高三数学复习讲义——等差数列性质(1)新人教A版
- 格式:doc
- 大小:284.50 KB
- 文档页数:6
高三第一轮复习资料(注意保密)引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。
不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
选修课程有4个系列:系列1:由2个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。
系列3:由6个专题组成。
选修3—1:数学史选讲。
选修3—2:信息安全与密码。
选修3—3:球面上的几何。
选修3—4:对称与群。
选修3—5:欧拉公式与闭曲面分类。
选修3—6:三等分角与数域扩充。
选修4—1:几何证明选讲。
选修4—2:矩阵与变换。
选修4—3:数列与差分。
选修4—4:坐标系与参数方程。
选修4—5:不等式选讲。
选修4—6:初等数论初步。
选修4—7:优选法与试验设计初步。
选修4—8:统筹法与图论初步。
选修4—9:风险与决策。
选修4—10:开关电路与布尔代数。
2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算 必修1数学知识点第一章:集合与函数概念 §1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。
第二节 等差数列2019考纲考题考情1.等差数列的有关概念 (1)等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示,定义表达式为a n -a n -1=d (常数)(n ∈N *,n ≥2)或a n +1-a n =d (常数)(n ∈N *)。
(2)等差中项若三个数a ,A ,b 成等差数列,则A 叫做a 与b 的等差中项,且有A =a +b2。
2.等差数列的有关公式 (1)等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d 。
(2)等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =na 1+n (n -1)2d 或S n =n (a 1+a n )2。
3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *)。
(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n 。
(等和性) (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d 。
(4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列。
(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列。
(6)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列。
(7)S 2n -1=(2n -1)a n 。
(8)若n 为偶数,则S 偶-S 奇=nd2;若n 为奇数,则S 奇-S 偶=a 中(中间项)。
1.用等差数列的定义判断数列是否为等差数列,要注意定义中的三个关键词:“从第2项起”“每一项与它的前一项的差”“同一个常数”。
高三数学总复习讲义——等差数列1、等差数列定义:一般地,如果一个数列从第项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母表示。
用递推公式表示为或。
2、等差数列的通项公式:;说明:等差数列(通常可称为数列)的单调性:为递增数列,为常数列, 为递减数列。
3、等差中项的概念:如果,,成等差数列,那么叫做与的等差中项。
其中4、等差数列的前和的求和公式:。
5、等差数列的性质:(1)在等差数列中,从第2项起,每一项是它相邻二项的等差中项;(2)在等差数列中,相隔等距离的项组成的数列是,如:,,,,……;,,,,……;(3)在等差数列中,对任意,,,;(4)在等差数列中,若,,,且,则;说明:设数列是等差数列,且公差为,(Ⅰ)若项数为偶数,设共有项,则①奇偶;②;(Ⅱ)若项数为奇数,设共有项,则①偶奇;②。
6、数列最值(1),时,有最大值;,时,有最小值;(2)最值的求法:①若已知,可用二次函数最值的求法();②若已知,则最值时的值()可如下确定或。
练习1.(01天津理,2)设S n是数列{a n}的前n项和,且S n=n2,则{a n}是()A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比数列D.既非等比数列又非等差数列2.(06全国I)设是公差为正数的等差数列,若,,则()A. B. C. D.3.(02京)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有()A.13项B.12项C.11项D.10项4.(01全国理)设数列{a n}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是()A.1B.2C.4D.65.(06全国II)设S n是等差数列{a n}的前n项和,若=,则=A. B. C. D.6.(00全国)设{a n}为等差数列,S n为数列{a n}的前n项和,已知S7=7,S15=75,T n为数列{}的前n项和,求T n。
高三数学数列(一)(理)人教实验版(A )【本讲教育信息】一. 教学内容:数列(一)二. 重点、难点:(1)定义:*1,N n d a a n n ∈+=+(2)关键量:d a ,1(3)通项公式:d n a a n )1(1-+=,d m n a a m n )(-+=(4)前n 项和:n a a d n n na S n n ⋅+=-+=)(21)1(2111 (5)① 若q p n m +=+∴q p n m a a a a +=+②}{q pa n +成等差数列③}{)1(n k kn S S --,1,>∈k N k 成等差数列④),0(+∞∈α,n a a 成等比数列⑤ 任意两数b a ,有等差中项2b a + (6)由递推关系,求n a(7)由n S ,求n a【典型例题】[例1] 等差数列}{n a 中,2,11,35===d a S n n ,求1a 。
解:⎪⎩⎪⎨⎧⋅-+==⋅-+==2)1(21352)1(1111n n na S n a a n n ⎩⎨⎧==⇒351a n 或⎩⎨⎧-==171a n [例2] 等差数列}{n a 中,q S p S k k ==2,,则k S 3=解:k k k k k S S S S S 232,,--成等差数列,k k k k k S S S S S 232)(2-+=-∴)(33p q S k -=[例3] 等差数列}{n a 共12+k 项,所有项之和323,其中奇数项和为171,求=+1k a ,=k 解:171323171)(21)1)((2122121-=⋅+++=+k a a k a a S S k k 偶奇 ∴81521711=⇒=+k k k ∴19172171719==+=S a a a ∴⎩⎨⎧==1989a k [例4] 等差数列}{n a ,}{n b 前n 项和为n S ,n T ,且2325++=n n T S n n ,求n b a 。
第二节 等差数列及其前n 项和等差数列(1)理解等差数列的概念.(2)掌握等差数列的通项公式与前n 项和公式.(3)能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题. (4)了解等差数列与一次函数的关系. 知识点一 等差数列的有关概念1.定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫作等差数列.符号表示为a n +1-a n =d (n ∈N +,d 为常数).2.等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫作a ,b 的等差中项.易误提醒1.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.注意区分等差数列定义中同一个常数与常数的区别.[自测练习]1.现给出以下几个数列:①2,4,6,8,…,2(n -1),2n ;②1,1,2,3,…,n ;③常数列a ,a ,a ,…,a ;④在数列{a n }中,已知a 2-a 1=2,a 3-a 2=2.其中等差数列的个数为( )A .1B .2C .3D .4解析:①由4-2=6-4=…=2n -2(n -1)=2,得数列2,4,6,8,…,2(n -1),2n 为等差数列;②因为1-1=0≠2-1=1,所以数列1,1,2,3,…,n 不是等差数列;③常数列a ,a ,a ,…,a 为等差数列;④当数列{a n }仅有3项时,数列{a n }是等差数列,当数列{a n }的项数超过3项时,数列{a n }不一定是等差数列.故等差数列的个数为2.答案:B2.若2,a ,b ,c,9成等差数列,则c -a =________. 解析:由题意得该等差数列的公式d =9-25-1=74,所以c -a =2d =72.答案:72知识点二 等差数列的通项及求和公式 等差数列的有关公式(1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =(a 1+a n )n2. 必记结论1.巧用等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d ,(n ,m ∈N +).(2)若{a n }为等差数列,且k +l =m +n ,(k ,l ,m ,n ∈N +),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N +)是公差为md 的等差数列.(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.2.前n 项和公式S n =d2n 2+⎝⎛⎭⎫a 1-d 2n 视为关于n 的一元二次函数,开口方向由公差d 的正负确定;S n =(a 1+a n )n2中(a 1+a n )视为一个整体,常与等差数列性质结合利用“整体代换”思想解题.[自测练习]3.(2016·日照模拟)已知数列{a n }为等差数列,且a 1=2,a 2+a 3=13,那么a 4+a 5+a 6等于( )A .40B .42C .43D .45解析:设等差数列公差为d ,则有a 2+a 3=2a 1+3d =4+3d =13,解得d =3,故a 4+a 5+a 6=3a 5=3(a 1+4d )=3×(2+4×3)=42,故选B.答案:B4.(2015·兰州诊断)已知等差数列{a n }的前n 项和为S n ,若a 4=18-a 5,则S 8=( ) A .18 B .36 C .54D .72解析:由S 8=8×(a 1+a 8)2,又a 4+a 5=a 1+a 8=18,∴S 8=8×182=72.答案:D5.数列{a n }是公差不为0的等差数列,且a 2+a 6=a 8,则S 5a 5=________.解析:在等差数列中,由a 2+a 6=a 8得2a 1+6d =a 1+7d ,即a 1=d ≠0, 所以S 5a 5=5a 1+5×42d a 1+4d =5a 1+10da 1+4d =155=3.答案:3考点一 等差数列的基本运算|1.(2015·高考全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( ) A .5 B .7 C .9 D .11解析:法一:数列{a n }为等差数列,设公差为d ,∴a 1+a 3+a 5=3a 1+6d =3,∴a 1+2d =1,∴S 5=5a 1+5×42×d =5(a 1+2d )=5.法二:数列{a n }为等差数列,∴a 1+a 3+a 5=3a 3=3,∴a 3=1,∴S 5=5(a 1+a 5)2=5×2a 32=5.答案:A2.等差数列{a n }中,a 1=12 015,a m =1n ,a n =1m (m ≠n ),则数列{a n }的公差d 为________.解析:∵a m =12 015+(m -1)d =1n ,a n =12 015+(n -1)d =1m ,∴(m -n )d =1n -1m ,∴d =1mn ,∴a m =12 015+(m -1)1mn =1n ,解得1mn =12 015,即d =12 015. 答案:12 0153.(2015·通州模拟)已知等差数列{a n }中,a 2=-2,公差d =-2,那么数列{a n }的前5项和S 5=________.解析:将已知条件代入公式易得S 5=5(a 2-d )+5×42d =-20.答案:-20等差数列的基本运算的两个解题策略(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程组解决问题的思想.(2)数列的通项公式和前n 项和公式在解题中起到变量代换的作用,而a 1和d 是等差数列的两个基本量,用它们表示已知量和未知量是常用方法.考点二 等差数列的判断与证明|已知数列{a n }满足(a n +1-1)(a n -1)=3(a n -a n +1),a 1=2,令b n =1a n -1.(1)证明:数列{b n }是等差数列; (2)求数列{a n }的通项公式. [解] (1)证明:1a n +1-1-1a n -1=a n -a n +1(a n +1-1)(a n -1)=13,∴b n +1-b n =13,∴{b n }是等差数列.(2)由(1)及b 1=1a 1-1=12-1=1,知b n =13n +23,∴a n -1=3n +2,∴a n =n +5n +2.等差数列的四种判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数; (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立; (3)通项公式法:验证a n =pn +q ; (4)前n 项和公式法:验证S n =An 2+Bn .1.已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列. 证明:∵a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1, ∴当n ≥2时,b n -b n -1=1a n -1-1a n -1-1=12-1a n -1-1-1a n -1-1=a n -1a n -1-1-1a n -1-1=1. 又b 1=1a 1-1=-52,∴数列{b n }是以-52为首项,1为公差的等差数列.考点三 等差数列的性质及最值|(1)(2016·泉州质检)设等差数列{a n }的前n 项和为S n ,若a 5+a 14=10,则S 18=( )A .20B .60C .90D .100[解析] 因为{a n }是等差数列,所以S 18=18(a 1+a 18)2=9(a 5+a 14)=90,故选择C.[答案] C(2)(2015·广州模拟)已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为( )A .10B .20C .30D .40[解析] 本题考查等差数列的性质.这个数列的项数为2n ,于是有2×n =25-15=10,2n =10,即这个数列的项数为10,故选A.[答案] A(3)已知在等差数列{a n }中,a 1=31,S n 是它的前n 项的和,S 10=S 22. ①求S n ;②这个数列前多少项的和最大?并求出这个最大值.[解] ①∵S 10=a 1+a 2+…+a 10, S 22=a 1+a 2+…+a 22,又S 10=S 22,∴a 11+a 12+…+a 22=0, 即12(a 11+a 22)2=0,即a 11+a 22=2a 1+31d =0. 又a 1=31,∴d =-2.∴S n =na 1+n (n -1)2d =31n -n (n -1)=32n -n 2.②法一:由①知,S n =32n -n 2=-(n -16)2+256, ∴当n =16时,S n 有最大值256. 法二:由①知,令⎩⎪⎨⎪⎧a n =31+(n -1)·(-2)=-2n +33≥0,a n +1=31+n ·(-2)=-2n +31≤0(n ∈N *),解得312≤n ≤332,∵n ∈N *,∴n =16时,S n 有最大值256.求等差数列前n 项和的最值的方法(1)运用配方法转化为二次函数,借助二次函数的单调性以及数形结合的思想,从而使问题得解.(2)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 值即可.一般地,等差数列{a n }中,若a 1>0,且S p =S q (p ≠q ),则:①若p +q 为偶数,则当n =p +q 2时,S n 最大;②若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大.2.(2015·深圳调研)等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为( )A .S 7B .S 6C .S 5D .S 4解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:C3.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=18,则a 8=________.解析:等差数列性质可得S 3=3,S 6-S 3=15,S 9-S 6=a 7+a 8+a 9=3a 8成等差数列,故有2(S 6-S 3)=S 3+S 9-S 6⇒2×15=3+3a 8,解得a 8=9.答案:917.整体思想在等差数列中的应用【典例】 已知S n 为等差数列{a n }的前n 项和,若S 1=1,S 4S 2=4,则S 6S 4的值为( )A.94 B.32 C.53D .4[思路点拨] 若利用a ,d 基本计算较繁,可考虑S 2,S 4-S 2,S 6-S 4成等差数列,采用整体求值较简便.[解析] 由等差数列的性质可知S 2,S 4-S 2,S 6-S 4成等差数列,由S 4S 2=4,得S 4-S 2S 2=3,则S 6-S 4=5S 2,所以S 4=4S 2,S 6=9S 2,S 6S 4=94.[答案] A[方法点评] 利用整体思想解数学问题,就是从全局着眼,由整体入手,把一些彼此独立但实际上紧密联系的量作为一个整体考虑的方法.有不少等差数列题,其首项、公差无法确定或计算烦琐,对这类问题,若从整体考虑,往往可寻得简捷的解题途径.[跟踪练习] 已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 解析:∵S 10,S 20-S 10,S 30-S 20成等差数列, 且S 10=10,S 20=30,S 20-S 10=20, ∴S 30-S 20=10+2×10=30, ∴S 30=60.答案:60A 组 考点能力演练1.已知等差数列{a n }满足:a 3=13,a 13=33,则数列{a n }的公差为( ) A .1 B .2 C .3D .4解析:设等差数列{a n }的公差为d ,则d =a 13-a 313-3=33-1310=2,故选择B.答案:B2.(2016·宝鸡质检)设等差数列{a n }的前n 项和为S n ,且S 9=18,a n -4=30(n >9),若S n=336,则n 的值为( )A .18B .19C .20D .21解析:因为{a n }是等差数列,所以S 9=9a 5=18,a 5=2,S n =n (a 1+a n )2=n (a 5+a n -4)2=n2×32=16n =336,解得n =21,故选择D.答案:D3.(2015·武昌联考)已知数列{a n }是等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 是( )A .18B .19C .20D .21解析:a 1+a 3+a 5=105⇒a 3=35,a 2+a 4+a 6=99⇒a 4=33,则{a n }的公差d =33-35=-2,a 1=a 3-2d =39,S n =-n 2+40n ,因此当S n 取得最大值时,n =20.答案:C4.在等差数列{a n }中,a 2+a 3+a 4+a 5=40,则3a 1+a 11=( ) A .20 B .30 C .40D .60解析:本题考查等差数列的通项公式及性质的应用.由等差数列的性质得a 2+a 3+a 4+a 5=2(a 3+a 4)=40,解得a 3+a 4=20,即a 3+a 4=2a 1+5d =20,又3a 1+a 11=4a 1+10d =2(2a 1+5d )=40,故选C.答案:C5.已知数列{a n },{b n }都是等差数列,S n ,T n 分别是它们的前n 项和,并且S n T n =7n +1n +3,则a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=( ) A.345 B .5 C.314D.315解析:法一:令S n =(7n +1)n ,T n =(n +3)n ,则a n =14n -6,b n =2n +2,所以a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=22+64+232+30218+22+26+34=315.法二:设等差数列{a n },{b n }的公差分别为d 1,d 2,则a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=4a 1+42d 14b 1+42d 2=2a 1+21d 12b 1+21d 2=a 1+a 22b 1+b 22=S 22T 22=7×22+122+3=315.答案:D6.(2015·广州一模)若S n 是等差数列{a n }的前n 项和,且S 8-S 3=20,则S 11=________. 解析:因为{a n }是等差数列,所以S 8-S 3=a 4+a 5+a 6+a 7+a 8=5a 6=20,所以a 6=4,所以S 11=11(a 1+a 11)2=11a 6=44.答案:447.设数列{a n }的前n 项和为S n ,且a 1=a 2=1,{nS n +(n +2)a n }为等差数列,则{a n }的通项公式为a n =________.解析:设b n =nS n +(n +2)a n ,则b 1=1×S 1+(1+2)a 1=1×a 1+3a 1=4,b 2=2×S 2+(2+2)a 2=2×(a 1+a 2)+(2+2)a 2=8,所以等差数列{b n }的首项为4,公差为4,所以b n =4+(n -1)×4=4n ,即nS n +(n +2)a n =4n .当n ≥2时,S n -S n -1+⎝⎛⎭⎫1+2n a n -⎝ ⎛⎭⎪⎫1+2n -1a n -1=0,所以2(n +1)n a n =n +1n -1a n -1,即2·a n n =a n -1n -1,所以⎩⎨⎧⎭⎬⎫a n n 是以12为公比,1为首项的等比数列,所以a n n =⎝⎛⎭⎫12n -1,所以a n =n2n -1. 答案:n 2n-18.设等差数列{a n }满足公差d ∈N *,a n ∈N *,且数列{a n }中任意两项之和也是该数列的一项.若a 1=35,则d 的所有可能取值之和为________.解析:本题考查等差数列的通项公式.依题意得a n =a 1+(n -1)d ,a i +a j =2a 1+(i +j -2)d =a 1+(m -1)d (i ,j ,m ∈N *),即(m -i -j +1)d =a 1,kd =a 1=35(其中k ,d ∈N *),因此d 的所有可能取值是35的所有正约数,即分别是1,3,32,33,34,35,因此d 的所有可能取值之和为1-35×31-3=364. 答案:3649.已知{a n }是一个公差大于0的等差数列,且满足a 3a 6=55,a 2+a 7=16. (1)求数列{a n }的通项公式;(2)若数列{b n }满足:b 1=a 1且b n =a n +b n -1(n ≥2,n ∈N *),求数列{b n }的通项公式.解:(1)由题意得:⎩⎪⎨⎪⎧a 3a 6=55,a 3+a 6=a 2+a 7=16,∵公差d >0,∴⎩⎪⎨⎪⎧a 3=5,a 6=11,∴d =2,a n =2n -1.(2)∵b n =a n +b n -1(n ≥2,n ∈N *), ∴b n -b n -1=2n -1(n ≥2,n ∈N *).∵b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1(n ≥2,n ∈N *),且b 1=a 1=1, ∴b n =2n -1+2n -3+…+3+1=n 2(n ≥2,n ∈N *). ∴b n =n 2(n ∈N *).10.(2015·南昌一模)已知等差数列{a n }的前n 项和为S n ,a 1=1,S 3=6,正项数列{b n }满足b 1·b 2·b 3·…·b n =2S n .(1)求数列{a n },{b n }的通项公式;(2)若λb n >a n 对n ∈N *均成立,求实数λ的取值范围. 解:(1)∵a 1=1,S 3=6,∴数列{a n }的公差d =1,a n =n .由题知,⎩⎪⎨⎪⎧b 1·b 2·b 3·…·b n =2S n ,①b 1·b 2·b 3·…·b n -1=2S n -1(n ≥2),②①÷②得b n =2S n -S n -1=2a n =2n (n ≥2), 又b 1=2S 1=21=2,满足上式,故b n =2n . (2)λb n >a n 恒成立⇒λ>n2n 恒成立,设c n =n 2n ,则c n +1c n =n +12n, 当n ≥2时,c n <1,数列{c n }单调递减,∴(c n )max =12,故λ>12. B 组 高考题型专练1.(2015·高考重庆卷)在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( )A .-1B .0C .1D .6解析:由等差数列的性质知a 2+a 6=2a 4,所以a 6=2a 4-a 2=0,故选B. 答案:B2.(2015·高考全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( )A.172B.192 C .10 D .12解析:设等差数列{a n }的首项为a 1,公差为d .由题设知d =1,S 8=4S 4,所以8a 1+28=4(4a 1+6),解得a 1=12,所以a 10=12+9=192,选B. 答案:B3.(2015·高考北京卷)设{a n }是等差数列,下列结论中正确的是( )A .若a 1+a 2>0,则a 2+a 3>0B .若a 1+a 3<0,则a 1+a 2<0C .若0<a 1<a 2,则a 2>a 1a 3D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0解析:若{a n }是递减的等差数列,则选项A ,B 都不一定正确.若{a n }为公差为0的等差数列,则选项D 不正确.对于C 选项,由条件可知{a n }为公差不为0的正项数列,由等差中项的性质得a 2=a 1+a 32,由基本不等式得a 1+a 32>a 1a 3,所以C 正确. 答案:C4.(2015·高考安徽卷)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.解析:因为a 1=1,a n =a n -1+12(n ≥2),所以数列{a n }是首项为1、公差为12的等差数列,所以前9项和S 9=9+9×82×12=27. 答案:275.(2015·高考北京卷)已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7.问:b 6与数列{a n }的第几项相等? 解:(1)设等差数列{a n }的公差为d . 因为a 4-a 3=2,所以d =2.又因为a 1+a 2=10,所以2a 1+d =10,故a 1=4. 所以a n =4+2(n -1)=2n +2(n =1,2,…).(2)设等比数列{b n }的公比为q .因为b 2=a 3=8,b 3=a 7=16,所以q =2,b 1=4.所以b 6=4×26-1=128.由128=2n +2,得n =63.所以b 6与数列{a n }的第63项相等.6.(2015·高考重庆卷)已知等差数列{a n }满足a 3=2,前3项和S 3=92. (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 解:(1)设{a n }的公差为d ,则由已知条件得a 1+2d =2,3a 1+3×22d =92, 即a 1+2d =2,a 1+d =32, 解得a 1=1,d =12, 故通项公式为a n =1+n -12,即a n =n +12. (2)由(1)得b 1=1,b 4=a 15=15+12=8.设{b n }的公比为q ,则q 3=b 4b 1=8,从而q =2, 故{b n }的前n 项和T n =b 1(1-q n )1-q =1×(1-2n )1-2=2n -1.。
高三数学数列知识点复习 等差数列二教案 新人教A 版——热点考点题型探析一、复习目标:1、理解等差数列的概念,掌握等差数列的通项公式、前n 项和公式并能解决实际问题;2、理解等差中项的概念,掌握等差数列的性质并能灵活运用。
二、重难点:理解等差数列的概念,掌握等差数列的通项公式、前n 项和公式并能解决实际问题;理解等差中项的概念,掌握等差数列的性质,灵活运用等差数列的性质解题.会求等差数列的公差、求项、求值、求和、求n S 最值等通常运用等差数列的有关公式及其性质. 三、教学方法:讲练结合,探析归纳,强化运用。
四、教学过程 (一)、热点考点题型探析考点1等差数列的通项与前n 项和 题型1已知等差数列的某些项,求某项【例1】已知{}n a 为等差数列,20,86015==a a ,则=75a 【解题思路】可以考虑基本量法,或利用等差数列的性质【解析】方法1: 154,156420598141160115==⇒⎩⎨⎧=+==+=d a d a a d a a ∴2415474156474175=⨯+=+=d a a 方法2:1544582015601560=-=--=a a d ,∴241541520)6075(6075=⨯+=-+=d a a 方法3: {}n a 为等差数列,∴7560453015,,,,a a a a a 也成等差数列,设其公差为1d ,则15a 为首项,60a 为第4项. ∴438203111560=⇒+=⇒+=d d d a a ∴2442016075=+=+=d a a【反思归纳】给项求项问题,先考虑利用等差数列的性质,再考虑基本量法. 题型2已知前n 项和n S 及其某项,求项数.【例2】⑴已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ; ⑵若一个等差数列的前4项和为36,后4项和为124,且所有项的和为780,求这个数列的项数n .【解题思路】⑴利用等差数列的通项公式d n a a n )1(1-+=求出1a 及d ,代入n S 可求项数n ;⑵利用等差数列的前4项和及后4项和求出n a a +1,代入n S 可求项数n . 【解析】⑴设等差数列的首项为1a ,公差为d ,则3,186893111-==⇒⎩⎨⎧-=+=+d a d a d a∴7,663)1(231821==⇒=--=n n n n n S n ⑵ 124,363214321=+++=+++---n n n n a a a a a a a a3423121---+=+=+=+n n n n a a a a a a a a ∴40160)(411=+⇒=+n n a a a a∴39780207802)(1=⇒=⇒=+=n n a a n S n n 【反思归纳】解决等差数列的问题时,通常考虑两种方法:⑴基本量法;⑵利用等差数列的性质.题型3求等差数列的前n 项和【例3】已知n S 为等差数列{}n a 的前n 项和,212n n S n -=。
等差数列性质(1)基本练习( B)1已知各项均为正数的等差数列{}n a 中,11136a a ⋅=,则6a 的最小值为A 、4B 、5C 、6D 、7( A )2.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( )A.3B.4C.5D.2( A)3.等差数列}{n a 中,=-=++10915812,1203a a a a a 则( )A .24B .22C .20D .-8( B )4{a n }是等差数列,a 1>0,a 2009+a 2010>0,a 2009·a 2010<0,使前n 项和S n >0成立的最大自然数n 是( ) A .4019 B .4018 C .4017 D .4016( B )5.在等差数列1077,21,5,,}{S S a S n a n n 那么若项和为前中==等于( )A .55B .40C .35D .706设n S 是等差数列{}n a 的前n 项和,已知,144,324,3666===-n n S S S 则n =______18____.7在等差数列{}n a 中,12008a =-,其前n 项的和为n S .若20072005220072005S S -=,则=2008S _____-200_8_____例1已知数列}{n a 中,531=a ,),2(121+-∈≥-=N n n a a n n ,数列}{n b 满足)(11+∈-=N n a b n n (1) 求证:数列}{n b 是等差数列;(2) 求数列}{n a 中的最大值和最小值,并说明理由 (1)11)12(111111-=--=-=---n n n n n a a a a b ,而1111-=--n n a b , ∴),2(11+-∈≥=-N n n b b n n ,251111-=-=a b ;故数列}{n b 是首项为25-,公差为1的等差数列;(2)由(1)得27-=n b n ,则722111-+=+=n b a n n ;设函数7221)(-+=x x f , 函数7221)(-+=x x f 在)27,(-∞和),27(+∞上均为减函数,当3≤x 时,1)3()(-=≥f x f ;当4≥x 时,3)4()(=≤f x f ;且53)1(=f ,当n 趋向于+∞时,)(x f 接近1,∴1)(3min -==a a n ,3)(4max ==a a n .例2设等差数列{}n a 的前n 项和为n s ,已知0,24113==s a ,求: ①数列{}n a 的通项公式 ②当n 为何值时,n s 最大,最大值为多少?解析:由⎩⎨⎧==024113s a 得⎪⎩⎪⎨⎧=⨯+=+32210111124211d a d a 得⎩⎨⎧-==8401d a ∴n d n a a n 848)1(1-=-+=n n d n n na S n 4442)1(21+-=-+= ∴当65或=n 时,120max =S例3.在数列{}n a 中,n n n a a a 22,111+==+(1)设,21-=n nn a b 证明{}n b 是等差数列;(2)求数列{}n a 的前n 项和n S 。
解析:(1)由已知nn n a a 221+=+得1122222111+=+=+==-++n n nn n n n n n b a a a b , 又111==a b ∴{}n b 是首项为1,公差为1的等差数列; (2)由(1)知112,2--⨯=∴=n n n n n a n a 12223221-⨯++⨯+⨯+=n n n Snn n S 223222232⨯++⨯+⨯+= 两式相减得n n n n S 222221132⨯-++++=-- 12)1(+⨯-=∴n n n S等差数列的性质同步练习题一班级 姓名( )1.已知{}n a 是等差数列,且公差0d ≠,它们前n 项和2n S M n P n t =⋅+⋅+,则,,M P T 满足的关系是A .0,0M T ≠=.B . 0M T ==.C . 0T ≠.D .,,0M P T ≠ ( )2.若等差数列的各项依次递减,且a 2a 4a 6=45,a 2+a 4+a 6=15,则数列{a n }的通项公式为A .2n -3B .-2n +3C .-2n +13D .2n +9 ( )3.在项数为2n +1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 等于 A .9 B .10 C .11 D .12 ( )4.等差数列{a n }的通项公式是a n =2n +1,由b n =na a a n+⋅⋅⋅++21 (n ∈N *)确定的数列{b n }的前n 项和是 A .21n (n +5) B .21n (n +4) C . 21n (2n +7) D .n (n +2)( )5.在等差数列{a n }中,a 1>0,且3a 8=5a 13,则S n 中最大的是 A .S 21 B .S 20 C .S 11 D .S 10( )6.等比数列的前n 项的和为54,前2n 项的和为60,则前3n 项的和为 A .66B .64C .6632 D .6032 ( )7.等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,对一切正整数n ,都有231n n S nT n =+,则55a b 等于 A .23. B .914. C .2031. D .1117. ( )8.已知等差数列{}n a 公差是1,且12989999a a a a ++++=,则3699699a a a a a +++++=A .99.B .66.C . 33.D .0. ( )9.若关于x 的方程x -2–x+a=0和x 2-x+b =0(a ≠b )的四个根可组成首项为41的等差数列,则a+b 的值是 A .83 B .2411 C .2413 D .7231 ( )10.设数列{}n a 的前n 项和为n S ,令12nn S S S T n+++=,称n T 为数列1a ,2a ,……,n a 的“理想数”,已知数列1a ,2a ,……,501a 的“理想数”为2008,那么数列2, 1a ,2a ,……,501a 的“理想数”为A .2002B . 2004C . 2006D . 2008 思路分析】:200850150050150121⨯=+++a a a200650220085012502500501502250121=⨯+=++++⨯a a a11.一凸n 边形,各内角的度数成等差数列,公差是10,最小内角是100,则边数n =_____8_____.12.在等差数列{}n a 中,391115170a a a a a ++++=,则11a =___0_____,21S =_____0____. 13.已知等差数列{a n }中,前三项之和为6,末三项和60,S n = 231,则n = 21 .14.等差数列{a n }中,S 2 = S 19且公差d <0,当n = 10或11 时,S n 最大.15.设),(p n f =p n C 2)2,,(*n p N p n ≤∈,数列}{p n a 满足⋅⋅⋅+++p p p a a a 321),(p n f a np =+,则数列}{2n a 的通项公式是 342-=n a n.【思路分析】:令2=p 则2222212)2,(n n C n f a a a ==+⋅⋅⋅++,则)2(,)2,1(2222)1(2212≥=-=+⋅⋅⋅++--n C n f a a a n n ,两式相减得:2≥n 时,34222222-=-=-n C C a n n n ,且31412212-⨯===C a ,∴342-=n a n .16.已知数列{a n }的前n 项和是S n =32n -n 2,求数列{|a n |}的前n 项和S n ′.【解】 ∵a 1=S 1=32×1-12=31, 当n ≥2时,a n =S n -S n -1=33-2n , 又由a n >0,得n <16.5,即{a n }前16项为正,以后皆负.∴当n ≤16时,S n ′=|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =33n -n 2.当n >16时,S n ′=a 1+a 2+…+a 16-a 17-a 18-…-a n =S 16-(S n -S 16)=2S 16-S n =512-32n +n 2.∴2232 (16)'51232 (16)n n n n S n n n ⎧-≤⎪=⎨-+>⎪⎩ 17.已知数列{a n }满足a 1=4,a n =4-14-n a (n ≥2),令b n =21-n a ,(1)求证数列{b n }是等差数列; (2)求数列{a n }的通项公式.(1)【证明】 a n +1-2=2-n n n a a a )2(24-= ∴2121)2(2211-+=-=-+n n n n a a a a (n ≥1) 故2121211=---+n n a a (n ≥1) 即b n +1-b n =21 (n ≥1) ∴数列{b n }是等差数列.(2)【解】 ∵{21-n a }是等差数列 ∴221)1(21211nn a a n =⋅-+-=- ∴a n =2+n 2∴数列{a n }的通项公式a n =2+n218.已知数列{a n }中,211=a . 点(n , 2a n +1 – a n )在直线y = x 上,其中n = 1,2,3…. (1)令b n = a n +1 – a n – 1,求证数列{b n }是等比数列; (2)求数列{a n }的通项;(3)设S n 、T n 分别为数列{a n }、{b n }的前n 项和. 是否存在实数λ,使得数列}{n T S nn λ+为等差数列?若存在,试求出λ;若不存在,则说明理由. 【解析】(1)由已知得n a a a n n +==+112,21,∴432=a ,21131311424a b a --=--=-=, 又b n = a n +1 – a n – 1,∴b n +1 = a n +2 – a n +1 – 1,∴111121----=++++n n n n nn a a a a b b 1122)1(11---+-++=++n n n n a a na n a 12111----=++n n n n a a a a 21=. ∴{b n }是以43-为首项,以21为公比的等比数列.(2)由(1)知,1)21(43-⨯-=n n b =n 2123⨯-,∴n n n a a 212311⨯-=--+,∴2123112⨯-=--a a ,22321231⨯-=--a a ,…… ∴1121231--⨯-=--n n n a a , 将以上各式相加得:)1(1---n a a n =)212121(2312-+++-n , ∴211)211(2123111--⨯--+=-n n n a a =)211(23)1(211----+n n =223-+n n . ∴223-+=n a nn .(3)解法一:存在λ=2,使数列}{nT S nn λ+是等差数列. ∵S n = a 1 + a 1 +…+a n =)212121(321n++++ (1 + 2 +…+ n ) – 2n=n n n n 22)1(211)211(213-++--⨯=23)211(32n n n -+-=323232+-+-n n n . T n = b 1 + b +…+b n =)211(23211)211(43n n --=---=12323++-n . 数列}{n T S n n λ+是等差数列的充要条件是B An nT S nn +=+λ,(A 、B 是常数) 即Bn An T S n n +=+2λ,又323232+-+-=+n n T S n n n λ+)2323(1++-n λ=)211)(21(3232n n n --+-λ ∴当且仅当=-21λ0,即2=λ时,数列}{nT S nn λ+是等差数列. 解法二:存在λ=2,使数列}{nT S nn λ+是等差数列. 由(1)、(2)知,a n + 2b n = n – 2, ∴n n n T S n n 22)1(2-+=+. ∴n T T n n n n T S nn n n λλ+--+=+222)1(=n T nn 223-+-λ. 又T n = b 1 + b 2 +…+b n =211)211(43---n =)211(23n --=12323++-n . ∴)2323(2231++-⋅-+-=+n n n n n n T S λλ. ∴当且仅当λ=2时,数列}{nT S nn λ+是等差数列.。