解矩阵的秩以及求解矩阵的逆等问题。
第二章 矩阵变换和计算一、内容提要本章以矩阵的各种分解变换为主要内容,介绍数值线性代数中的两个基本问题:线性方程组的求解和特征系统的计算,属于算法中的直接法。
基本思想为将计算复杂的一般矩阵分解为较容易计算的三角形矩阵. 要求掌握Gauss (列主元)消去法、矩阵的(带列主元的)LU 分解、平方根法、追赶法、条件数与误差分析、QR 分解、Shur 分解、Jordan 分解和奇异值分解.(一) 矩阵的三角分解及其应用1.矩阵的三角分解及其应用考虑一个n 阶线性方程组b Ax =的求解,当系数矩阵具有如下三种特殊形状:对角矩阵D ,下三角矩阵L 和上三角矩阵U ,这时方程的求解将会变得简单.⎪⎪⎪⎪⎪⎭⎫⎝⎛=n d d d D O21, ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n l l l l l l L ΛO M M 21222111, ⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n u u u u u u U M O ΛΛ22212111. 对于b Dx =,可得解为i i i d b x /=,n i ,,2,1Λ=. 对于b Lx =,可得解为1111/l b x =,ii i k k iki i l x lb x /)(11∑-=-=,n i ,,3,2Λ=.对于b Ux =,可得解为nn n n l b x /=,ii ni k k iki i l x lb x /)(1∑+=-=,1,,2,1Λ--=n n i .虽然对角矩阵的计算最为简单,但是过于特殊,任意非奇异矩阵并不都能对角化,因此较为普适的方法是对矩阵进行三角分解.1).Gauss 消去法只通过一系列的初等行变换将增广矩阵)|(b A 化成上三角矩阵)|(c U ,然后通过回代求与b Ax =同解的上三角方程组c Ux =的解.其中第k 步消元过程中,在第1-k 步得到的矩阵)1(-k A的主对角元素)1(-k kka称为主元.从)1(-k A的第j 行减去第k 行的倍数)1()1(--=k kkk jk jk a a l (n j k ≤<)称为行乘数(子).2).矩阵A 的LU 分解对于n 阶方阵A ,如果存在n 阶单位下三角矩阵L 和n 阶上三角矩阵U ,使得LU A =, 则称其为矩阵A 的LU 分解,也称为Doolittle 分解.Gauss 消去法对应的矩阵形式即为LU 分解, 其中L 为所有行乘子组成的单位下三角矩阵, U 为Gauss 消去法结束后得到的上三角矩阵. 原方程组b Ax =分解为两个三角形方程组⎩⎨⎧==yUx bLy .3).矩阵LU 分解的的存在和唯一性如果n 阶矩阵A 的各阶顺序主子式),,2,1(n k k Λ=D 均不为零, 则必有单位下三角矩阵L 和上三角矩阵U ,使得LU A =, 而且L 和U 是唯一存在的.4).Gauss 列主元消去法矩阵每一列主对角元以下(含主对角元)的元素中, 绝对值最大的数称为列主元. 为避免小主元作除数、或0作分母,在消元过程中,每一步都按列选主元的Guass 消去法称为Gauss 列主元消去法.由于选取列主元使得每一个行乘子均为模不超过1的数,因此它避免了出现大的行乘子而引起的有效数字的损失.5).带列主元的LU 分解Gauss 列主元消去法对应的矩阵形式即为带列主元的LU 分解,选主元的过程即为矩阵的行置换. 因此, 对任意n 阶矩阵A ,均存在置换矩阵P 、单位下三角矩阵L 和上三角矩阵U ,使得LU PA =.由于选列主元的方式不唯一, 因此置换矩阵P 也是不唯一的. 原方程组b Ax =两边同时乘以矩阵P 得到Pb PAx =, 再分解为两个三角形方程组⎩⎨⎧==y Ux PbLy . 5).平方根法(对称矩阵的Cholesky 分解)对任意n 阶对称正定矩阵A ,均存在下三角矩阵L 使TLL A =,称其为对称正定矩阵A 的Cholesky 分解. 进一步地, 如果规定L 的对角元为正数,则L 是唯一确定的.原方程组b Ax =分解为两个三角形方程组⎩⎨⎧==y x L b Ly T .利用矩阵乘法规则和L 的下三角结构可得21112⎪⎪⎭⎫ ⎝⎛-=∑-=j k jk jj jj l a l , jj j k jk ik ij ij l l l a l /11⎪⎪⎭⎫ ⎝⎛-=∑-=, i=j +1, j +2,…,n , j =1,2,…,n . 计算次序为nn n n l l l l l l l ,,,,,,,,,2322212111ΛΛΛ.由于jj jk a l ≤,k =1,2,…,j .因此在分解过程中L 的元素的数量级不会增长,故平方根法通常是数值稳定的,不必选主元.6).求解三对角矩阵的追赶法对于三对角矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=---n nn n n b a c b a c b a c b 11122211O O OA , 它的LU 分解可以得到两个只有两条对角元素非零的三角形矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=--n n n n u d u d u d u l l l 11221132,1111OO O OU L . 其中⎪⎪⎩⎪⎪⎨⎧=-====-==--ni c l b u n i u a l b u n i c d i i i i i i i i i ,,3,2,,,3,2,/1,,2,1,1111ΛΛΛ计算次序是n n u l u l u l u →→→→→→→Λ33221. 原方程组b Ax =分解为两个三角形方程组⎩⎨⎧==yUx bLy . 计算公式为n i y l b y b y i i i i ,,3,2,,111Λ=-==-,.1,,2,1,/)(,/1Λ--=-==+n n i u x c y x u y x i i i i i nn n该计算公式称为求解三对角形方程组的追赶法.当A 严格对角占优时,方程组b Ax =可用追赶法求解, 解存在唯一且数值稳定.7).矩阵的条件数设A 为非奇异矩阵,⋅为矩阵的算子范数,称1)(cond -=A A A 为矩阵A 的条件数.矩阵的条件数是线性方程组b Ax =, 当A 或b 的元素发生微小变化,引起方程组解的变化的定量描述, 因此是刻画矩阵和方程组性态的量. 条件数越大, 矩阵和方程组越为病态, 反之越小为良态.常用的矩阵条件数为∞-条件数: ∞-∞∞=1)(cond A A A ,1-条件数: 1111)(cond -=A A A ,2-条件数: )()()(cond min max 2122A A A A AAA H H λλ==-.矩阵的条件数具有如下的性质: (1) 1)(cond ≥A ;(2) )(cond )(cond 1-=A A ;(3) )(cond )(cond A A =α,0≠α,R ∈α;(4) 如果U 为正交矩阵,则1)(cond 2=U ,)(cond )(cond )(cond 222A AU UA ==.一般情况下,系数矩阵和右端项的扰动对解的影响为定理2.5 设b Ax =,A 为非奇异矩阵,b 为非零向量且A 和b 均有扰动.若A 的扰动δA 非常小,使得11<-A A δ,则)()(cond 1)(cond bδbA δA AAA A xδx+-≤δ. 关于近似解的余量与它的相对误差间的关系有定理2.6 设b Ax =,A 为非奇异矩阵,b 为非零向量,则方程组近似解x ~的事后估计式为bx A b A x x x b x A b A ~)cond(~~)cond(1-≤-≤-. 其中称x A b ~-为近似解x ~的余量,简称余量。
8).矩阵的QR 分解利用正交变换保条件数的性质, 将满秩矩阵化为主对角元都大于零的上三角矩阵, 保持矩阵条件数不变.设A 是n 阶可逆实矩阵, 则存在正交阵Q 和对角元都大于零的上三角阵R ,使得QR A =, 称其为矩阵A 的QR 分解, 并且)(cond )(cond 22R A =.为实现矩阵一般的QR 分解,我们引入Householder 矩阵TT-=ωωωωI ωH 2)(, 其中0,≠∈ωωn R . 该矩阵具有如下性质:(1) 特征值为:)(21))((T T H ωωλωωωλ-= 即,121-=-ωωωωT T ,321Λ个11,,1-n ; (2) )()(ωH ωH =T, 即H 阵为对称阵;(3) n I ωH ωH =T)()(,即H 阵为正交阵;(4) 如果y x ωH =)(,则22x y= (不变长度,镜面反射);(5) 设nn x x x R ∈=T ),,,(21Λx 且0x ≠,取12e x x ω-=,则(6) .00)()(12212e x x x e x x H ωH =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-=M x提示:Householder 变换并不是直接变换n 阶矩阵A , 而是通过重复变换矩阵的下三角部分的列向量得到上三角矩阵, 因此, 每次变换的Householder 矩阵)(,),(),(1-n 21ωH ωH ωH Λ在逐渐降阶, 然后将它们分别“嵌入”n 阶单位矩阵得到相应的n 阶正交阵1-n 21Q Q Q ,,,Λ, 最后得到正交阵1-n 21Q Q Q Q ,,,Λ=.具体变换过程见例子.(二) 特殊矩阵的特征系统特征系统即为矩阵的特征值和特征向量, 本节主要介绍与其计算相关的Schur 分解. 矩阵变换的思想主要为两点: 一是三角矩阵的主对角元素即为其所有特征值, 二是矩阵的特征多项式和特征值在相似变换下是不变的. 因此, 理论上获得矩阵特征值的方法就是通过相似变换将其变为一个三角矩阵.Schur定理:设nn A ⨯∈C ,则存在酉阵nn U ⨯∈C 使得H URU A =, 其中n n R ⨯∈C 为上三角矩阵.由于实矩阵的特征值可能是复数, 因此通常在复数域中考虑Schur 分解. 复数域中相应的矩阵名称及记号为:U 的共轭转置: T H U U =, 它在实数域即为转置矩阵. U 为酉阵: 若I UU U U H H ==, 它在实数域即为正交阵.A 为正规矩阵: 若H H AA A A =.常见的Hermite 阵(A A =H )、实对称矩阵(A A =T)、斜Hermite 阵(A A -=H)、实反对称矩阵(A A -=T)、酉阵(I AA A A ==HH)和正交矩阵(I AA A A ==TT)等均为正规矩阵. Schur 分解的一些特殊情况如下:● 上三角矩阵R 为正规矩阵当且仅当R 为对角矩阵. ● n 阶方阵A 为正规矩阵当且仅当存在酉阵U 使得H UDU A =,D 为n 阶对角阵. ● n 阶方阵A 为Hermite 阵当且仅当存在酉阵U 使得H UDU A =,D 为n 阶实对角阵. ●n 阶方阵A 为酉阵当且仅当存在酉阵U 使得H UDU A =,D 为n 阶对角阵,且对角元的模均为1.(三) 矩阵的Jordan 分解介绍矩阵的每一个特征值有两个重要的指标: 代数重数和几何重数. 一个特征值作为矩阵多项式的根个重数称为代数重数; 它对应的特征子空间的维数称为几何重数. 它们分别刻画了特征值在矩阵特征系统中的代数和几何的性质. 一般有, 代数重数≥几何重数. 当一个特征值的代数重数=几何重数, 称它为半单的; 而当代数重数>几何重数时称它为亏损的.n 阶方阵A 可对角化当且仅当它的所有特征值都是半单的, 此时称A 为单纯矩阵; 否则, A 不可对角化当且仅当它有亏损的特征值, 此时称A 为亏损矩阵.对于亏损矩阵, 只能将其经过相似变换为一个三角矩阵, 即为其Jordan 标准型. Jordan 标准型是一个块对角矩阵,每一个块称为Jordan 块, 其对角元便为矩阵的特征值.所谓矩阵A 的Jordan 分解即为通过可逆变换矩阵T 化为与之相似的Jordan 标准型J , 使得1-=TJT A .1. 关于Jordan 标准型J .对于特征值i λ, 它的代数重复度就是Jordan 标准型中以i λ为特征值的Jordan 块阶数的和,而其几何重复度(即与i λ相对应的线性无关的特征向量的个数)恰为以i λ为特征值的Jordan 块的个数.J 中以i λ为特征值、阶数为l 的Jordan 块的个数为l l l r r r 211-+-+,其中l i l I r )(rank A -=λ, n I I r i ==-=)(rank )(rank 00A λ.2. 关于变换矩阵T 可以通过Jordan 链得到. 将T 按J 的对角线上的Jordan 块相应地分块为()k T T T T ,,,21Λ=, 其中T i 为n ×n i 型矩阵.记()i n i i i i t t t T ,,,21Λ=, 则⎪⎪⎩⎪⎪⎨⎧+=+==-i n i n i i n i i i i ii i i i i112211t t At t t At t At λλλM ni j C t ∈, k i ,,2,1Λ=, i n j ,,2,1Λ=我们称向量in iii t t t ,,,21Λ为关于特征值i λ的长度为i n 的Jordan 链.显然该Jordan 链的第一个向量就是矩阵A 的关于特征值i λ的特征向量,称其为链首.而链中的第j 个向量则可由等价的方程()i ij ij n i n j ,,3,2,1Λ==--t t I A λ (2-45)求出.但是应当注意:1) Jordan 链的链首i1t 不仅要求是一个特征向量,而且还要求利用(2-45)可以求出Jordan 链中的其它向量i n ii t t ,,2Λ(即不是任何一个特征向量都可作为Jordan 链的链首).2) 对应于某个特征值i λ 的Jordan 链虽然一定存在,但当与i λ 相对应的线性无关的特征向量的个数大于或等于2时,关于特征值i λ的特征向量中的任何一个有可能都不能作为链首.因此我们必须从i λ的特征子空间中选取适当的向量作为Jordan 链的链首.(四) 矩阵的奇异值分解对于方阵,利用其特征值和特征向量可以刻画矩阵的结构.对非方阵情形,这些方法已经不适用.而推广的特征值--矩阵的奇异值分解理论能改善这种情况. 利用奇异值和奇异向量不仅可以刻画矩阵的本身结构,而且还可以进一步刻画线代数方程组的解的结构,是构造性的研究线代数问题的有利的工具.设nm ⨯∈C A , Hermite 半正定矩阵A A H 的特征值为021≥≥≥≥n λλλΛ, 称非负实数i i λσ=)(A (n i ,,2,1Λ=)为矩阵A 的奇异值.奇异值分解: 设A nm ⨯∈C, 且其秩rank(A )=r , 则存在m 阶、n 阶酉阵U 、V 使得H V ΣU A ⎪⎪⎭⎫ ⎝⎛=000, 其中),,,(diag 21r σσσΛ=Σ,),,2,1(r i i Λ=σ为矩阵A 的非零奇异值.U 与V 的列向量m u u u ,,,21Λ和n v v v ,,,21Λ分别称为矩阵A 的与奇异值i σ对应的左奇异向量和右奇异向量.利用矩阵的奇异值讨论矩阵的性质:(1) 矩阵A 的非零奇异值的个数恰为矩阵A 的秩.(2) },,,{span )(21r u u u A Λ=R , )(A N },,,{span 21n r r v v v Λ++=,其中nm R A ⨯∈∀,},|{)(n m R x y Ax R y ∈∀=∈=A R 为由A 的列向量生成的子空间,称为A 的值域或像空间,即},,,{span )(21n a a a A Λ=R 。