2016-2017学年江西省宜春市万载县株潭中学高二上学期数学期中试卷带解析
- 格式:doc
- 大小:892.51 KB
- 文档页数:23
2016-2017学年江西省宜春市万载县高二(上)期中数学试卷一、选择题(本题共12道小题,每小题5分,共60分)1.在等差数列{a n}中,a1+a5=8,a4=7,则a5=()A.11 B.10 C.7 D.32.满足条件a=6,b=5,B=120°的△ABC的个数是()A.零个 B.一个 C.两个 D.无数个3.已知a,b,c∈R,且a>b,则一定成立的是()A.a2>b2B.C.ac2>bc2D.4.下列函数中,最小值为2的函数是()A.y=x+B.y=sinθ+(0<θ<)C.y=sinθ+(0<θ<π)D.5.△ABC中,若=,则该三角形一定是()A.等腰三角形但不是直角三角形B.直角三角形但不是等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6.不等式ax2+5x﹣2>0的解集是{x|<x<2},则关于x的不等式ax2﹣5x+a2﹣1>0的解集为()A.(﹣∞,﹣)∪(1,+∞)B.(﹣,1)C.(﹣∞﹣3)∪(,+∞)D.(﹣3,)7.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于()A. m B. m C.m D. m8.数列的前n项和为S n,且满足a1=1,a n=a n﹣1+n,(n≥2),则S n等于()A.B.C.D.9.已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.10.已知S n是等差数列{a n}的前n项和,公差为d,且S2015>S2016>S2014,下列五个命题:①d>0 ②S4029>0 ③S4030<0 ④数列{S n}中的最大项为S4029,其中正确命题的个数是()A.1 B.2 C.3 D.411.在△ABC中,三个内角A,B,C所对的边为a,b,c,若S△ABC=2,a+b=6,=2cosC,则c=()A.2B.4 C.2D.312.把数列{2n+1}依次按一项、二项、三项、四项循环分为(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27,),(29,31,33),(35,37,39,41),…,在第100个括号内各数之和为()A.1992 B.1990 C.1873 D.1891二、填空题(本题共4道小题,每小题5分,共20分)13.(文科做)命题“若a,b都是偶数,则a+b是偶数”的否命题是.14.两等差数列{a n}和{b n},前n项和分别为S n,T n,且,则等于.15.方程x2﹣2kx﹣3k=0一根大于1,一根小于﹣1,则实数k的取值范围.16.设M是,定义f(M)=(m,n,p),其中m、n、p 分别是△MBC,△MCA,△MAB的面积,的最小值是.三、解答题17.等比数列{a n}的前n项和为S n,已知S1,S3,S2成等差数列,求{a n}的公比q.18.变量x,y满足(1)设z=,求z的最小值;(2)设z=x2+y2+6x﹣4y+13,求z的取值范围.19.已知△ABC的外接圆的半径为,内角A、B、C的对边分别为a、b、c,向量,,且.(I)求角C;(II)求△ABC的面积S的最大值,并判断此时△ABC的形状.20.已知函数y=的定义域为R.(1)求a的取值范围.(2)若函数的最小值为,解关于x的不等式x2﹣x﹣a2﹣a<0.21.已知关于x的不等式 x2﹣(a2+3a+2)x+3a(a2+2)<0(a∈R).(Ⅰ)解该不等式;(Ⅱ)定义区间(m,n)的长度为d=n﹣m,若a∈,求该不等式解集表示的区间长度的最大值.22.已知等比数列{a n}的前n项和为S n=2•3n+k(k∈R,n∈N*)(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足a n=4,T n为数列{b n}的前n项和,试比较3﹣16T n 与 4(n+1)b n+1的大小,并证明你的结论.2016-2017学年江西省宜春市万载县株潭中学高二(上)期中数学试卷参考答案与试题解析一、选择题(本题共12道小题,每小题5分,共60分)1.在等差数列{a n}中,a1+a5=8,a4=7,则a5=()A.11 B.10 C.7 D.3【考点】8F:等差数列的性质.【分析】利用等差数列的通项公式即可得出.【解答】解:设等差数列{a n}的公差为d,∵a1+a5=8,a4=7,∴2a1+4d=8,a1+3d=7,解得a1=﹣2,d=3.则a5=﹣2+4×3=10.故选:B.2.满足条件a=6,b=5,B=120°的△ABC的个数是()A.零个 B.一个 C.两个 D.无数个【考点】HP:正弦定理.【分析】由余弦定理可得:52=62+c2﹣12ccos120°,化简解出即可判断出结论.【解答】解:由余弦定理可得:52=62+c2﹣12ccos120°,化为:c2+6c+11=0,△=62﹣44=﹣8<0,因此方程无解.∴满足条件a=6,b=5,B=120°的△ABC的个数是0.故选;A.3.已知a,b,c∈R,且a>b,则一定成立的是()A.a2>b2B.C.ac2>bc2D.【考点】R3:不等式的基本性质.【分析】A、当a=﹣1,b=﹣2,显然不成立;B、∵由于ab符号不确定,故与的大小不能确定;C、当c=0时,则ac2=bc2,;D、由c2+1≥1可判断.【解答】解:对于A、当a=﹣1,b=﹣2,显然不成立,故A项不一定成立;对于B、∵由于ab符号不确定,故与的大小不能确定,故B项不一定成立;对于C、当c=0时,则ac2=bc2,故C不一定成立;对于D、由c2+1≥1,故D项一定成立;故选:D4.下列函数中,最小值为2的函数是()A.y=x+B.y=sinθ+(0<θ<)C.y=sinθ+(0<θ<π)D.【考点】7F:基本不等式.【分析】A.x<0时,y<0.B.0<θ<,可得1>sinθ>0,利用基本不等式的性质即可判断出结论.C.0<θ<π,可得1≥sinθ>0利用基本不等式的性质即可判断出结论.D.利用基本不等式的性质即可判断出结论..【解答】解:A.x<0时,y<0.B.∵0<θ<,可得1>sinθ>0,∴y=sinθ+=2,最小值不可能为2.C..∵0<θ<π,可得1≥sinθ>0,∴y=sinθ+≥=2,当且仅当sinθ=1时取等号,最小值为2.D. +>=2,最小值不可能为2.故选:C.5.△ABC中,若=,则该三角形一定是()A.等腰三角形但不是直角三角形B.直角三角形但不是等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形【考点】HP:正弦定理.【分析】已知等式变形后,利用正弦定理化简,再利用二倍角的正弦函数公式化简,即可确定出三角形形状.【解答】解:由已知等式变形得:acosA=bcosB,利用正弦定理化简得:sinAcosA=sinBcosB,即sin2A=sin2B.∴2A=2B或2A+2B=180°,∴A=B或A+B=90°,则△ABC为等腰三角形或直角三角形.故选:D.6.不等式ax2+5x﹣2>0的解集是{x|<x<2},则关于x的不等式ax2﹣5x+a2﹣1>0的解集为()A.(﹣∞,﹣)∪(1,+∞)B.(﹣,1)C.(﹣∞﹣3)∪(,+∞)D.(﹣3,)【考点】74:一元二次不等式的解法.【分析】由不等式的解集与方程的关系,可知,2是相应方程的两个根,利用韦达定理求出a的值,再代入不等式ax2﹣5x+a2﹣1>0易解出其解集.【解答】解:由已知条件可知a<0,且,2是方程ax2+5x﹣2=0的两个根,由根与系数的关系得:×2=﹣解得a=﹣2所以ax2﹣5x+a2﹣1>0化为2x2+5x﹣3<0,化为:(2x﹣1)(x+3)<0解得﹣3<x<,所以不等式解集为:(﹣3,)故选:D.7.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于()A. m B. m C.m D. m【考点】HU:解三角形的实际应用.【分析】由题意画出图形,由两角差的正切求出15°的正切值,然后通过求解两个直角三角形得到DC和DB的长度,作差后可得答案.【解答】解:如图,∠DAB=15°,∵tan15°=tan(45°﹣30°)==2﹣.在Rt△ADB中,又AD=60,∴DB=AD•tan15°=60×(2﹣)=120﹣60.在Rt△ADC中,∠DAC=60°,AD=60,∴DC=AD•tan60°=60.∴BC=DC﹣DB=60﹣=120(﹣1)(m).∴河流的宽度BC等于120(﹣1)m.故选:B.8.数列的前n项和为S n,且满足a1=1,a n=a n﹣1+n,(n≥2),则S n等于()A.B.C.D.【考点】8E:数列的求和.【分析】由a n=a n﹣1+n(n≥2)得a n﹣a n﹣1=n,利用累加法求出a n,代入化简后,由等差数列的前n项和公式求出则数列的前n项和为S n.【解答】解:由题意得,a n=a n﹣1+n(n≥2),则a n﹣a n﹣1=n,所以a2﹣a1=2,a3﹣a2=3,…,a n﹣a n﹣1=n,以上(n﹣1)个式子相加得,a n﹣a1=2+3+…+n,又a1=1,则a n=1+2+3+…+n=,所以=,则数列的前n项和为S n= = =,故选:B.9.已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.【考点】7C:简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,然后确定a的值即可.【解答】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.10.已知S n是等差数列{a n}的前n项和,公差为d,且S2015>S2016>S2014,下列五个命题:①d>0 ②S4029>0 ③S4030<0 ④数列{S n}中的最大项为S4029,其中正确命题的个数是()A.1 B.2 C.3 D.4【考点】85:等差数列的前n项和.【分析】推导出等差数列的前2015项和最大,a1>0,d<0,且前2015项为正数,从第2016项开始为负数,由S2016>S2014,得S2016﹣S2014=a2016+a2015>0,由此求出S4029>0,S4030>0.【解答】解:∵S n是等差数列{a n}的前n项和,公差为d,且S2015>S2016>S2014,∴等差数列的前2015项和最大,∴a1>0,d<0,且前2015项为正数,从第2016项开始为负数,故①和④错误;再由S2016>S2014,得S2016﹣S2014=a2016+a2015>0,S4029=(a1+a4029)=×2a2015>0,故②正确;S4030==2015(a2015+a2016)>0,故③错误.故选:A.11.在△ABC中,三个内角A,B,C所对的边为a,b,c,若S△ABC=2,a+b=6,=2cosC,则c=()A.2B.4 C.2D.3【考点】HP:正弦定理;HR:余弦定理.【分析】运用正弦定理和两角和的正弦公式和诱导公式,化简可得角C,再由面积公式和余弦定理,计算即可得到c的值.【解答】解: ===1,即有2cosC=1,可得C=60°,若S△ABC=2,则absinC=2,即为ab=8,又a+b=6,由c2=a2+b2﹣2abcosC=(a+b)2﹣2ab﹣ab=(a+b)2﹣3ab=62﹣3×8=12,解得c=2.故选C.12.把数列{2n+1}依次按一项、二项、三项、四项循环分为(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27,),(29,31,33),(35,37,39,41),…,在第100个括号内各数之和为()A.1992 B.1990 C.1873 D.1891【考点】F1:归纳推理.【分析】由a n=2n+可得数列{a n}依次按1项、2项、3项、4项循环地分为(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27,),(29,31,33),(35,37,39,41),…,每一次循环记为一组.由于每一个循环含有4个括号,故第100个括号内各数之和是第25组中第4个括号内各数之和.由分组规律知,由各组第4个括号中所有第1个数,所有第2个数、所有第3个数、所有第4个所有第4个数分别组成都是等差数列,公差均为20.故各组第4个括号中各数之和构成等差数列,且公差为80.代入可求【解答】解:由已知可知:原数列按1、2、3、4项循环分组,每组中有4个括号,每组中共有10项,因此第100个括号应在第25组第4个括号,该括号内四项分别为a247、a248、a249、a250,因此在第100个括号内各数之和=a247+a248+a249+a250=495+497+499+501=1992,故选A.二、填空题(本题共4道小题,每小题5分,共20分)13.(文科做)命题“若a,b都是偶数,则a+b是偶数”的否命题是若a,b不都是偶数,则a+b不是偶数.【考点】21:四种命题.【分析】欲写出它的否命题,须同时对条件和结论同时进行否定即可.【解答】解:条件和结论同时进行否定,则否命题为:若a,b不都是偶数,则a+b不是偶数.故答案为:若a,b不都是偶数,则a+b不是偶数.14.两等差数列{a n}和{b n},前n项和分别为S n,T n,且,则等于.【考点】8F:等差数列的性质.【分析】利用==,即可得出结论.【解答】解:====.故答案为:.15.方程x2﹣2kx﹣3k=0一根大于1,一根小于﹣1,则实数k的取值范围(1,+∞).【考点】7H:一元二次方程的根的分布与系数的关系.【分析】设(x)=x2﹣2kx﹣3k,令f(1)<0且f(﹣1)<0即可解出k的范围.【解答】解:设f(x)=x2﹣2kx﹣3k,由题意可知,即,解得k>1.故答案为:(1,+∞).16.设M是,定义f(M)=(m,n,p),其中m、n、p 分别是△MBC,△MCA,△MAB的面积,的最小值是18 .【考点】HP:正弦定理;7F:基本不等式;9R:平面向量数量积的运算.【分析】由平面向量的数量积运算法则及∠ABC的度数,求出的值,再由sinA的值,利用三角形的面积公式求出三角形ABC的面积为1,即△MBC,△MCA,△MAB的面积之和为1,根据题中定义的,得出x+y=,利用此关系式对所求式子进行变形后,利用基本不等式即可求出所求式子的最小值.【解答】解:由,得,所以,∴x+y=,则,当且仅当时,的最小值为18.故答案为:18三、解答题17.等比数列{a n}的前n项和为S n,已知S1,S3,S2成等差数列,求{a n}的公比q.【考点】89:等比数列的前n项和;84:等差数列的通项公式.【分析】由题意可得 2(a1+a1•q+)=a1+(a1+a1•q),再根据a1≠0,q≠0,从而求出公比q的值.【解答】解依题意有2S3=S1+S2,即 2(a1+a1•q+)=a1+(a1+a1•q),由于a1≠0,∴2q2+q=0,又q≠0,∴q=﹣.18.变量x,y满足(1)设z=,求z的最小值;(2)设z=x2+y2+6x﹣4y+13,求z的取值范围.【考点】7C:简单线性规划.【分析】(1)先画出满足条件的平面区域,求出A,B,C的坐标,根据z=的几何意义,从而求出z的最小值;(2)z=(x+3)2+(y﹣2)2的几何意义是可行域上的点到点(﹣3,2)的距离的平方,结合图形求出即可.【解答】解由约束条件作出(x,y)的可行域,如图阴影部分所示:由,解得A(1,),由,解得C(1,1),由,可得B(5,2),(1)∵z==,∴z的值即是可行域中的点与原点O连线的斜率,观察图形可知z min=k OB=;(2)z=x2+y2+6x﹣4y+13=(x+3)2+(y﹣2)2的几何意义是可行域上的点到点(﹣3,2)的距离的平方,结合图形可知,可行域上的点到(﹣3,2)的距离中,d min=4,d max=8.故z的取值范围是.19.已知△ABC的外接圆的半径为,内角A、B、C的对边分别为a、b、c,向量,,且.(I)求角C;(II)求△ABC的面积S的最大值,并判断此时△ABC的形状.【考点】HT:三角形中的几何计算;9R:平面向量数量积的运算.【分析】(I)根据建立等式关系,利用正余弦定理即可求角C;(II)根据△ABC的面积S=absinC,利用余弦定理和基本不等式求最大,即可判断此时△ABC的形状.【解答】解:向量,,且.(I)∵,∴sin2A﹣sin2C=(a﹣b)sinB.由正弦定理可得:sinA=,sinB=,sinC=,∴a2﹣c2=(a﹣b)b.由余弦定理:cosC=.∵0<C<π,∴C=.(II)△ABC的面积S=absinC,∵C=,R=,∴c=2RsinC=.由余弦定理:得a2+b2=6+ab.∵a2+b2≥2ab,(当且仅当a=b是取等)∴ab≤6.故得△ABC的面积S=absinC=.∵C=,a=b.此时△ABC为等边三角形.20.已知函数y=的定义域为R.(1)求a的取值范围.(2)若函数的最小值为,解关于x的不等式x2﹣x﹣a2﹣a<0.【考点】74:一元二次不等式的解法;33:函数的定义域及其求法.【分析】(1)由函数y=的定义域是R,得出ax2+2ax+1≥0恒成立,求出a的取值范围;(2)由题意得ax2+2ax+1的最小值是,求出a的值,代入不等式x2﹣x﹣a2﹣a<0,求解集即可.【解答】解:(1)函数y=的定义域为R,∴ax2+2ax+1≥0恒成立,当a=0时,1>0恒成立,满足题意;当a≠0时,须,即,解得0<a≤1;综上,a的取值范围是{a|0≤a≤1};(2)∵函数y的最小值为,∴≥,a∈;∴ax2+2ax+1≥;当a=0时,不满足条件;当1≥a>0时,ax2+2ax+1的最小值是=,∴a=;∴不等式x2﹣x﹣a2﹣a<0可化为x2﹣x﹣<0,解得﹣<x<;∴不等式的解集是{x|﹣<x<}.21.已知关于x的不等式 x2﹣(a2+3a+2)x+3a(a2+2)<0(a∈R).(Ⅰ)解该不等式;(Ⅱ)定义区间(m,n)的长度为d=n﹣m,若a∈,求该不等式解集表示的区间长度的最大值.【考点】74:一元二次不等式的解法.【分析】(Ⅰ)原不等式化为(x﹣3a)<0,根据1<a<2,a=1或a=2分类讨论,能求出原不等式的解集.(Ⅱ)当a≠1且a≠2时,,a∈,由此能求出该不等式解集表示的区间长度的最大值.【解答】解:(Ⅰ)原不等式可化为(x﹣3a)<0,…当a2+2<3a,即1<a<2时,原不等式的解为a2+2<x<3a;…当a2+2=3a,即a=1或a=2时,原不等式的解集为∅;…当a2+2>3a,即a<1或a>2时,原不等式的解为3a<x<a2+2.…综上所述,当1<a<2时,原不等式的解为a2+2<x<3a,当a=1或a=2时,原不等式的解集为∅,当a<1或a>2时,原不等式的解为3a<x<a2+2.(Ⅱ)当a=1或a=2时,该不等式解集表示的区间长度不可能最大.…当a≠1且a≠2时,,a∈.…设t=a2+2﹣3a,a∈,则当a=0时,t=2,当时,,当a=4时,t=6,…∴当a=4时,d max=6.…22.已知等比数列{a n}的前n项和为S n=2•3n+k(k∈R,n∈N*)(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足a n=4,T n为数列{b n}的前n项和,试比较3﹣16T n 与 4(n+1)b n+1的大小,并证明你的结论.【考点】89:等比数列的前n项和;8K:数列与不等式的综合.【分析】(I)利用递推关系可得,n≥2 时,a n=S n﹣S n﹣1=4×3n﹣1由{a n}是等比数列可得a1=S1=6+k=4从而苛求得k=﹣2,代入可求通项公式(II)结合(I)可求得,根据通项公式的特点求和时可利用错位相减可求T n,要比较3﹣16T n与4(n+1)b n+1的大小,可通过作差法可得,4(n+1)b n+1﹣(3﹣16T n)=通过讨论n的范围判断两式的大小【解答】解:(Ⅰ)由S n=2﹣3n+k可得n≥2 时,a n=S n﹣S n﹣1=4×3n﹣1∵{a n}是等比数列∴a1=S1=6+k=4∴k=﹣2,a n=4×3n﹣1(Ⅱ)由和a n=4×3n﹣1得T n=b1+b2+…+b n=两式相减可得,=4(n+1)b n+1﹣(3﹣16T n)=而n(n+1)﹣3(2n+1)=n2﹣5n﹣3当或<0时,有n(n+1)>3(2n+1)所以当n>5时有3﹣16T n<4(n+1)b n+1那么同理可得:当时有n(n+1)<3(2n+1),所以当1≤n≤5时有3﹣16T n>4(n+1)b n+1综上:当n>5时有3﹣16T n<4(n+1)b n+1;当1≤n≤5时有3﹣16T n>4(n+1)b n+1。
江西省宜春市数学高二上学期理数期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共12分)1. (1分)已知a,b,c∈R,且a<b,则()A . a3>b3B . a2<b2C .D . ac2≤bc22. (1分) (2018高二上·惠来期中) 若是等差数列,与的等差中项为1,与的等差中项为2,则公差()A . 1B . 2C .D .3. (1分)在△ABC中,角A,B,C的对边分别是a,b,c,若+,则∠A的大小是()A .B .C .D .4. (1分)对于使成立的所有常数M中,我们把M的最小值1叫做的上确界,若且,则的上确界为()A . -3B . -4C . -D .5. (1分) (2019高一下·大庆月考) 在各项均为正数的等比数列中,,,则的值是()A .B .C .D .6. (1分)在中,若,则的值为()A .B .C .D .7. (1分)设变量满足约束条件,则的最大值为()A .B .C .D .8. (1分)已知各项均为正数的等比数列,,,则()A .B . 7C . 6D .9. (1分) (2019高二上·兰州期中) 在中,角,,的对边分别为,,,其面积为,若,则一定是()A . 等腰三角形B . 直角三角形C . 等边三角形D . 等腰直角三角形10. (1分) (2017高二上·景德镇期末) 已知λ= x2dx,数列{an}是各项均为正数的等比数列,则的最小值为()A . 2B . 2C . 6D . 611. (1分)已知中,,,,那么角A等于()A .B .C .D .12. (1分) (2018高一下·伊春期末) 一个等差数列的第5项为10,前3项的和为3,则它的首项和公差分别为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2017高一下·淮安期中) 在△ABC中,若2cosBsinA=sinC,则△ABC的形状一定是________三角形.14. (1分) (2016高一下·高淳期中) 数列{an}的首项为3,{bn}为等差数列且bn=an+1﹣an(n∈N*).若b3=﹣2,b10=12,则a8=________.15. (1分) (2017高一下·蚌埠期中) 已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于________.16. (1分) (2018高一下·石家庄期末) 已知关于的不等式的解集为,则关于的不等式的解集为________.三、解答题 (共6题;共7分)17. (1分)不查表求值:cos40°•cos80°+cos80°•cos160°+cos160°•cos40°.18. (2分)已知{an}是公差不为零的等差数列,且a1=1,a2是a1与a5的等比中项.(1)求{an}的通项公式;(2)求{an}的前n项和Sn .19. (1分) (2019高二上·南宁月考) 已知椭圆的左、右焦点为,离心率为,点在椭圆上,且的面积的最大值为 .(1)求椭圆的方程;(2)已知直线与椭圆交于不同的两点,若在轴上存在点得,求实数的取值范围.20. (1分) (2016高一下·湖北期中) △ABC的三个内角A、B、C所对的边分别为a、b、c,1+ = .(1)求A的大小;(2)若△ABC为锐角三角形,求函数y=2sin2B﹣2cosBcosC的取值范围;(3)现在给出下列三个条件:①a=1;②2c﹣( +1)b=0;③B=45°,试从中再选择两个条件,以确定△ABC,求出所确定的△ABC的面积.21. (1分)某公司新研发了甲、乙两种型号的机器,已知生产一台甲种型号的机器需资金30万元,劳动力5人,可获利润6万元,生产一台乙种型号的机器需资金20万元,劳动力10人,可获利润8万元.若该公司每周有300万元的资金和110个劳动力可供生产这两种机器,那么每周这两种机器各生产多少台,才能使周利润达到最大,最大利润是多少?22. (1分) (2018高一下·平原期末) 已知等差数列中,前项和为,,为等比数列且各项均为正数,,且满足: .(1)求与;(2)记,求的前项和;(3)若不等式对一切恒成立,求实数的取值范围.参考答案一、单选题 (共12题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共7分) 17-1、18-1、19-1、19-2、20-1、20-2、20-3、21-1、22-1、22-2、22-3、。
江西省宜春市高二上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分) (2016高一上·渝中期末) 设集合,B={x|x<1},则A∪B=()A .B . (﹣1,1)∪(1,2)C . (﹣∞,2)D .2. (2分) (2019高一上·鹤岗期末) 已知 ,则 os 等于()A .B .C .D .3. (2分) (2016高一下·安徽期末) 定义在R上的函数y=f(x)是减函数,且对任意的a∈R,都有f(﹣a)+f(a)=0,若x、y满足不等式f(x2﹣2x)+f(2y﹣y2)≤0,则当1≤x≤4时,x﹣3y的最大值为()A . 10B . 8C . 6D . 44. (2分) (2016高一下·西安期中) 当x∈[0,2π],函数y=sinx和y=cosx都是增加的区间是()A . [0, ]B . [ ,π]C . [π, ]D . [ ,2π]5. (2分)已知y=f(x)为R上的连续可导函数,且xf′(x)+f(x)>0,则函数g(x)=xf(x)+1(x >0)的零点个数为()A . 0B . 1C . 0或1D . 无数个6. (2分)在如图所示的“茎叶图”表示的数据中,众数和中位数分别是()A . 23与26B . 31与26C . 24与30D . 26与307. (2分)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。
由图中数据可知身高在[120,130]内的学生人数为()A . 20B . 25C . 30D . 358. (2分) (2018高三上·西安模拟) 三世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法.所谓割术,就是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法.按照这样的思路刘徽把圆内接正多边形的面积一直算到了正3072边形,如图所示是利用刘徽的割圆术设计的程序框图,若输出的 ,则的值可以是()(参考数据:)A . 2.6B . 3C . 3.1D . 3.149. (2分)已知函数,(其中),其部分图象如图所示,则()A .B .C .D .10. (2分)衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进的新丸体积为,经过天后体积与天数的关系式为,已知新丸经过天后,体积变为 .若一个新丸体积变为,则需经过的天数为()A . 天B . 天C . 天D . 天11. (2分) (2017高二下·沈阳期末) 下列说法:①分类变量与的随机变量越大,说明“ 与有关系”的可信度越大.②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是和0.3.③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为中,,则 .④如果两个变量与之间不存在着线性关系,那么根据它们的一组数据不能写出一个线性方程正确的个数是()A . 1B . 2C . 3D . 412. (2分)要得到函数y= sinx的图象,只需将函数的图象()A . 向右平移个单位B . 向右平移个单位C . 向左平移个单位D . 向左平移个单位13. (2分)设是定义在R上的奇函数,且当时,,若对任意的,不等式恒成立,则实数的取值范围是()A .B .C .D .14. (2分)下列函数是偶函数,且最小正周期为π的是()A . y=sin(π﹣2x)B . y=sin2xcos2xC . y=cos22x+1D . y=cos(2x﹣π)15. (2分) (2017高二上·景德镇期末) 已知直线y=kx(k∈R)与函数f(x)= 的图象恰有三个不同的公共点,则实数k的取值范围是()A . (,+∞)B . (﹣∞,﹣2)∪(2,+∞)C . (﹣∞,﹣2)D . (2,+∞)二、填空题 (共5题;共5分)16. (1分) (2016高一下·滕州期末) 某校有男生1200人,女生900人,为了解该校学生对某项体育运动的喜爱情况,采用按性别分层抽样的方法,从该校学生中抽取一个容量为70的样本,则样本中女生的人数为________.17. (1分) (2016高一上·如东期中) 函数f(x)= + 的定义域为________18. (1分) (2018高一下·齐齐哈尔期末) 函数的最大值是________.19. (1分) (2018高三上·长春期中) 设函数y=sin(ωx+φ)(ω>0,φ∈(-, ))的最小正周期为π,且其图象关于直线x=对称,则在下面四个结论中:①图象关于点( ,0)对称;②图象关于点( ,0)对称;③在[0, ]上是增函数;④在[-,0]上是增函数,所有正确结论的编号为________.20. (1分) (2019高一上·顺德月考) 已知函数当时,则 ________.三、解答题 (共4题;共35分)21. (10分) (2018·衡水模拟) 在锐角中,内角,,的对边分别为,,,且.(1)求角;(2)若,求周长的取值范围.22. (10分) (2019高二上·郑州期中) 在中,内角,,的对边分别是,,,且 .(1)求角的大小;(2)若,与在两侧,,求面积的最大值.23. (5分) (2017高三下·西安开学考) 食品安全是关乎到人民群众生命的大事.某市质检部门为了解该市甲、乙两个食品厂生产食品的质量,从两厂生产的食品中分别随机抽取各10件样品,测量产品中某种元素的含量(单位:毫克).如图是测量数据的茎叶图:规定:当食品中的此种元素含量不小于18毫克时,该食品为优等品.(Ⅰ)试用上述样本数据估计甲、乙两厂生产的优等品率;(Ⅱ)从乙厂抽出的上述10件样品中,随机抽取3件,求抽到的3件样品中优等品数ξ的分布列及其数学期望E(ξ);(Ⅲ)从甲厂的10件样品中有放回的随机抽取3件,也从乙厂的10件样品中有放回的随机抽取3件,求抽到的优等品数甲厂恰比乙厂多2件的概率.24. (10分) (2016高一上·嘉兴期中) 已知函数f(xt)=xt2+bxt .(1)若b=2,且xt=log2t,t∈[ ,2],求f(xt)的最大值;(2)当y=f(xt)与y=f(f(xt))有相同的值域时,求b的取值范围.参考答案一、选择题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共5分)16-1、17-1、18-1、19-1、20-1、三、解答题 (共4题;共35分) 21-1、21-2、22-1、22-2、23-1、24-1、24-2、。
2016-2017学年高二上学期期中考试数学试题一、选择题(本大题共8小题,每小题5分,共40分)1.某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,设“抽到一等品”的概率为0.65,“抽到二等品”的概率为0.3,则“抽到不合格品”的概率为( )A .0.05B .0.35C .0.7D .0.95 2.全称命题“2,54x R x x ∀∈+=”的否定是( )A .2000,54x R x x ∃∈+=B .2,54x R x x ∀∈+≠C .2000,54x R x x ∃∈+≠D .以上都不正确3.在如图所示的茎叶图中,若甲组数据的众数为14,则乙组数据的中位数为( )A .6B .8C .10D .144.某程序框图如图所示,若输出的结果是62,则判断框中可以是( ) A .7?i ≥ B .6?i ≥ C .5?i ≥ D .4?i ≥5.对于实数,,a b c ,“a b >”是“22ac bc >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知椭圆22221(0)x y a b a b+=>>的一个焦点是圆22680x y x +-+=的圆心,且短轴长为8,则椭圆的左顶点为( )A .(2,0)-B .(3,0)-C .(4,0)-D .(5,0)- 7.点P 在边长为1的正方形ABCD 内运动,则动点P 到 定点A 的距离|PA |1<|的概率为( )A.πB.2π C.4π D .6π8.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅ 的最大值为( ) A .2 B .3 C .6 D .8二、填空题(每题5分,共6个小题,满分30分) 9.某课题组进行城市空气质量调查,按地域把24个城市分 成甲、乙、丙三组,对应城市数分别为 4、12、8.若用分层 抽样方法抽取6个 城市,则甲组中应抽取的城市数为________.10.执行如图所示的程序框图,若输入的x 的值为1, 则输出的n 的值为________.11.有一个容量为200的样本,其频率分布直方图如图所示, 据图知,样本数据在[8,10)内的频数为 12.已知点M 是圆224x y +=上任意一点,过点M 向x 轴作垂线,垂足为N ,则线段MN (包括MN 重合) 的中点的轨迹方程为13.在平面直角坐标系xoy 中,椭圆C 的中心为原点,焦点12,F F 在x轴上,离心率为2.过点1F 的直线L 交C 于,A B 两点,且2ABF ∆的周长为16,那么C 的方程为 . 14.有下列命题:①“若0x y +>,则00x y >>且”的否命题; ②“矩形的对角线相等”的否命题;③“若1m ≥,则22(m 1)x m 30mx -+++>的解集是R ”的逆命题; ④“若7a +是无理数,则a 是无理数”的逆否命题. 其中正确命题的序号是三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)15.(满分13分)设命题p :x y c =为R 上的减函数,命题q :函数2(x)234f x x c =-+>在1,22x ⎡⎤∈⎢⎥⎣⎦上恒成立.若p q ∨为真命题,p q ∧为假命题,求c 的取值范围.第18题图16.(满分13分)某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机进行调查,调查问卷共10道题,答题情况如下表所示.(1)如果出租车司机答对题目数大于等于9,就认为该司机对新法规的知晓情况比较好,试估计该公司的出租车司机对新法规知晓情况比较好的概率率;(2)从答对题目数小于8的出租车司机中任选出2人做进一步的调查,求选出的2人中至少有一名女出租车司机的概率.17.(满分13分)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD,AC ,22AB BC ==,AC FB ⊥.(1)求证:⊥AC 平面FBC ;(II )线段AC 的中点为M ,求证EA //平面FDM18(满分14分).随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.(Ⅰ)根据茎叶图判断哪个班的平均身高较高; (Ⅱ)计算甲班的样本方差;(Ⅲ)现从乙班这10名同学中随机抽取两名身高不低于173cm 的同学,求身高为176cm 的同学被抽中的概率.19.(满分14分)某同学利用国庆节期间进行社会实践活动,在[25,55]岁的人群中随机抽取n 人进行了一次生活习惯是否符合低碳生活的调查,若生活习惯符合低碳生活的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数的频率分布直方图:(1)补全频率分布直方图,并求,,n a p 的值;(2)从年龄在[40,50)岁的“低碳族”中采用分层抽样的方法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.20.(满分14分)已知椭圆的标准方程为:22221(0)43x y a a a+=>(1)当1a =时,求椭圆的焦点坐标及椭圆的离心率; (2)过椭圆的右焦点2F 的直线与圆222:4(0)C x y a a +=>常数交于,A B 两点,求22|F ||F |A B ⋅的值.2016-2017学年高二上学期期中考试数学试题答案一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,设“抽到一等品”的概率为0.65,“抽到二等品”的概率为0.3,则“抽到不合格品”的概率为( )A .0.95B .0.7C .0.35D .0.05解析:“抽到一等品”与“抽到二等品”是互斥事件,所以“抽到一等品或二等品”的概率为0.65+0.3=0.95,“抽到不合格品”与“抽到一等品或二等品”是对立事件,故其概率为1-0.95=0.05.答案:D2.全称命题“∀x ∈R ,x 2+5x =4”的否定是( )A .∃x 0∈R ,x 20+5x 0=4 B .∀x ∈R ,x 2+5x ≠4 C .∃x 0∈R ,x 20+5x 0≠4 D .以上都不正确解析:选C 全称命题的否定为特称命题.3.在如图所示的茎叶图中,若甲组数据的众数为14,则乙组数据的中位数为( )A .6B .8C .10D .14解析:由甲组数据的众数为14得x =y =4,乙组数据中间两个数分别为6和14,所以中位数是6+142=10.答案:C4.某程序框图如图所示,若输出的结果是126,则判断框中可以是( )A .i >6?B .i >7?C .i ≥6?D .i ≥5?解析:根据题意可知该程序运行情况如下: 第1次:S =0+21=2,i =1+1=2; 第2次:S =2+22=6,i =3; 第3次:S =6+23=14,i =4; 第4次:S =14+24=30,i =5; 第5次:S =30+25=62,i =6; 第6次:S =62+26=126,i =7;此时S =126,结束循环,因此判断框应该是“i >6?”.答案:A5.“a <0”是“方程ax 2+1=0至少有一个负根”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析:选C 方程ax 2+1=0至少有一个负根等价于x 2=-1a,故a <0,故选C.6.已知椭圆22221(0)x y a b a b+=>>的一个焦点是圆22680x y x +-+=的圆心,且短轴长为8,则椭圆的左顶点为( )A .(2,0)-B .(3,0)-C .(4,0)-D .(5,0)-【解析】圆心坐标为(3,0),∴c =3,又b =4,∴5a =. ∵椭圆的焦点在x 轴上,∴椭圆的左顶点为(-5,0). 【答案】 D7.点P 在边长为1的正方形ABCD 内运动,则动点P 到定点A 的距离|PA |<1的概率为( )A.14B.12C.π4D .π 解析:如图所示,动点P 在阴影部分满足|PA |<1,该阴影是半径为1,圆心角为直角的扇形,其面积为S ′=π4,又正方形的面积是S =1,则动点P到定点A 的距离|PA |<1的概率为S ′S =π4. 答案:C 8.直线l 经过椭圆的一个短轴顶点顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A .13B .12C .23D .34解析:选B 不妨设直线l 经过椭圆的一个顶点B (0,b )和一个焦点F (c,0),则直线l 的方程为x c +yb=1,即bx +cy -bc =0.由题意知|-bc |b 2+c 2=14×2b ,解得c a =12,即e =12.故选B .二、填空题(每题5分,共6个小题,满分30分)9.某课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应城市数分别为4、12、8.若用分层抽样方法抽取6个城市,则甲组中应抽取的城市数为________.答案:110.执行如图所示的程序框图,若输入的x 的值为1, 则输出的n 的值为________.答案:311.有一个容量为200的样本,其频率分布直方图如图所示,据图知,样本数据在[8,10)内的频数为( )A .38B .57C .76D .95 答案:C12.已知点M 是圆224x y +=上任意一点,过点M 向x 轴作垂线,垂足为N ,则线段MN (包括MN 重合)的中点的轨迹方程为2214x y += 13.在平面直角坐标系xoy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为2.过点1F 的直线L 交C 于,A B 两点,且2ABF ∆的周长为16,那么C 的方程为_________.【答案】221168x y +=14.有下列命题:①“若x +y >0,则x >0且y >0”的否命题; ②“矩形的对角线相等”的否命题;③“若m ≥1,则mx 2-2(m +1)x +m +3>0的解集是R ”的逆命题; ④“若a +7是无理数,则a 是无理数”的逆否命题. 其中正确的是 ①③④三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)15.(满分13分)设命题p :x y c =为R 上的减函数,命题q :函数2(x)234f x x c =-+>在1,22x ⎡⎤∈⎢⎥⎣⎦上恒成立.若p q ∨为真命题,p q ∧为假命题,求c 的取值范围.解:由p ∨q 真,p ∧q 假,知p 与q 为一真一假,对p ,q 进行分类讨论即可. 若p 真,由y =c x为减函数,得0<c <1. .....................3分 当1,22x ⎡⎤∈⎢⎥⎣⎦时,由不等式2(x 1)22-+≥(x =1时取等号)知(x)f 在1,22⎡⎤⎢⎥⎣⎦上的最小值为2 ......................6分若q 真,则42c <,即12c < .......................8分 若p 真q 假,则112c ≤<; .......................10分 若p 假q 真,则0c ≤. ......................12分 综上可得,(]1,0,12c ⎡⎫∈-∞⎪⎢⎣⎭......................13分16.(满分13分)某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机进行调查,调查问卷共10道题,答题情况如下表所示.(1)如果出租车司机答对题目数大于等于9,就认为该司机对新法规的知晓情况比较好,计算被调查的出租车司机对新法规知晓情况比较好的频率;(2)从答对题目数小于8的出租车司机中任选出2人做进一步的调查,求选出的2人中至少有一名女出租车司机的概率.解:(1)答对题目数小于9的人数为55,记“答对题目数大于等于9”为事件A ,P (A )=1-55100=0.45. .......................6分 (2)记“选出的2人中至少有一名女出租车司机”为事件M ,设答对题目数小于8的司机为A ,B ,C ,D ,E ,其中A ,B 为女司机,任选出2人包含AB ,AC ,AD ,AE ,BC ,BD ,BE ,CD ,CE ,DE ,共10种情况,.......................9分(3)至少有一名女出租车司机的事件为AB ,AC ,AD ,AE ,BC ,BD ,BE ,共7种 ..12分则P (M )=710=0.7. ......13分16.(满分14分)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD,AC ,22AB BC ==,AC FB ⊥.(1)求证:⊥AC 平面FBC ;(II )线段AC 的中点为M ,求证EA //平面FDM第3题图17.(本小题满分14分) (Ⅰ)证明:在△ABC 中,因为AC =,2AB =,1BC =,所以 BC AC ⊥. ………………3分 又因为 AC FB ⊥, 因为BC FB B =所以 ⊥AC 平面FBC . ………………6分 (Ⅱ)M 为AC 中点时,连结CE ,与DF 交于点N ,连结MN .因为 CDEF 为正方形,所以N 为CE 中点. ……………8分 所以 EA //MN . ……………10分 因为 ⊂MN 平面FDM ,⊄EA 平面FDM , ………12分 所以 EA //平面FDM . …………13分18(满分14分).随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.(Ⅰ)根据茎叶图判断哪个班的平均身高较高; (Ⅱ)计算甲班的样本方差;(Ⅲ)现从乙班这10名同学中随机抽取两名身高不低于173cm 的同学,求身高为176cm 的同学被抽中的概率. 规范解答不失分 (Ⅰ)由茎叶图可知:甲班身高集中于160179:之间, 而乙班身高集中于170180: 之间.因此乙班平均身高高于甲班 ...............4分 (Ⅱ)158162163168168170171179182170.10x ++++++++==...............6分 甲班的样本方差为:222222222221(158170)(162170)(163170)(168170)10(168170)(170170)(171170)(179170)(179170)(182170)57.2.s ⎡=-+-+-+-⎣+-+-+-+-+-+-=...............8分(Ⅲ)设身高为176cm的同学被抽中的事件为A;从乙班10名同学中抽中两名身高不低于173cm的同学有:(181,173)(181,176)(181,178)(181,179)(179,173)(179,176)(179,178)(178,173)(178, 176) (176,173)共10个基本事件,...............10分而事件A含有4个基本事件;...............12分所以42().105P A ...............14分19.(满分14分)某同学利用国庆节期间进行社会实践活动,在[25,55]岁的人群中随机抽取n人进行了一次生活习惯是否符合低碳生活的调查,若生活习惯符合低碳生活的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数的频率分布直方图:(1)补全频率分布直方图,并求n,a,p的值;(2)从年龄在[40,50)岁的“低碳族”中采用分层抽样的方法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.解:(1)第二组的概率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以频率组距=0.35=0.06.............2分 频率分布直方图如下:............4分第一组的人数为1200.6=200,频率为0.04×5=0.2, 所以n =2000.2=1 000 .............6分 因为第二组的频率为0.3,所以第二组的人数为1 000×0.3=300,所以p =195300=0.65. 第四组的频率为0.03×5=0.15,所以第四组的人数为1 000×0.15=150.所以a =150×0.4=60 .............8分(2)因为年龄在[40,45)岁的“低碳族”与[45,50)岁的“低碳族”的人数的比为60∶30=2∶1,所以采用分层抽样法抽取6人,[40,45)中有4人,[45,50)中有2人.设[40,45)中的4人为a ,b ,c ,d ,[45,50)中的2人为m ,n ,则选取2人作为领队的情况有(a ,b ),(a ,c ),(a ,d ),(a ,m ),(a ,n ),(b ,c ),(b ,d ),(b ,m ),(b ,n ),(c ,d ),(c ,m ),(c ,n ),(d ,m ),(d ,n ),(m ,n ),共15种, ............10分(3)其中恰有1人年龄在[40,45)岁的情况有(a ,m ),(a ,n ),(b ,m ),(b ,n ),(c ,m ),(c ,n ),(d ,m ),(d ,n ),共8种, ............12分(4)所以选取的2名领队中恰有1人年龄在[40,45)岁的概率P =815.............14分 20.(满分14分)已知椭圆的标准方程为:22221(0)43x y a a a+=> (1)当1a =时,求椭圆的焦点坐标及离心率;(2)过椭圆的右焦点2F 的直线与圆222:4(0)C x y a a +=>常数交于,A B 两点,证明22|F ||F |A B ⋅为定值. 解:(1)焦点坐标12(1,0),F (1,0)F - ..........2分离心率12e = ..........3分(2)当斜率不存在时11|||F B |F A ===此时212|FA ||F B|3a ⋅= 5分当斜率不存在=时,设1122(x ,y ),B(x ,y )A:()AB y k x a =-由222(x a)x 4y k y a =-⎧⎨+=⎩ 得222222(1k )x 240ak x k a a +-+-= 7分 222212122224,11ak k a a x x x x k k -+==++ 9分11|FA |x a |==-22|F A |x a |==-所以22111212|FA||FB|(1)|x x a(x )a |k x ⋅=+-++ 12分 22222222242(1k )|a |11k a a a k k k -=+-+++23a = 13分 所以 22|F ||F |A B ⋅为定值23a .。
2016-2017学年江西省宜春市万载县高二(上)期中数学试卷一、选择题(本题共12道小题,每小题5分,共60分)1.在等差数列{a n}中,a1+a5=8,a4=7,则a5=()A.11 B.10 C.7 D.32.满足条件a=6,b=5,B=120°的△ABC的个数是()A.零个 B.一个 C.两个 D.无数个3.已知a,b,c∈R,且a>b,则一定成立的是()A.a2>b2B.C.ac2>bc2D.4.下列函数中,最小值为2的函数是()A.y=x+B.y=sinθ+(0<θ<)C.y=sinθ+(0<θ<π)D.5.△ABC中,若=,则该三角形一定是()A.等腰三角形但不是直角三角形B.直角三角形但不是等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6.不等式ax2+5x﹣2>0的解集是{x|<x<2},则关于x的不等式ax2﹣5x+a2﹣1>0的解集为()A.(﹣∞,﹣)∪(1,+∞)B.(﹣,1)C.(﹣∞﹣3)∪(,+∞)D.(﹣3,)7.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于()A. m B. m C.m D. m8.数列的前n项和为S n,且满足a1=1,a n=a n﹣1+n,(n≥2),则S n等于()A.B.C.D.9.已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.10.已知S n是等差数列{a n}的前n项和,公差为d,且S2015>S2016>S2014,下列五个命题:①d>0 ②S4029>0 ③S4030<0 ④数列{S n}中的最大项为S4029,其中正确命题的个数是()A.1 B.2 C.3 D.411.在△ABC中,三个内角A,B,C所对的边为a,b,c,若S△ABC=2,a+b=6,=2cosC,则c=()A.2B.4 C.2D.312.把数列{2n+1}依次按一项、二项、三项、四项循环分为(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27,),(29,31,33),(35,37,39,41),…,在第100个括号内各数之和为()A.1992 B.1990 C.1873 D.1891二、填空题(本题共4道小题,每小题5分,共20分)13.(文科做)命题“若a,b都是偶数,则a+b是偶数”的否命题是.14.两等差数列{a n}和{b n},前n项和分别为S n,T n,且,则等于.15.方程x2﹣2kx﹣3k=0一根大于1,一根小于﹣1,则实数k的取值范围.16.设M是,定义f(M)=(m,n,p),其中m、n、p 分别是△MBC,△MCA,△MAB的面积,的最小值是.三、解答题17.等比数列{a n}的前n项和为S n,已知S1,S3,S2成等差数列,求{a n}的公比q.18.变量x,y满足(1)设z=,求z的最小值;(2)设z=x2+y2+6x﹣4y+13,求z的取值范围.19.已知△ABC的外接圆的半径为,内角A、B、C的对边分别为a、b、c,向量,,且.(I)求角C;(II)求△ABC的面积S的最大值,并判断此时△ABC的形状.20.已知函数y=的定义域为R.(1)求a的取值范围.(2)若函数的最小值为,解关于x的不等式x2﹣x﹣a2﹣a<0.21.已知关于x的不等式 x2﹣(a2+3a+2)x+3a(a2+2)<0(a∈R).(Ⅰ)解该不等式;(Ⅱ)定义区间(m,n)的长度为d=n﹣m,若a∈,求该不等式解集表示的区间长度的最大值.22.已知等比数列{a n}的前n项和为S n=2•3n+k(k∈R,n∈N*)(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足a n=4,T n为数列{b n}的前n项和,试比较3﹣16T n 与 4(n+1)b n+1的大小,并证明你的结论.2016-2017学年江西省宜春市万载县株潭中学高二(上)期中数学试卷参考答案与试题解析一、选择题(本题共12道小题,每小题5分,共60分)1.在等差数列{a n}中,a1+a5=8,a4=7,则a5=()A.11 B.10 C.7 D.3【考点】8F:等差数列的性质.【分析】利用等差数列的通项公式即可得出.【解答】解:设等差数列{a n}的公差为d,∵a1+a5=8,a4=7,∴2a1+4d=8,a1+3d=7,解得a1=﹣2,d=3.则a5=﹣2+4×3=10.故选:B.2.满足条件a=6,b=5,B=120°的△ABC的个数是()A.零个 B.一个 C.两个 D.无数个【考点】HP:正弦定理.【分析】由余弦定理可得:52=62+c2﹣12ccos120°,化简解出即可判断出结论.【解答】解:由余弦定理可得:52=62+c2﹣12ccos120°,化为:c2+6c+11=0,△=62﹣44=﹣8<0,因此方程无解.∴满足条件a=6,b=5,B=120°的△ABC的个数是0.故选;A.3.已知a,b,c∈R,且a>b,则一定成立的是()A.a2>b2B.C.ac2>bc2D.【考点】R3:不等式的基本性质.【分析】A、当a=﹣1,b=﹣2,显然不成立;B、∵由于ab符号不确定,故与的大小不能确定;C、当c=0时,则ac2=bc2,;D、由c2+1≥1可判断.【解答】解:对于A、当a=﹣1,b=﹣2,显然不成立,故A项不一定成立;对于B、∵由于ab符号不确定,故与的大小不能确定,故B项不一定成立;对于C、当c=0时,则ac2=bc2,故C不一定成立;对于D、由c2+1≥1,故D项一定成立;故选:D4.下列函数中,最小值为2的函数是()A.y=x+B.y=sinθ+(0<θ<)C.y=sinθ+(0<θ<π)D.【考点】7F:基本不等式.【分析】A.x<0时,y<0.B.0<θ<,可得1>sinθ>0,利用基本不等式的性质即可判断出结论.C.0<θ<π,可得1≥sinθ>0利用基本不等式的性质即可判断出结论.D.利用基本不等式的性质即可判断出结论..【解答】解:A.x<0时,y<0.B.∵0<θ<,可得1>sinθ>0,∴y=sinθ+=2,最小值不可能为2.C..∵0<θ<π,可得1≥sinθ>0,∴y=sinθ+≥=2,当且仅当sinθ=1时取等号,最小值为2.D. +>=2,最小值不可能为2.故选:C.5.△ABC中,若=,则该三角形一定是()A.等腰三角形但不是直角三角形B.直角三角形但不是等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形【考点】HP:正弦定理.【分析】已知等式变形后,利用正弦定理化简,再利用二倍角的正弦函数公式化简,即可确定出三角形形状.【解答】解:由已知等式变形得:acosA=bcosB,利用正弦定理化简得:sinAcosA=sinBcosB,即sin2A=sin2B.∴2A=2B或2A+2B=180°,∴A=B或A+B=90°,则△ABC为等腰三角形或直角三角形.故选:D.6.不等式ax2+5x﹣2>0的解集是{x|<x<2},则关于x的不等式ax2﹣5x+a2﹣1>0的解集为()A.(﹣∞,﹣)∪(1,+∞)B.(﹣,1)C.(﹣∞﹣3)∪(,+∞)D.(﹣3,)【考点】74:一元二次不等式的解法.【分析】由不等式的解集与方程的关系,可知,2是相应方程的两个根,利用韦达定理求出a的值,再代入不等式ax2﹣5x+a2﹣1>0易解出其解集.【解答】解:由已知条件可知a<0,且,2是方程ax2+5x﹣2=0的两个根,由根与系数的关系得:×2=﹣解得a=﹣2所以ax2﹣5x+a2﹣1>0化为2x2+5x﹣3<0,化为:(2x﹣1)(x+3)<0解得﹣3<x<,所以不等式解集为:(﹣3,)故选:D.7.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于()A. m B. m C.m D. m【考点】HU:解三角形的实际应用.【分析】由题意画出图形,由两角差的正切求出15°的正切值,然后通过求解两个直角三角形得到DC和DB的长度,作差后可得答案.【解答】解:如图,∠DAB=15°,∵tan15°=tan(45°﹣30°)==2﹣.在Rt△ADB中,又AD=60,∴DB=AD•tan15°=60×(2﹣)=120﹣60.在Rt△ADC中,∠DAC=60°,AD=60,∴DC=AD•tan60°=60.∴BC=DC﹣DB=60﹣=120(﹣1)(m).∴河流的宽度BC等于120(﹣1)m.故选:B.8.数列的前n项和为S n,且满足a1=1,a n=a n﹣1+n,(n≥2),则S n等于()A.B.C.D.【考点】8E:数列的求和.【分析】由a n=a n﹣1+n(n≥2)得a n﹣a n﹣1=n,利用累加法求出a n,代入化简后,由等差数列的前n项和公式求出则数列的前n项和为S n.【解答】解:由题意得,a n=a n﹣1+n(n≥2),则a n﹣a n﹣1=n,所以a2﹣a1=2,a3﹣a2=3,…,a n﹣a n﹣1=n,以上(n﹣1)个式子相加得,a n﹣a1=2+3+…+n,又a1=1,则a n=1+2+3+…+n=,所以=,则数列的前n项和为S n= = =,故选:B.9.已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.【考点】7C:简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,然后确定a的值即可.【解答】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.10.已知S n是等差数列{a n}的前n项和,公差为d,且S2015>S2016>S2014,下列五个命题:①d>0 ②S4029>0 ③S4030<0 ④数列{S n}中的最大项为S4029,其中正确命题的个数是()A.1 B.2 C.3 D.4【考点】85:等差数列的前n项和.【分析】推导出等差数列的前2015项和最大,a1>0,d<0,且前2015项为正数,从第2016项开始为负数,由S2016>S2014,得S2016﹣S2014=a2016+a2015>0,由此求出S4029>0,S4030>0.【解答】解:∵S n是等差数列{a n}的前n项和,公差为d,且S2015>S2016>S2014,∴等差数列的前2015项和最大,∴a1>0,d<0,且前2015项为正数,从第2016项开始为负数,故①和④错误;再由S2016>S2014,得S2016﹣S2014=a2016+a2015>0,S4029=(a1+a4029)=×2a2015>0,故②正确;S4030==2015(a2015+a2016)>0,故③错误.故选:A.11.在△ABC中,三个内角A,B,C所对的边为a,b,c,若S△ABC=2,a+b=6,=2cosC,则c=()A.2B.4 C.2D.3【考点】HP:正弦定理;HR:余弦定理.【分析】运用正弦定理和两角和的正弦公式和诱导公式,化简可得角C,再由面积公式和余弦定理,计算即可得到c的值.【解答】解: ===1,即有2cosC=1,可得C=60°,若S△ABC=2,则absinC=2,即为ab=8,又a+b=6,由c2=a2+b2﹣2abcosC=(a+b)2﹣2ab﹣ab=(a+b)2﹣3ab=62﹣3×8=12,解得c=2.故选C.12.把数列{2n+1}依次按一项、二项、三项、四项循环分为(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27,),(29,31,33),(35,37,39,41),…,在第100个括号内各数之和为()A.1992 B.1990 C.1873 D.1891【考点】F1:归纳推理.【分析】由a n=2n+可得数列{a n}依次按1项、2项、3项、4项循环地分为(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27,),(29,31,33),(35,37,39,41),…,每一次循环记为一组.由于每一个循环含有4个括号,故第100个括号内各数之和是第25组中第4个括号内各数之和.由分组规律知,由各组第4个括号中所有第1个数,所有第2个数、所有第3个数、所有第4个所有第4个数分别组成都是等差数列,公差均为20.故各组第4个括号中各数之和构成等差数列,且公差为80.代入可求【解答】解:由已知可知:原数列按1、2、3、4项循环分组,每组中有4个括号,每组中共有10项,因此第100个括号应在第25组第4个括号,该括号内四项分别为a247、a248、a249、a250,因此在第100个括号内各数之和=a247+a248+a249+a250=495+497+499+501=1992,故选A.二、填空题(本题共4道小题,每小题5分,共20分)13.(文科做)命题“若a,b都是偶数,则a+b是偶数”的否命题是若a,b不都是偶数,则a+b不是偶数.【考点】21:四种命题.【分析】欲写出它的否命题,须同时对条件和结论同时进行否定即可.【解答】解:条件和结论同时进行否定,则否命题为:若a,b不都是偶数,则a+b不是偶数.故答案为:若a,b不都是偶数,则a+b不是偶数.14.两等差数列{a n}和{b n},前n项和分别为S n,T n,且,则等于.【考点】8F:等差数列的性质.【分析】利用==,即可得出结论.【解答】解:====.故答案为:.15.方程x2﹣2kx﹣3k=0一根大于1,一根小于﹣1,则实数k的取值范围(1,+∞).【考点】7H:一元二次方程的根的分布与系数的关系.【分析】设(x)=x2﹣2kx﹣3k,令f(1)<0且f(﹣1)<0即可解出k的范围.【解答】解:设f(x)=x2﹣2kx﹣3k,由题意可知,即,解得k>1.故答案为:(1,+∞).16.设M是,定义f(M)=(m,n,p),其中m、n、p 分别是△MBC,△MCA,△MAB的面积,的最小值是18 .【考点】HP:正弦定理;7F:基本不等式;9R:平面向量数量积的运算.【分析】由平面向量的数量积运算法则及∠ABC的度数,求出的值,再由sinA的值,利用三角形的面积公式求出三角形ABC的面积为1,即△MBC,△MCA,△MAB 的面积之和为1,根据题中定义的,得出x+y=,利用此关系式对所求式子进行变形后,利用基本不等式即可求出所求式子的最小值.【解答】解:由,得,所以,∴x+y=,则,当且仅当时,的最小值为18.故答案为:18三、解答题17.等比数列{a n}的前n项和为S n,已知S1,S3,S2成等差数列,求{a n}的公比q.【考点】89:等比数列的前n项和;84:等差数列的通项公式.【分析】由题意可得 2(a1+a1•q+)=a1+(a1+a1•q),再根据a1≠0,q≠0,从而求出公比q的值.【解答】解依题意有2S3=S1+S2,即 2(a1+a1•q+)=a1+(a1+a1•q),由于a1≠0,∴2q2+q=0,又q≠0,∴q=﹣.18.变量x,y满足(1)设z=,求z的最小值;(2)设z=x2+y2+6x﹣4y+13,求z的取值范围.【考点】7C:简单线性规划.【分析】(1)先画出满足条件的平面区域,求出A,B,C的坐标,根据z=的几何意义,从而求出z的最小值;(2)z=(x+3)2+(y﹣2)2的几何意义是可行域上的点到点(﹣3,2)的距离的平方,结合图形求出即可.【解答】解由约束条件作出(x,y)的可行域,如图阴影部分所示:由,解得A(1,),由,解得C(1,1),由,可得B(5,2),(1)∵z==,∴z的值即是可行域中的点与原点O连线的斜率,观察图形可知z min=k OB=;(2)z=x2+y2+6x﹣4y+13=(x+3)2+(y﹣2)2的几何意义是可行域上的点到点(﹣3,2)的距离的平方,结合图形可知,可行域上的点到(﹣3,2)的距离中,d min=4,d max=8.故z的取值范围是.19.已知△ABC的外接圆的半径为,内角A、B、C的对边分别为a、b、c,向量,,且.(I)求角C;(II)求△ABC的面积S的最大值,并判断此时△ABC的形状.【考点】HT:三角形中的几何计算;9R:平面向量数量积的运算.【分析】(I)根据建立等式关系,利用正余弦定理即可求角C;(II)根据△ABC的面积S=absinC,利用余弦定理和基本不等式求最大,即可判断此时△ABC的形状.【解答】解:向量,,且.(I)∵,∴sin2A﹣sin2C=(a﹣b)sinB.由正弦定理可得:sinA=,sinB=,sinC=,∴a2﹣c2=(a﹣b)b.由余弦定理:cosC=.∵0<C<π,∴C=.(II)△ABC的面积S=absinC,∵C=,R=,∴c=2RsinC=.由余弦定理:得a2+b2=6+ab.∵a2+b2≥2ab,(当且仅当a=b是取等)∴ab≤6.故得△ABC的面积S=absinC=.∵C=,a=b.此时△ABC为等边三角形.20.已知函数y=的定义域为R.(1)求a的取值范围.(2)若函数的最小值为,解关于x的不等式x2﹣x﹣a2﹣a<0.【考点】74:一元二次不等式的解法;33:函数的定义域及其求法.【分析】(1)由函数y=的定义域是R,得出ax2+2ax+1≥0恒成立,求出a的取值范围;(2)由题意得ax2+2ax+1的最小值是,求出a的值,代入不等式x2﹣x﹣a2﹣a<0,求解集即可.【解答】解:(1)函数y=的定义域为R,∴ax2+2ax+1≥0恒成立,当a=0时,1>0恒成立,满足题意;当a≠0时,须,即,解得0<a≤1;综上,a的取值范围是{a|0≤a≤1};(2)∵函数y的最小值为,∴≥,a∈;∴ax2+2ax+1≥;当a=0时,不满足条件;当1≥a>0时,ax2+2ax+1的最小值是=,∴a=;∴不等式x2﹣x﹣a2﹣a<0可化为x2﹣x﹣<0,解得﹣<x<;∴不等式的解集是{x|﹣<x<}.21.已知关于x的不等式 x2﹣(a2+3a+2)x+3a(a2+2)<0(a∈R).(Ⅰ)解该不等式;(Ⅱ)定义区间(m,n)的长度为d=n﹣m,若a∈,求该不等式解集表示的区间长度的最大值.【考点】74:一元二次不等式的解法.【分析】(Ⅰ)原不等式化为(x﹣3a)<0,根据1<a<2,a=1或a=2分类讨论,能求出原不等式的解集.(Ⅱ)当a≠1且a≠2时,,a∈,由此能求出该不等式解集表示的区间长度的最大值.【解答】解:(Ⅰ)原不等式可化为(x﹣3a)<0,…当a2+2<3a,即1<a<2时,原不等式的解为a2+2<x<3a;…当a2+2=3a,即a=1或a=2时,原不等式的解集为∅;…当a2+2>3a,即a<1或a>2时,原不等式的解为3a<x<a2+2.…综上所述,当1<a<2时,原不等式的解为a2+2<x<3a,当a=1或a=2时,原不等式的解集为∅,当a<1或a>2时,原不等式的解为3a<x<a2+2.(Ⅱ)当a=1或a=2时,该不等式解集表示的区间长度不可能最大.…当a≠1且a≠2时,,a∈.…设t=a2+2﹣3a,a∈,则当a=0时,t=2,当时,,当a=4时,t=6,…∴当a=4时,d max=6.…22.已知等比数列{a n}的前n项和为S n=2•3n+k(k∈R,n∈N*)(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足a n=4,T n为数列{b n}的前n项和,试比较3﹣16T n 与 4(n+1)b n+1的大小,并证明你的结论.【考点】89:等比数列的前n项和;8K:数列与不等式的综合.【分析】(I)利用递推关系可得,n≥2 时,a n=S n﹣S n﹣1=4×3n﹣1由{a n}是等比数列可得a1=S1=6+k=4从而苛求得k=﹣2,代入可求通项公式(II)结合(I)可求得,根据通项公式的特点求和时可利用错位相减可求T n,要比较3﹣16T n与4(n+1)b n+1的大小,可通过作差法可得,4(n+1)b n+1﹣(3﹣16T n)=通过讨论n的范围判断两式的大小【解答】解:(Ⅰ)由S n=2﹣3n+k可得n≥2 时,a n=S n﹣S n﹣1=4×3n﹣1∵{a n}是等比数列∴a1=S1=6+k=4∴k=﹣2,a n=4×3n﹣1(Ⅱ)由和a n=4×3n﹣1得T n=b1+b2+…+b n=两式相减可得,=4(n+1)b n+1﹣(3﹣16T n)=而n(n+1)﹣3(2n+1)=n2﹣5n﹣3当或<0时,有n(n+1)>3(2n+1)所以当n>5时有3﹣16T n<4(n+1)b n+1那么同理可得:当时有n(n+1)<3(2n+1),所以当1≤n≤5时有3﹣16T n>4(n+1)b n+1综上:当n>5时有3﹣16T n<4(n+1)b n+1;当1≤n≤5时有3﹣16T n>4(n+1)b n+1。
一、单选题1.已知直线的图像如图所示,则角是( )sin cos :y x l θθ=+θA .第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】D【分析】本题可根据直线的斜率和截距得出、,即可得出结果. sin 0θ<cos 0θ>【详解】结合图像易知,,, sin 0θ<cos 0θ>则角是第四象限角, θ故选:D.2.的展开式中的系数为( ) ()()8x y x y -+36x y A . B .C .D .2828-5656-【答案】B【分析】由二项式定理将展开,然后得出,即可求出的系数. 8()x y +8()()x y x y -+36x y 【详解】由二项式定理:8()()x y x y -+080171808888()(C C C )x y x y x y x y =-+++080171808080171808888888(C C C )(C C C )x x y x y x y y x y x y x y =+++-+++090181818081172809888888(C C C )(C C C )x y x y x y x y x y x y =+++-+++ 观察可知的系数为. 36x y 6523888887876C C C C 2821321⨯⨯⨯-=-=-=-⨯⨯⨯故选:B.3.已知条件:,条件:表示一个椭圆,则是的( ) p 0mn >q 221x y m n+=p q A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【分析】根据曲线方程,结合充分、必要性的定义判断题设条件间的关系.【详解】由,若,则表示一个圆,充分性不成立;0mn >0m n =>221x y m n +=而表示一个椭圆,则成立,必要性成立. 221x y m n+=0mn >所以是的必要不充分条件. p q 故选:B4.两平行平面分别经过坐标原点O 和点,且两平面的一个法向量,则两,αβ()1,2,3A ()1,0,1n =-平面间的距离是( )A B C D .【答案】A【分析】由空间向量求解【详解】∵两平行平面分别经过坐标原点O 和点,,αβ(1,2,3),(1,2,3)A OA =且两平面的一个法向量,(1,0,1)n =-∴两平面间的距离 ||||n OA d n ⋅=== 故选:A5.2022年遂宁主城区突发“920疫情”,23日凌晨2时,射洪组织五支“最美逆行医疗队”去支援遂宁主城区,将分派到遂宁船山区、遂宁经开区、遂宁高新区进行核酸采样服务,每支医疗队只能去一个区,每区至少有一支医疗队,若恰有两支医疗队者被分派到高新区,则不同的安排方法共有( ) A .30种 B .40种 C .50种 D .60种【答案】D【分析】先从5支医疗队中选取2支医疗队去高新区,再将剩下的3支医疗队分配到船山区与经开区,最后根据分步乘法原理求解即可.【详解】解:先从5支医疗队中选取2支医疗队去高新区,有种不同的选派方案,25C 10=再将剩下的3对医疗队分配到船山区与经开区,有种不同的选派方案,2232C A 6=所以,根据分步乘法原理,不同的安排方案有种.222532C C A 60=故选:D6.已知圆:,直线:,为上的动点,过点作圆的两条切线C 2220x y x +-=l 10x y ++=P l P C 、,切点分别、,当最小时,直线PC 的方程为( )PA PB A B ·PC ABA .B .C .D .+=0x y 10x y --=2210x y -+=2210x y ++=【答案】B【分析】根据圆的切线的有关知识,判断出最小时,直线与直线垂直,进而可得直·PC AB l PC 线的方程.PC 【详解】圆的标准方程为,圆心为,半径为.C ()2211x y -+=()1,0C =1r 依圆的知识可知,四点P ,A ,B ,C 四点共圆,且AB ⊥PC , 所以,而14422PAC PC AB S PA AC PA ⋅==⨯⨯⋅=△当直线时,最小,此时最小, PC l ⊥PA PC AB ⋅所以此时,即. :=1PC y x -10x y --=故选:B.7.某奥运村有,,三个运动员生活区,其中区住有人,区住有人,区住有人A B C A 30B 15C 10已知三个区在一条直线上,位置如图所示奥运村公交车拟在此间设一个停靠点,为使所有运动员..步行到停靠点路程总和最小,那么停靠点位置应在( )A .区B .区C .区D .,两区之间A B C A B 【答案】A【分析】分类讨论,分别研究停靠点为区、区、区和,两区之间时的总路程,即可得出A B C A B 答案.【详解】若停靠点为区时,所有运动员步行到停靠点的路程和为:米; A 15100103004500⨯+⨯=若停靠点为区时,所有运动员步行到停靠点的路程和为:米; B 30100102005000⨯+⨯=若停靠点为区时,所有运动员步行到停靠点的路程和为:米; C 303001520012000⨯+⨯=若停靠点为区和区之间时,设距离区为米,所有运动员步行到停靠点的路程和为:A B A x , 30151001010020054500x x x x +⨯-+⨯+-=+()()当取最小值,故停靠点为区. 0x =A 故选:A8.已知是双曲线上的三个点,经过原点,经过右焦点,若,,A B C 22221(0,0)x y a b a b -=>>AB O AC F 且,则该双曲线的离心率是( )BF AC ⊥2AF CF =A .B C D .5394【答案】B【分析】根据题意,连接,构造矩形;根据双曲线定义表示出各个边长,由直角','AF CF 'FAF B 三角形勾股定理求得 的关系,进而求出离心率.a c 、【详解】设左焦点为, ,连接F'AF m =','AF CF 则 , , , 2FC m ='2AF a m =+'22CF a m =+'2FF c =因为,且经过原点 BF AC ⊥AB O 所以四边形 为矩形'FAF B 在Rt △中, ,代入'AF C 222'+'AF AC F C =()()()2222+3=22a m m a m ++化简得 23a m =所以在Rt △中,,代入 'AF F 222'+'AF AF F F =()222222233a a a c ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭化简得 ,即 22179c a =e =所以选B【点睛】本题考查了双曲线的综合应用,根据条件理清各边的相互关系,属于中档题.二、多选题9.下列结论正确的是( )A .“”是“直线与直线互相垂直”的充要条件1a =-210a x y -+=20x ay --=B .已知,O 为坐标原点,点是圆外一点,直线的方程是,0ab ≠(,)P a b 222x y r +=m 2ax by r +=则与圆相交m C .已知直线和以,为端点的线段相交,则实数的取值范围为10kx y k ---=(3,1)M -(3,2)N k 1322k -≤≤D .直线的倾斜角的取值范围是sin 20x y α++=θπ3π0,,π44⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭ 【答案】BD【分析】由题意利用直线的倾斜角和斜率、直线的方程,直线与圆的位置关系,逐一判断各个选项是否正确,从而得出结论.【详解】解:对于A ,由直线与直线互相垂直,210a x y -+=20x ay --=,化为,解得或,21(1)()0a a ∴⨯+-⨯-=20a a +==0a 1- “”是“直线与直线互相垂直”的充分但不必要条件,故A 错误;∴1a =-210a x y -+=20x ay --=对于B ,因为点是圆外一点,所以,所以圆心到直线的距离(,)P a b 222x y r +=222a b r +>m,可得与圆相交,故B 正确;||d r =m 对于C ,已知直线和以,为端点的线段相交,则、两个点在直10kx y k ---=(3,1)M -(3,2)N M N 线的两侧或直线上,10kx y k ---=则有,解可得或,故C 错误; (311)(321)0k k k k -------≤12k ≤-32k ≥对于D ,设直线的倾斜角,则,, sin 20x y α++=θtan sin [1θα=-∈-1]故的取值范围是,故D 正确. θ3[0,[,)44πππ 故选:BD .10.已知的展开式中第3项与第5项的系数之比为,则下列结论成立的是( ) 2(n x 314A .B .展开式中的常数项为45 10n =C .含的项的系数为210D .展开式中的有理项有5项5x【答案】ABC【分析】根据二项式的展开式的通项公式,结合第3项与第5项的系数之比为()52211C r n rr r n T x-+=-,可得.再根据公式逐个选项判断即可. 31410n =【详解】二项式的展开式的通项为,由于第3项与第5项的()()5222221C 11C rr n r rrn r r r n nT xx x---+=-=-系数之比为,则,故,得. 31424C 3C 14n n=()()()()1312123141234n n n n n n -⨯=---⨯⨯⨯25500n n --=∴(n +5)(n -10)=0,解得n =10,故A 正确;则,令,解得, ()52021101C rr r r T x-+=-52002r-=8r =则展开式中的常数项为,故B 正确; 810C 45=令,解得,则含的项的系数为,故C 正确; 52052r -=6r =5x ()66101C 210-=令,则r 为偶数,此时,故6项有理项. 520Z 2r-∈0,2,4,6,8,10r =故选:ABC11.2022年2月5日晩,在北京冬奥会短道速滑混合团体接力决赛中,中国队率先冲过终点,为中国体育代表团拿到本届奥运会首枚金牌.赛后,武大靖,任子威,曲春雨,范可欣,张雨婷5名运动员从左往右排成一排合影留念,下列结论正确的是( ) A .武大靖与张雨婷相邻,共有48种排法 B .范可欣与曲春雨不相邻,共有72种排法 C .任子威在范可欣的右边,共有120种排法D .任子威不在最左边,武大靖不在最右边,共有78种排法 【答案】ABD【分析】利用分步乘法计数原理结合排列与排列数,逐项分析判断即可.【详解】解:A 项中,武大靖与张雨婷相邻,将武大靖与张雨婷排在一起有种排法, 22A 再将二人看成一个整体与其余三人全排列,有种排法,44A 由分步乘法计数原理得,共有(种)排法,故选项A 正确;2424A A 48=B 项中,范可欣与曲春雨不相邻,先将其余三人全排列,有种排法, 33A 再将范可欣与曲春雨插入其余三人形成的4个空位中,有种排法,24A由分步乘法计数原理得,共有(种)排法,故选项B 正确;3234A A =72C 项中,任子威在范可欣的右边,先从五个位置中选出三个位置排其余三人,有种排法, 35A 剩下两个位置排任子威、范可欣,只有1种排法,所以任子威在范可欣的右边,共有(种)排法,故选项C 错误;35A =60D 项中,武大靖,任子威,曲春雨,范可欣,张雨婷5人全排列,有种排法, 55A 任子威在最左边,有种排法,武大靖在最右边,有种排法, 44A 44A 任子威在最左边,且武大靖在最右边,有种排法,33A 所以任子威不在最左边,武大靖不在最右边,共有(种)排法,故选项D 正确. 543543A -2A +A =78故选:ABD.12.为庆祝党的二十大胜利召开,由南京市委党史办主办,各区委党史办等协办组织的以“喜迎二十大 永远跟党走 奋进新征程”为主题的庆祝中共南京地方组织成立周年知识问答活动正在进100行,某党支部为本次活动设置了一个冠军奖杯,奖杯由一个铜球和一个托盘组成,如图①,已知球的体积为,托盘由边长为的正三角形铜片沿各边中点的连线垂直向上折叠而成,如图②.则32π38下列结论正确的是( )A .经过三个顶点的球的截面圆的面积为 ,,ABC 43πB .异面直线与所成的角的余弦值为AD BE 916C .连接,构成一个八面体,则该八面体的体积为 ,,AB BC CA ABCDEF ABCDEF 18D .点 D 2【答案】ACD【分析】对A :经过三个顶点的球的截面圆即为的外接圆,运算求解;对B :建系,,,A B C MNG △利用空间向量处理异面直线夹角问题;对C :八面体由三个全等的四棱锥ABCDEF和直棱柱组合而成,结合相关体积公式运算求解;,,D ACGM E ABNM F BCGN ---ABC MNG -对D :点到球面上的点的最小距离为,结合球的性质运算求解.D OD R -【详解】如图1,取的中点分别为,连接 ,,DE EF DF ,,M NG ,,,,,AM BN CG MN NG GM 根据题意可得:均垂直于平面,可知 ,,AM BN CG DEF ABC MNG ≅△△∵的边长为2,设的外接圆半径为r ,则MNG △MNG △sin MN 2r MGN ==∠∴的外接圆面积为r =MNG △4ππ32r =∴经过三个顶点的球的截面圆的面积为,A 正确; ,,A B C 43π八面体由三个全等的四棱锥和直棱柱组合ABCDEF ,,D ACGM E ABNM F BCGN ---ABC MNG -而成直棱柱的底面边长为2,高ABC MNG -AM =12262ABC MNG V -=⨯⨯=设,则为的中点 EN MN H = H MN ∵平面,平面 AM ⊥DEF EH ⊂DEF ∴AM EH ⊥又∵为等边三角形且为的中点,则EMN A H MN MN EH ⊥,平面 AM MN M = ,AM MN ⊂ABNM ∴平面EH ⊥ABNM即四棱锥的高为E ABNM -EH =1243E ABNM V -=⨯=∴八面体的体积为,C 正确;ABCDEF 318E ABNM ABC MNG V V V --=+=设的中心分别为,球的球心为,由题意可得其半径 ,ABC MNG △△12,O O O =2R 则可知三点共线,连接 12,,O O O 1,O B OD则可得:212112O D O O O O O O O O OD ===+==点,D 正确;D 2-如图2,以G 为坐标原点建立空间直角坐标系则有:((()(),,2,0,0,0,A B D E -∴((,DA BE =-=- 又∵ 5cos ,8DA BE DA BE DA BE⋅==-∴异面直线与所成的角的余弦值为,B 错误;AD BE 58故选:ACD.【点睛】1.对于多面体体积问题,要理解几何体的结构特征,并灵活运用割补方法; 2.对于球相关问题,主要根据两个基本性质:①球的任何截面都是圆面;②球心和截面圆心的连线与截面垂直.三、填空题13.若,则______.2213C P x xx -+=x =【答案】5【分析】将排列数、组合数按照公式展开,即可解出x 的值.【详解】因为,, ()22313C 3C 2x x x x x --==21P (1)x x x +=+所以,由可得,3(x -1)=2(x +1)2213C P x x x -+=解得,x =5.故答案为:5.14.各数位数字之和等于8(数字可以重复) 的四位数个数为_____. 【答案】120【分析】四个数位数字分别为,则,应用插空法求四位数个数. 1234,,,a a a a 12348a a a a +++=【详解】设对应个位到千位上的数字,则,且, 1234,,,a a a a *4N a ∈N(1,2,3)i a i ∈=1234a a a a +++8=相当于将3个表示0的球与8个表示1的球排成一排,即10个空用3个隔板将其分开,故共种.310C 120=故答案为:12015.已知分别为双曲线的左、右顶点,点为双曲线上任意一点,12,A A 2222:1(0)x y C a b a b -=>>P C 记直线,直线的斜率分别为,若,则双曲线的离心率为__________. 1PA 2PA 12,k k 122k k ⋅=C【分析】设,应用斜率两点式得到,根据为双曲线上一点即可得双曲线参()00,P x y 22202y x a=-P C 数关系,进而求其离心率【详解】依题意,设,则,,又()()12,0,,0A a A a -()00,P x y 0012002y y k k x a x a ⋅=⋅=+-22202y x a∴=-,,故,即()2222220220000222211b x a x y x y b a b a a -⎛⎫-=⇒=-= ⎪⎝⎭222b a ∴=22213b e a =+=e =16.在棱长为1的正方体中,M 是棱的中点,点P 在侧面内,若1111ABCD A B C D -1AA 11ABB A ,则的面积的最小值是________.1D P CM ⊥PBC △【分析】建立空间直角坐标系,利用空间向量、三角形的面积公式、二次函数进行求解.【详解】如图,以点D 为空间直角坐标系的原点,分别以DA ,DC ,所在直线为x ,y ,z 轴, 1DD 建立空间直角坐标系,则点,所以, ()1,,,[01]P y z y z ∈、,()10,0,1D ()11,,1D P y z =-因为,所以,()10,1,0,1,0,2C M ⎛⎫ ⎪⎝⎭11,1,2CM =-⎛⎫ ⎪⎝⎭ 因为,所以,所以,1D P CM ⊥ ()11102y z -+-=21z y =-因为,所以, ()1,1,0B ()0,1,21BP y y =--,=因为,所以当时, 01y ≤≤35y =min BP =因为正方体中,平面平面,故, BC ⊥11,ABB A BP ⊂11ABB A BC BP ⊥所以()min 1=12PBC S ⨯A四、解答题17.已知的顶点. ABC A ()()()2,64,2,2,0A B C -,(1)求边的中垂线所在直线的方程; BC (2)求的面积. ABC A 【答案】(1); 340x y +-=(2)14.【分析】(1)求出直线的斜率,再由垂直关系得出直线边的中垂线的斜率,最后由点斜式BC BC 写出所求方程;(2)求出直线的方程,再求出点到直线的距离以及,最后由三角形面积公式计算即AB C AB AB 可.【详解】(1)直线的斜率为,直线边的中垂线的斜率为,BC 2014(2)3-=--BC 3-又的中点为,BC ()1,1边的中垂线所在直线的方程为:,即; BC ()131y x -=--340x y +-=(2)直线的方程为:,即, AB 626(2)24y x --=--2100x y +-=点到直线的距离 C AB d=故的面积为. ABC A 1142S AB d =⋅=18.已知展开式的二项式系数和为512,且()(2)n f x x =-.2012(2)(1)(1)(1)n n n x a a x a x a x -=+-+-+⋅⋅⋅+-(1)求的值; 123n a a a a +++⋅⋅⋅⋅⋅⋅+(2)求被除的余数. ()20f 17【答案】(1) 1(2) 1【分析】(1)根据题意,得到,求得,结合展开式,分别令和,求得2512n =9n =1x =2x =和,即可求解;01a =-012390a a a a a ++++⋅⋅⋅⋅⋅+=⋅(2)由,结合二项式的展开式,即可求解.999(20)(2021817)(1)f ==+=-【详解】(1)解:由展开式的二项式系数和为,可得,解得,(2)n x -5122512n =9n =则,9290129(2)(1)(1)(1)x a a x a x a x -=+-+-+⋅⋅⋅+-令,可得,1x =90(12)1a =-=-令,可得,2x =012399(22)0a a a a a ++++⋅⋅⋅⋅=-⋅+=⋅所以, 12390(1)1a a a a +++⋅⋅⋅⋅⋅=--+=⋅即.1231n a a a a +++⋅⋅⋅⋅⋅+=⋅(2)解:由题意,可得,999(20)(2021817)(1)f ==+=-又由,90918890081789999999(171)1717171717(1717)1C C C C C C C +=⋅+⋅++⋅+⋅=⋅⋅+⋅+++ 所以被除的余数为.()20f 17119.如图,在四棱锥中,已知四边形是梯形,P ABCD -ABCD ,是正三角形.,,22⊥===∥AB CD AD AB AB BC CD PBC △(1)求证:;BC PA ⊥(2)当四棱锥体积最大时,二面角的大小为,求的值. P ABCD -B PA C --θcos θ【答案】(1)证明见解析; (2). 15【分析】(1)取BC 的中点O ,连接AO ,可证明,由线面垂直的判定定理可证AO BC ⊥PO BC ⊥明平面PAO ,即得证;BC ⊥(2)分析可知当平面平面ABCD 时,四棱锥体积最大,建立空间直角坐标系,PBC ⊥P ABCD -由二面角的向量公式,计算即可.【详解】(1)证明:如图,取AB 的中点E ,连接CE ,A C .∵,, 2AB CD =AB CD ∥∴CD 与AE 平行且相等, ∴四边形AECD 是平行四边形,又,∴四边形AECD 是矩形,∴. AD AB ⊥CE AB ⊥∴,∴是等边三角形. =AC BC AB =ABC A 取BC 的中点O ,连接AO ,则. AO BC ⊥连接PO ,∵,∴, PB PC =PO BC ⊥∵,平面PAO ,=PO AO O ⋂PO AO ⊂,∴平面PAO ,∵PA 平面PAO ,∴; BC ⊥⊂BC PA ⊥(2)由(1)知,是等边三角形,∴, ABC A CE =∴梯形ABCD 的面积为定值, S =故当平面平面ABCD 时,四棱锥体积最大. PBC ⊥P ABCD -∵,平面平面ABCD ,平面 PO BC ⊥PBC ⋂BC =PO ⊂PBC ∴平面ABCD ,平面ABCD ,∴.PO ⊥,OA OB ⊂,PO OA PO OB ⊥⊥∵OP ,OA ,OB 两两互相垂直,∴以O 为坐标原点,OA ,OB ,OP 分别为x 轴、y 轴和z 轴的正方向,建立如图所示的空间直角坐标系,则. (0,1,0),(0,1,0),A B C P -∴,,=(0,1,PA PB -- =(0,1,CP --设平面PAB 的法向量为,则,取,则. ()111,,n x y z =1111=0==0PA n PB n y ⋅-⋅-⎧⎪⎨⎪⎩ 111x z ==n = 同理设平面PAC 的法向量为,则,取,则. (,,)m x y z ===0=0CP m y PA m ⋅--⋅-⎧⎪⎨⎪⎩ 1x z ===(1,m - 设平面PAB 与平面PAD 的夹角为,则,θ1cos =|cos<,>|=||=||||5m n m n m n ⋅θ即为所求二面角的余弦值.B PAC --20.如图,某海面上有、、三个小岛(面积大小忽略不计),岛在岛的北偏东方向O A B A O 45︒处,岛在岛的正东方向处.B O 20km(1)以为坐标原点,的正东方向为轴正方向,为单位长度,建立平面直角坐标系,写出O O x 1km A 、的坐标,并求、两岛之间的距离;B A B (2)已知在经过、、三个点的圆形区域内有未知暗礁,现有一船在岛的南偏西方向距O A B O 30°O 岛处,正沿着北偏东行驶,若不改变方向,试问该船有没有触礁的危险? 20km 60︒【答案】(1),, ()40,40A ()20,0B (2)该船有触礁的危险【分析】(1)结合图像,易得的坐标,再利用两点距离公式即可得解;,A B (2)先由待定系数法求得过、、三点的圆的方程,再求得该船航线所在直线的方程,利用O A B 点线距离公式可知该船航线与圆的位置关系,据此可解.【详解】(1)∵在的东北方向处,在的正东方向处, AO B O 20km ∴,, ()40,40A ()20,0B 由两点间的距离公式得;=(2)设过、、三点的圆的方程为,O A B 220x y Dx Ey F ++++=将、、代入上式得,解得,()0,0O ()40,40A ()20,0B 222=040+40+40+40+=020+20+=0F D E F D F ⎧⎪⎨⎪⎩=20=60=0D E F --⎧⎪⎨⎪⎩所以圆的方程为,即,故圆心为,半径2220600x y x y +--=()()2210301000x y -+-=()10,30r =设船起初所在的位置为点,则,且该船航线所在直线的斜率为C (10,C --, ()tan 6030tan 30︒-︒=︒=由点斜式得该船航线所在直线的方程:,l 200x -=所以圆心到:的距离为l 200x -=d+由于, 2(5700+=+21000700=>+即, 5d =+<所以该船有触礁的危险.21.已知椭圆的右焦点,离心率为,且点在椭圆上.2222:1(0)x y C a b a b +=>>F 1231,2M ⎛⎫ ⎪⎝⎭C (1)求椭圆的标准方程;C (2)过的直线不与轴重合与椭圆相交于、两点,不在直线上且F (x )C A B P AB ,是坐标原点,求面积的最大值.()2OP OA OB λλ=+-O PAB △【答案】(1)22143x y +=(2) 32【分析】(1)依题意得到方程组,解得,,即可求出椭圆方程;2a 2b (2)设直线的方程为,,,,联立直线与椭圆方程,消AB 1x my =+()11,A x y ()22,B x y ()00,P x y 元、列出韦达定理,即可表示出,再表示出点到直线的距离,根据面积公式及基本不等AB P AB 式计算可得.【详解】(1)解:由题意,又,解得,, 221=2914+=1c a a b⎧⎪⎪⎨⎪⎪⎩222c a b =-24a =23b =的方程为;C ∴22143x y +=(2)解:设直线的方程为,,,,AB 1x my =+()11,A x y ()22,B x y ()00,P x y 则,消元整理得, 22=+1+=143x my x y ⎧⎪⎨⎪⎩()2234690m y my ++-=所以,,122634my y m +=-+122934y y m =-+,()2212+13+4m m -由, ()2OP OA OB λλ=+-得,()()()()001212,2,2x y x x y y λλλλ=+-+-()()()()()0121212212122x x x my my my my λλλλλλ∴=+-=++-+=+-+, ()0122yy y λλ=+-到直线的距离P ∴ABh22112(+1)=×23+4PAB m S m ∴A 设,而在时递增,t =13y t t=+1t ≥当,即时,的最大值为.∴=1t 1=0m =PAB S A 3222.如图,已知抛物线的焦点F ,且经过点,.()2:20C y px p =>()()2,0A p m m >5AF =(1)求p 和m 的值;(2)点M ,N 在C 上,且.过点A 作,D 为垂足,证明:存在定点Q ,使得AM AN ⊥AD MN ⊥DQ 为定值.【答案】(1),; 2p =4m =(2)证明见解析.【分析】(1)由抛物线定义有求,由在抛物线上求m 即可. ||252pAF p =+=p A (2)令,,,联立抛物线得到一元二次方程,应用韦达定理,根据:MN x ky n =+11(,)M x y 22(,)N x y 及向量垂直的坐标表示列方程,求k 、n 数量关系,确定所过定点,再由AM AN ⊥MN B 易知在以为直径的圆上,即可证结论. AD MN ⊥D AB 【详解】(1)由抛物线定义知:,则, ||252pAF p =+=2p =又在抛物线上,则,可得. ()()4,0A m m >244m =⨯4m =(2)设,,由(1)知:,11(,)M x y 22(,)N x y (4,4)A 所以,,又,11(4,4)AM x y =-- 22(4,4)AN x y =--AM AN ⊥所以,121212121212(4)(4)(4)(4)4()4()320x x y y x x x x y y y y --+--=-++-++=令直线,联立,整理得,且,:MN x ky n =+2:4C y x =2440y ky n --=216160k n ∆=+>所以,,则,124y y k +=124y y n =-21212()242x x k y y n k n +=++=+,222121212()x x k y y kn y y n n =+++=综上,, 2216121632(48)(44)0n k n k n k n k ---+=--+-=当时,过定点;84n k =+:(4)8MN x k y =++()8,4B -当时,过定点,即共线,不合题意; 44n k =-:(4)4MN x k y =-+(4,4),,A M N 所以直线过定点,又,故在以为直径的圆上, MN ()8,4B -AD MN ⊥D AB而中点为,即为定值,得证.AB ()6,0Q 2AB DQ ==。
江西省宜春市数学高二上学期理数期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共12分)1. (1分)(2017·资阳模拟) 已知0<c<1,a>b>1,下列不等式成立的是()A . ca>cbB .C . bac>abcD . logac>logbc2. (1分)已知函数,其中为常数.那么“”是“为奇函数”的()A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件3. (1分)已知、是椭圆的两个焦点,经过点的直线交椭圆于点、,若,则等于()A . 11B . 10C . 9D . 164. (1分) (2018高二下·齐齐哈尔月考) 的内角,,的对边分别为,,,若,,,则的面积为()A .B .C .D .5. (1分)半径不等的两定圆、无公共点(、是两个不同的点),动圆与圆、都内切,则圆心轨迹是()A . 双曲线的一支B . 椭圆或圆C . 双曲线的一支或椭圆或圆D . 双曲线一支或椭圆6. (1分) (2016高二下·珠海期末) 已知直线y=k(x-3)与双曲线,有如下信息:联立方程组消去y后得到方程Ax2+Bx+C=0,分类讨论:(1)当A=0时,该方程恒有一解;(2)当时,恒成立。
在满足所提供信息的前提下,双曲线离心率的取值范围是()A .B . (1,9]C . (1,2]D .7. (1分)(2017·重庆模拟) 设双曲线的半焦距为C,直线L过(a,0),(0,b)两点,已知原点到直线L的距离为,则双曲线的离心率为()A . 2B . 2或C .D .8. (1分)(2017·成安模拟) 已知F为双曲线的一个焦点,则点F到C的一条渐近线的距离为()A .B . 3C .D . 69. (1分) (2015高二上·安庆期末) 抛物线y2=2px(p>0)的焦点为F,准线为l,A,B是抛物线上的两个动点,且满足∠AFB= .设线段AB的中点M在l上的投影为N,则的最大值是()A .B .C .D .10. (1分)过抛物线y2=2px(p>0)的焦点F的直线l与抛物线在第一象限的交点为A,与抛物线的准线的交点为B,点A在抛物线准线上的射影为C,若=,=48,则抛物线的方程为()A . y2=4xB . y2=8xC . y2=16xD . y2=4x11. (1分) (2019高二下·牡丹江月考) 曲线在处的切线倾斜角是()A .B .C .D .12. (1分)下列函数中,在x=0处的导数不等于零的是()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2016高二上·浦城期中) 已知a、b是两个命题,如果a是b的充分条件,那么¬a是¬b的________条件.(填“充分条件”、或“必要条件”、或“充要条件”)14. (1分) (2019高二上·辽宁月考) 在平面直角坐标系中,是动点,且直线与的斜率之积等于,动点的轨迹方程为________;直线与轨迹的公共点的个数为________.15. (1分) (2016高二上·温州期末) 已知动圆过定点F(0,﹣1),且与直线l:y=1相切,椭圆N的对称轴为坐标轴,O点为坐标原点,F是其一个焦点,又点A(0,2)在椭圆N上.若过F的动直线m交椭圆于B,C点,交轨迹M于D,E两点,设S1为△ABC的面积,S2为△ODE的面积,令Z=S1S2 , Z的最小值是________.16. (1分)设定义在R上的函数y=f(x)的导函数为f′(x).如果存在x0∈[a,b],使得f(b)-f(a)=f′(x0)(b-a)成立,则称x0为函数f(x)在区间[a,b]上的“中值点”.那么函数f(x)=x3-3x在区间[-2,2]上的“中值点”为________.三、解答题 (共6题;共11分)17. (1分)已知方程x2+bx+c=0的两实根为﹣1和3,(1)求b与 c;(2)解不等式:x2+bx+c>0.18. (1分) (2019高一上·鄞州期中) 已知函数,.(1)若,用列举法表示函数的零点构成的集合;(2)若关于的方程在上有两个解、,求的取值范围,并证明.19. (3分) (2018高二上·阳高月考) 如图,已知椭圆C:的左、右项点分别为A1 ,A2 ,左右焦点分别为F1 , F2 ,离心率为,|F1F2|= ,O为坐标原点.(1)求椭圆C的方程;(2)设过点P(4,m)的直线PA1,PA2与椭圆分别交于点M,N,其中m>0,求的面积S的最大值.20. (2分) (2018高二上·福州期末) 已知双曲线的的离心率为,则(Ⅰ)求双曲线C的渐进线方程。
2016-2017学年江西省宜春市上高二中高三(上)第二次月考数学试卷(理科)一、选择题:(本大题有12小题,每小题5分,共60分.)1.已知集合A={x|﹣2<x<1},B={x|x2﹣2x≤0},则A∩B=()A.{x|0<x<1}B.{x|0≤x<1}C.{x|﹣1<x≤1}D.{x|﹣2<x≤1}2.若<<0,则下列不等式:①<;②|a|+b>0;③a﹣>b﹣;④lna2>lnb2中,不正确的不等式是()A.①④B.②③C.①③D.②④3.不等式x2﹣2x+m>0在R上恒成立的必要不充分条件是()A.m>2 B.0<m<1 C.m>0 D.m>14.已知f(x)是定义在R上的奇函数,f(x+1)是偶函数,当x∈(2,4)时,f(x)=|x ﹣3|,则f(1)+f(2)+f(3)+f(4)=()A.1 B.0 C.2 D.﹣25.已知函数f(x)=a x﹣2,g(x)=log a|x|(其中a>0且a≠1),若f(5)•g(﹣3)>0,则f(x),g(x)在同一坐标系内的大致图象是()A.B.C.D.6.已知直线y=a与函数f(x)=x3﹣x2﹣3x+1的图象相切,则实数a的值为()A.﹣26或B.﹣1或3 C.8或﹣D.﹣8或7.已知函数f(x)=,且函数g(x)=f(x)﹣kx+2k有两个不同的零点,则实数k的取值范围是()A.﹣≤k≤0 B.﹣≤k≤0或k=﹣C.k≤﹣或k=﹣D.﹣≤k≤﹣或k=08.已知函数f(x)=log [x2﹣2(2a﹣1)x+8],a∈R,若f(x)在[a,+∞)上为减函数,则a的取值范围为()A.(﹣∞,2]B.(﹣,2]C.(﹣∞,1]D.(﹣,1]9.已知在实数集R上的可导函数f(x),满足f(x+2)是奇函数,且>2,则不等式f(x)>x﹣1的解集是()A.(﹣∞,2)B.(2,+∞)C.(0,2)D.(﹣∞,1)10.已知函数f(x)在定义域[﹣3,3]上是偶函数,在[0,3]上单调递增,并且f(﹣m2﹣1)>f(﹣m2+2m﹣2),则m的取值范围是()A.B.C.D.11.函数f(x)是定义在R上的奇函数,当x>0时,f(x)=,则方程f(x)=在[﹣3,5]上的所有实根之和为()A.0 B.2 C.4 D.612.已知函数f(x)=x2+2ax,g(x)=3a2lnx+b,设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同,则a∈(0,+∞)时,实数b的最大值是()A.B.C.D.二、填空题:(本大题有4小题,每小题5分,共20分)13.当x∈(0,+∞)时,幂函数y=(m2﹣m﹣1)x﹣m﹣1为减函数,则实数m=.14.已知函数f(x)=2+log3x,x∈[1,9],函数y=[f(x)]2+f(x2)的最大值为.15.若函数f(x)=x2﹣lnx+1在其定义域内的一个子区间(a﹣1,a+1)内存在极值,则实数a的取值范围.16.将f(x)=2x﹣的图象向右平移2个单位后得曲线C1,将函数y=g(x)的图象向下平移2个单位后得曲线C2,C1与C2关于x轴对称,若F(x)=+g(x)的最小值为m且m>2+,则实数a的取值范围为.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.)17.已知实数x满足32x﹣4﹣+9≤0且f(x)=log2.(1)求实数x的取值范围;(2)求f(x)的最大值和最小值,并求此时x的值.18.已知命题p:不等式(a﹣2)x2+2(a﹣2)x﹣4<0,对∀x∈R恒成立;命题q:关于x 的方程x2+(a﹣1)x+1=0的一个根在(0,1)上,另一个根在(1,2)上,若p∨q为真命题,p∧q为假命题,求实数a的取值范围.19.春节期间,某微信群主发60个随机红包(即每个人抢到的红包中的钱数是随机的,且每人只能抢一个),红包被一抢而空,后据统计,60个红包中钱数(单位:元)分配如下频率分布直方图所示(其分组区间为[0,1),[1,2),[2,3),[3,4),[4,5)).(1)试估计该群中某成员抢到钱数不小于3元的概率;(2)若该群中成员甲、乙两人都抢到4.5元红包,现系统将从抢到4元及以上红包的人中随机抽取2人给群中每个人拜年,求甲、乙两人至少有一人被选中的概率.20.如图,在直三棱柱ABC﹣A1B1C1中,C1C=CB=CA=2,AC⊥CB,D,E分别为棱C1C,B1C1的中点.(1)求二面角B﹣A1D﹣A的平面角的余弦值;(2)在线段AC上是否存在一点F,使得EF⊥平面A1BD?若存在,确定点F的位置并证明结论;若不存在,请说明理由.21.设函数f(x)=x2+aln(x+1)(a为常数)(Ⅰ)若函数y=f(x)在区间[1,+∞)上是单调递增函数,求实数a的取值范围;(Ⅱ)若函数y=f(x)有两个极值点x1,x2,且x1<x2,求证:.22.已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).(1)当m=7时,求函数f(x)的定义域;(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.2016-2017学年江西省宜春市上高二中高三(上)第二次月考数学试卷(理科)参考答案与试题解析一、选择题:(本大题有12小题,每小题5分,共60分.)1.已知集合A={x |﹣2<x <1},B={x |x 2﹣2x ≤0},则A ∩B=( )A .{x |0<x <1}B .{x |0≤x <1}C .{x |﹣1<x ≤1}D .{x |﹣2<x ≤1}【考点】交集及其运算.【分析】解不等式求出集合B ,代入集合交集运算,可得答案.【解答】解:∵集合A={x |﹣2<x <1},B={x |x 2﹣2x ≤0}={x |0≤x ≤2},∴A ∩B={x |0≤x <1},故选:B .2.若<<0,则下列不等式:①<;②|a |+b >0;③a ﹣>b ﹣;④lna 2>lnb 2中,不正确的不等式是( )A .①④B .②③C .①③D .②④【考点】不等关系与不等式.【分析】先将条件进行化简,然后分别判断每个不等式是否成立.【解答】解:由,得b <a <0.①因为a +b <0,ab >0,所以,所以成立,即①正确. ②因为b <a <0,所以﹣b >﹣a >0,则﹣b >|a |,即|a |+b <0,所以②错误.③因为b <a <0,且,所以,故③正确.④因为b <a <0,所以b 2>a 2,所以lnb 2>lna 2成立,所以④错误.故不正确的是②④.故选D .3.不等式x 2﹣2x +m >0在R 上恒成立的必要不充分条件是( )A .m >2B .0<m <1C .m >0D .m >1【考点】一元二次不等式的解法.【分析】根据不等式x 2﹣x +m >0在R 上恒成立,△<0,可解得m 的范围,然后看m >1与选项中的m 范围,即可得出答案.【解答】解:当不等式x 2﹣2x +m >0在R 上恒成立时,△=4﹣4m <0,解得m >1;所以m >1是不等式恒成立的充要条件;m >2是不等式成立的充分不必要条件;0<m <1是不等式成立的既不充分也不必要条件;m>0是不等式成立的必要不充分条件.故选:C.4.已知f(x)是定义在R上的奇函数,f(x+1)是偶函数,当x∈(2,4)时,f(x)=|x ﹣3|,则f(1)+f(2)+f(3)+f(4)=()A.1 B.0 C.2 D.﹣2【考点】函数奇偶性的性质.【分析】根据已知可得f(﹣x)=﹣f(x),f(﹣x+1)=f(x+1),结合x∈(2,4)时,f (x)=|x﹣3|,分别求出f(1),f(2),f(3),f(4)可得答案.【解答】解:∵f(x)是定义在R上的奇函数,f(x+1)是偶函数,∴f(0)=0,f(﹣x)=﹣f(x),f(﹣x+1)=f(x+1),∴f(x+4)=f[(x+3)+1]=f[﹣(x+3)+1]=f(﹣x﹣2)=﹣f(x+2)=﹣f[(x+1)+1]=﹣f[﹣(x+1)+1]=﹣f(﹣x)=f(x),∴函数f(x)是周期为4的周期函数,f(4)=f(0)=0,∵当x∈(2,4)时,f(x)=|x﹣3|,∴f(3)=0,f(4)=0,f(1)=﹣f(﹣1)=﹣f(3)=0,f(2)=﹣f(﹣2)=﹣f(2)=0,故f(1)+f(2)+f(3)+f(4)=0,故选:B5.已知函数f(x)=a x﹣2,g(x)=log a|x|(其中a>0且a≠1),若f(5)•g(﹣3)>0,则f(x),g(x)在同一坐标系内的大致图象是()A.B.C.D.【考点】函数的图象.【分析】利用条件f(5)•g(﹣3)>0,确定a的大小,从而确定函数的单调性.【解答】解:由题意f(x)=a x﹣2是指数型的,g(x)=log a|x|是对数型的且是一个偶函数,由f(5)•g(﹣3)>0,可得出g(﹣3)>0,则g(3)>0因为a>0且a≠1,所以必有log a3>0,解得a>1.所以函数f(x)=a x﹣2,在定义域上为增函数且过点(2,1),g(x)=log a|x|在x>0时,为增函数,在x<0时为减函数.所以对应的图象为C故选:C.6.已知直线y=a与函数f(x)=x3﹣x2﹣3x+1的图象相切,则实数a的值为()A.﹣26或B.﹣1或3 C.8或﹣D.﹣8或【考点】利用导数研究函数的极值.【分析】求出函数f(x)的导数,由题意可得f′(x)=0有实数解,求出极值点,然后求解函数的极值,即可得到a的值.【解答】解:f(x)=x3﹣x2﹣3x+1的导数为f′(x)=x2﹣2x﹣3,x2﹣2x﹣3=0可得x=3或x=﹣1是函数的极值点,直线y=a与函数f(x)=x3﹣x2﹣3x+1的图象相切,只有在极值点处相切,可得函数的极值为:﹣8或.实数a的值为:﹣8或.故选:D.7.已知函数f(x)=,且函数g(x)=f(x)﹣kx+2k有两个不同的零点,则实数k的取值范围是()A.﹣≤k≤0 B.﹣≤k≤0或k=﹣C.k≤﹣或k=﹣D.﹣≤k≤﹣或k=0【考点】根的存在性及根的个数判断.【分析】由g(x)=0得f(x)=kx﹣2k=k(x﹣2),根据函数与方程之间的关系转化为两个函数的交点个数问题,利用数形结合建立条件关系进行求解即可.【解答】解:由g(x)=f(x)﹣kx+2k=0得f(x)=kx﹣2k=k(x﹣2),设h(x)=k(x﹣2),则h(x)过定点(2,0),作出函数f(x)的图象如图:①当g(x)与f(x)在第一象限相切时,满足条件.此时k<0,由圆心到直线kx﹣y﹣2k=0的距离d==1得k=﹣或k=(舍),②当直线过点A(﹣1,1)时,满足条件.,此时﹣3k=1,得k=﹣,当﹣≤k≤0时,也满足条件.,综上实数k的取值范围是﹣≤k≤0或k=﹣,故选:B8.已知函数f(x)=log [x2﹣2(2a﹣1)x+8],a∈R,若f(x)在[a,+∞)上为减函数,则a的取值范围为()A.(﹣∞,2]B.(﹣,2]C.(﹣∞,1]D.(﹣,1]【考点】对数函数的图象与性质.【分析】根据复合函数的单调性知,g(x)=x2﹣2(2a﹣1)x+8在区间[a,+∞)上单调递增且g(x)>0,由此列出不等式组,求出a的取值范围.【解答】解:令g(x)=x2﹣2(2a﹣1)x+8,由题意知:g(x)在区间[a,+∞)上单调递增且g(x)>0,所以,解得,即﹣<a≤1,所以a的取值范围是(﹣,1].故选:D.9.已知在实数集R上的可导函数f(x),满足f(x+2)是奇函数,且>2,则不等式f(x)>x﹣1的解集是()A.(﹣∞,2)B.(2,+∞)C.(0,2)D.(﹣∞,1)【考点】函数奇偶性的性质.【分析】确定f(2)=0,令g(x)=f(x)﹣x,则g′(x)=f′(x)﹣<0,函数在R上单调递减,即可求出不等式f(x)>x﹣1的解集.【解答】解:∵f(x+2)是奇函数,∴f(x)关于(2,0)对称,f(2)=0∵>2,∴0<f′(x)<.令g(x)=f(x)﹣x,则g′(x)=f′(x)﹣<0,函数在R上单调递减,∵g(2)=f(2)﹣1=﹣1,∴不等式f(x)>x﹣1可化为g(x)>g(2),∴x<2,故选:A.10.已知函数f(x)在定义域[﹣3,3]上是偶函数,在[0,3]上单调递增,并且f(﹣m2﹣1)>f(﹣m2+2m﹣2),则m的取值范围是()A.B.C.D.【考点】奇偶性与单调性的综合.【分析】根据函数奇偶性和单调性的关系将不等式进行转化求解即可.【解答】解:因为函数f(x)在[﹣3,0]上单调递减,由f(﹣m2﹣1)>f(﹣m2+2m﹣2),即f(﹣m2﹣1)>f(﹣m2+2m﹣2),所以函数f(x)在[﹣3,0]上单调递减,而﹣m2﹣1<0,﹣m2+2m﹣2=﹣(m﹣1)2﹣1<0,所以由f(﹣m2﹣1)>f(﹣m2+2m﹣2)得,,解得.故选:D11.函数f(x)是定义在R上的奇函数,当x>0时,f(x)=,则方程f(x)=在[﹣3,5]上的所有实根之和为()A.0 B.2 C.4 D.6【考点】根的存在性及根的个数判断.【分析】由奇函数可将问题转化为求方程f(x)在(3,5]上的所有实根之和,从而解得.【解答】解:∵函数f(x)是定义在R上的奇函数,y=在其定义域上也是奇函数;∴方程f(x)在[﹣3,3]上的所有实根之和为0,故问题转化为求方程f (x )在(3,5]上的所有实根之和,当x ∈(3,4]时,f (x )=•2x ﹣3,故<f (x )≤,而≤<,故当x=4时,方程f (x )=成立;可判断当x >4时,f (x )<恒成立,故方程f (x )=无解,故方程f (x )在[﹣3,5]上的所有实根之和为4,故选:C .12.已知函数f (x )=x 2+2ax ,g (x )=3a 2lnx +b ,设两曲线y=f (x ),y=g (x )有公共点,且在该点处的切线相同,则a ∈(0,+∞)时,实数b 的最大值是( )A .B .C .D .【考点】利用导数研究曲线上某点切线方程.【分析】分别求出函数f (x )的导数,函数g (x )的导数.由于两曲线y=f (x ),y=g (x )有公共点,设为P (x 0,y 0),则有f (x 0)=g (x 0),且f ′(x 0)=g ′(x 0),解出x 0=a ,得到b 关于a 的函数,构造函数,运用导数求出单调区间和极值、最值,即可得到b 的最大值.【解答】解:函数f (x )的导数为f'(x )=x +2a ,函数g (x )的导数为,由于两曲线y=f (x ),y=g (x )有公共点,设为P (x 0,y 0),则,由于x 0>0,a >0则x 0=a ,因此构造函数, 由h'(t )=2t (1﹣3lnt ),当时,h'(t )>0即h (t )单调递增;当时,h'(t )<0即h (t )单调递减,则即为实数b的最大值.故选D.二、填空题:(本大题有4小题,每小题5分,共20分)13.当x∈(0,+∞)时,幂函数y=(m2﹣m﹣1)x﹣m﹣1为减函数,则实数m=2.【考点】幂函数的性质.【分析】因为给出的函数是幂函数,所以系数等于1,又函数在x∈(0,+∞)时为减函数,所以幂指数小于0,联立后可求解m的值.【解答】解:由当x∈(0,+∞)时,幂函数y=(m2﹣m﹣1)x﹣m﹣1为减函数,得:,解得:m=2.故答案为2.14.已知函数f(x)=2+log3x,x∈[1,9],函数y=[f(x)]2+f(x2)的最大值为13.【考点】对数函数的值域与最值.【分析】根据f(x)的定义域为[1,9]先求出y=[f(x)]2+f(x2)的定义域为[1,3],然后利用二次函数的最值再求函数g(x)=[f(x)]2+f(x2)=(2+log3x)2+(2+log3x2)=(log3x+3)2﹣3的最大值.【解答】解:由f(x)的定义域为[1,9]可得y=[f(x)]2+f(x2)的定义域为[1,3],又g(x)=(2+log3x)2+(2+log3x2)=(log3x+3)2﹣3,∵1≤x≤3,∴0≤log3x≤1.∴当x=3时,g(x)有最大值13.故答案为:1315.若函数f(x)=x2﹣lnx+1在其定义域内的一个子区间(a﹣1,a+1)内存在极值,则实数a的取值范围.【考点】利用导数研究函数的极值.【分析】求f(x)的定义域为(0,+∞),求导f′(x)=2x﹣•=;从而可得∈(a﹣1,a+1);从而求得.【解答】解:f(x)=x2﹣lnx+1的定义域为(0,+∞),f′(x)=2x﹣•=;∵函数f(x)=x2﹣lnx+1在其定义域内的一个子区间(a﹣1,a+1)内存在极值,∴f′(x)=2x﹣•=在区间(a﹣1,a+1)上有零点,而f′(x)=2x﹣•=的零点为;故∈(a﹣1,a+1);故a﹣1<<a+1;解得,<a<;又∵a﹣1≥0,∴a≥1;故答案为:.16.将f(x)=2x﹣的图象向右平移2个单位后得曲线C1,将函数y=g(x)的图象向下平移2个单位后得曲线C2,C1与C2关于x轴对称,若F(x)=+g(x)的最小值为m且m>2+,则实数a的取值范围为(,2).【考点】函数的图象与图象变化.【分析】根据C1推出C2,由C2推出g(x),再算出F(x)=()•2x++2,设t=2x,利用非单调函数取最值的性质和均值定理能求出实数a的取值范围.【解答】解:∵将的图象向右平移2个单位后得曲线C1,∴曲线C1:p(x)=2x﹣2﹣,∵曲线C2,C1与C2关于x轴对称,∴曲线C2:q(x)=﹣2x﹣2,∵将函数y=g(x)的图象向下平移2个单位后得曲线C2,∴g(x)=﹣2x﹣2+2,∴=+﹣2x﹣2+2=()•2x++2,设t=2x,∵2x>0,∴t>0,∵函数定义域的端点值取不到,∴如果函数有最值,那么该最值就一定在非端点处取到,也就是说该函数一定不是单调函数,而对于形如y=ax+的函数只有当ab>0时才是(0,+∞)上的非单调函数,∴(﹣)(4a﹣1)>0,解得a<0或<a<4,当a<0时,变量t的两个系数都为负数,此时F(x)只有最大值,不合题意.当<a<4时,t的两个系数都为正数,并且t也为正数,∴可以用基本不等式:F(x)≥2+2,∵的最小值为m且,∴m=2+2>2+,联立<a<4,解得:<a<2.综上所述:实数a的取值范围为(,2).故答案为:(,2).三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.)17.已知实数x满足32x﹣4﹣+9≤0且f(x)=log2.(1)求实数x的取值范围;(2)求f(x)的最大值和最小值,并求此时x的值.【考点】对数的运算性质;函数的最值及其几何意义.【分析】(1)将3x﹣2看作一个整体,因式分解结合指数的运算性质从而求出x的范围即可;(2)先将f(x)配方,结合二次函数的性质求出其最值即可.【解答】解:(1)由,得32x﹣4﹣10•3x﹣2+9≤0,即(3x﹣2﹣1)(3x﹣2﹣9)≤0,∴1≤3x﹣2≤9,2≤x≤4﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)因为=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当,即时,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当log2x=1或log2x=2,即x=2或x=4时,y max=0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣18.已知命题p:不等式(a﹣2)x2+2(a﹣2)x﹣4<0,对∀x∈R恒成立;命题q:关于x 的方程x2+(a﹣1)x+1=0的一个根在(0,1)上,另一个根在(1,2)上,若p∨q为真命题,p∧q为假命题,求实数a的取值范围.【考点】复合命题的真假.【分析】先根据二次函数的最大值及二次函数的图象求出命题p,q下a的取值范围,再根据p∨q为真命题,p∧q为假命题得到p真q假,和p假q真两种情况,求出每种情况下a 的取值范围再求并集即可.【解答】解:由命题p知,函数(a﹣2)x2+2(a﹣2)x﹣4的最大值小于0;a=2时,﹣4<0,∴符合题意;a≠2时,则a需满足:,解得﹣2<a<2;∴命题p:﹣2<a≤2;根据命题q,设f(x)=x2+(a﹣1)x+1,所以:,解得;∴命题q:;若p∨q为真命题,p∧q为假命题,则p,q一真一假:p真q假时,,∴;p假q真时,,∴a∈∅;∴实数a的取值范围为.19.春节期间,某微信群主发60个随机红包(即每个人抢到的红包中的钱数是随机的,且每人只能抢一个),红包被一抢而空,后据统计,60个红包中钱数(单位:元)分配如下频率分布直方图所示(其分组区间为[0,1),[1,2),[2,3),[3,4),[4,5)).(1)试估计该群中某成员抢到钱数不小于3元的概率;(2)若该群中成员甲、乙两人都抢到4.5元红包,现系统将从抢到4元及以上红包的人中随机抽取2人给群中每个人拜年,求甲、乙两人至少有一人被选中的概率.【考点】频率分布直方图.【分析】(1)根据频率分布直方图,求出不小于3的频率是多少即可;(2)利用列举法计算基本事件数以及对应的概率是多少.【解答】解:(1)根据频率分布直方图,得;该群中抢到红包的钱数不小于3元的频率是1﹣0.05﹣0.20﹣0.40=0.35,∴估计该群中某成员抢到钱数不小于3元的概率是0.35;(2)该群中抢到钱数不小于4元的频率为0.10,对应的人数是60×0.10=6,记为1、2、3、4、甲、乙;现从这6人中随机抽取2人,基本事件数是12,13,14,1甲,1乙,23,24,2甲,2乙,34,3甲,3乙,4甲,4乙,甲乙共15种;其中甲乙两人至少有一人被选中的基本事件为1甲,1乙,2甲,2乙,3甲,3乙,4甲,4乙,甲乙共9种;∴对应的概率为P==.20.如图,在直三棱柱ABC﹣A1B1C1中,C1C=CB=CA=2,AC⊥CB,D,E分别为棱C1C,B1C1的中点.(1)求二面角B﹣A1D﹣A的平面角的余弦值;(2)在线段AC上是否存在一点F,使得EF⊥平面A1BD?若存在,确定点F的位置并证明结论;若不存在,请说明理由.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(1)以C为原点建立坐标系,求出两平面的法向量,则法向量夹角的余弦值的绝对值为所求二面角的余弦值;(2)假设存在点F满足条件,设F(0,a,0),令与平面A1BD的法向量平行即可求出a,得出F的位置.【解答】解:(1)以C为原点,以CB,CA,CC1为坐标轴建立如图所示的空间直角坐标系C﹣xyz,则C(0,0,0),B(2,0,0),A(0,2,0),C1(0,0,2),B1(2,0,2),A1(0,2,2),D(0,0,1),E(1,0,2).∴=(﹣2,0,1),=(﹣2,2,2).设平面A1BD的一个法向量为=(x,y,z),则,即,令x=1得=(1,﹣1,2).∵BC⊥平面ACC1A1,∴平面ACC1A1的一个法向量为=(2,0,0),∴cos<>===,由图可知,二面角B﹣A1D﹣A的平面角为锐角,∴二面角B﹣A1D﹣A的平面角的余弦值为.(2)假设在线段AC上存在一点F使得EF⊥平面A1BD.则∥.设F(0,a,0)(0≤a≤2),则=(﹣1,a,﹣2),∴(﹣1,a,﹣2)=k(1,﹣1,2).即,∴a=1.∴在线段AC上存在一点F使得EF⊥平面A1BD,此时点F为AC的中点.21.设函数f(x)=x2+aln(x+1)(a为常数)(Ⅰ)若函数y=f(x)在区间[1,+∞)上是单调递增函数,求实数a的取值范围;(Ⅱ)若函数y=f(x)有两个极值点x1,x2,且x1<x2,求证:.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)已知原函数的值为正,得到导函数的值非负,从而求出参量的范围;(Ⅱ)利用韦达定理,对所求对象进行消元,得到一个新的函数,对该函数求导后,再对导函数求导,通过对导函数的导导函数的研究,得到导函数的最值,从而得到原函数的最值,即得到本题结论.【解答】解:(Ⅰ)根据题意知:f′(x)=在[1,+∞)上恒成立.即a≥﹣2x2﹣2x在区间[1,+∞)上恒成立.∵﹣2x2﹣2x在区间[1,+∞)上的最大值为﹣4,∴a≥﹣4;经检验:当a=﹣4时,,x∈[1,+∞).∴a的取值范围是[﹣4,+∞).(Ⅱ)在区间(﹣1,+∞)上有两个不相等的实数根,即方程2x2+2x+a=0在区间(﹣1,+∞)上有两个不相等的实数根.记g(x)=2x2+2x+a,则有,解得.∴,.∴令.,记.∴,.在使得p′(x0)=0.当,p′(x)<0;当x∈(x0,0)时,p′(x)>0.而k′(x)在单调递减,在(x0,0)单调递增,∵,∴当,∴k(x)在单调递减,即.22.已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).(1)当m=7时,求函数f(x)的定义域;(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.【考点】其他不等式的解法;函数的定义域及其求法.【分析】(1)由题设知:|x+1|+|x﹣2|>7,解此绝对值不等式求得函数f(x)的定义域.(2)由题意可得,不等式即|x+1|+|x﹣2|≥m+4,由于x∈R时,恒有|x+1|+|x﹣2|≥3,故m+4≤3,由此求得m的取值范围.【解答】解:(1)由题设知:|x+1|+|x﹣2|>7,不等式的解集是以下不等式组解集的并集:,或,或,解得函数f(x)的定义域为(﹣∞,﹣3)∪(4,+∞).(2)不等式f(x)≥2即|x+1|+|x﹣2|≥m+4,∵x∈R时,恒有|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,不等式|x+1|+|x﹣2|≥m+4解集是R,∴m+4≤3,m的取值范围是(﹣∞,﹣1].2016年12月23日。
江西省临川区第一中学2015-2016学年高二上学期期中考试文数试题考试时间:120分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.)1.设集合22{|1}2x A x y =+=,2{|1}B y y x ==-,则AB =( )A .[- B.11{(),()}22C.11{(),(0,1)}22- D .[ 【答案】A考点:1集合的运算;2定义域,值域.2.已知平面向量AB ()1,2=,AC ()3,4=,则向量CB =( )A .(4,6)--B .(4,6)C .(2,2)--D .(2,2) 【答案】C 【解析】试题分析:()()()1,23,42,2CB AB AC =-=-=--.故C 正确.考点:向量的减法的三角形法则.3. 3k >是方程17322=---k y k x 表示的曲线是椭圆的( )A.充分不必要条件B.必要不充分条件C. 充要条件D.既不充分也不必要条件 【答案】B考点:1充分必要条件;2椭圆方程.【易错点睛】本题主要考查的是充分必要条件和椭圆的方程,属容易题. 当17322=---k y k x 表示椭圆时多数同学可能注意到要求30k ->且70k -<,但忽略()37k k -≠--而出错.因为30k ->且70k -<但()37k k -=--时此时方程表示的曲线为圆. 4.一名小学生的年龄和身高(单位:cm )的数据如下表:由散点图可知,身高y 与年龄x 之间的线性回归方程为8.8y x a =+,则a 的值为( ) A .65 B .74 C .56 D .47 【答案】A 【解析】 试题分析:67897.54x +++==,1181261361441314y +++==,所以样本中心点为()7.5,131,将样本中心点()7.5,131代入回归方程8.8y x a =+可得1318.87.5a =⨯+,解得65a =.故A 正确.考点:线性回归方程.5. 在某次测量中得到的A 样本数据如下:74,74,79,79,86,87,87,90,91,92. 若B 样本数据恰好是A 样本数据每个都加5后所得数据,则A ,B 两样本 的下列数字特征对应相同的是( ) A .众数 B .平均数 C .中位数 D .标准差 【答案】D 【解析】试题分析:因为B 样本数据均是A 样本数据每个都加5后所得数据,所以A,B 两样本数据的众数,平均数,中位数不可能相同.根据标准差公式计算可知D 正确. 考点:样本数据的数字特征. 6. 下列说法中正确的是 ( )A.“(0)0f =”是“函数()f x 是奇函数”的充要条件;B .若2000:,10p x x x ∃∈-->R .则2:,10p x x x ⌝∀∈--<R ;C .若p q ∧为假命题,则,p q 均为假命题;D .“若6πα=,则1sin 2α=”的否命题是“若6πα≠,则1sin 2α≠”.【答案】D考点:1命题的否定;2充分必要条件;3复合命题的真假判断.7. 某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为 ( )A B C D .3 【答案】C考点:1三视图;2棱锥的侧面积.【易错点晴】本题主要考查的是三视图和空间几何体的侧面积,属于容易题.解题时要看清楚是求表面积还是求体积,否则很容易出现错误.本题先根据三视图判断几何体的结构特征,再计算出几何体的各侧面的面积即可.8. 已知点C 在直线AB 上,且对平面任意一点O ,0,0,>>+=y x OB y OA x OC 则yx 11+的最小值为( ) A . 2 B .4 C . 6 D .8 【答案】B 【解析】考点:1向量共线,向量的加减法;2基本不等式.9.已知不等式组⎪⎩⎪⎨⎧≥-≥-≤+011y y x y x 所表示的平面区域为D ,若直线3y kx =-与平面区域D 有公共点,则k 的取值范围为是 ( ) A .[3,3]- B .11(,][,)33-∞-+∞ C .(,3][3,)-∞-+∞ D .11[,]33- 【答案】C 【解析】试题分析:不等式组表示的平面区域如图:直线3y kx =-过定点()0,3P -,所以()()03033,31010PAPB k k----==-==---,由图可知3k ≤-或3k ≥.故C 正确. 考点:1线性规划;2直线的斜率.【方法点晴】本题主要考查的是线性规划,属于中档题.线性规划类问题的解题关键是先正确画出不等式组所表示的平面区域,然后确定目标函数的几何意义,通过数形结合确定目标函数何时取得最值.画不等式组所表示的平面区域时要通过特殊点验证,防止出现错误. 10. 在正方体为的中点,是棱中,O DD M D C B A ABCD 11111-底面ABCD 的中心,上为棱11B A P 任一点,则直线AM OP 与所成角为( )A .45︒B .60︒C .90︒D .不能确定 【答案】C考点:异面直线所成角.【思路点晴】本题主要考查的是异面直线所成角,属于中档题.本题较特殊因为点P 为动点,但直线OP 在面11AOB 内,所以应将异面直线所成角问题转化为线与面的位置关系问题,而易证得AM ⊥面11AOB ,从而可证得AM OP ⊥.11. 执行如图所示的程序框图,要使输出的S 的值小于1,则输入的t 值不能是下面的( )A.8 B.9 C.10 D.11【答案】A考点:算法.【易错点晴】本题主要考查的是程序框图,属于容易题.解题时一定要抓住重要条件S ”,否则很容易出现错误.在给出程序框图求解输出结果的试题中只要按照程序框“1图规定的运算方法逐次计算,直到达到输出条件即可.12. 已知数列{}n a 满足312ln ln ln ln 32258312n a a a a n n +⋅⋅⋅⋅=-(*n N ∈),则10a = ( ) A . 29e B . 26e C .35e D .32e 【答案】D 【解析】试题分析:9n =时,3912ln ln ln ln 29258262a a a a ⋅⋅⋅⋅=; 当10n =时,391012ln ln ln ln ln 321625826292a a a a a ⋅⋅⋅⋅⋅==.所以10ln 2916229a ⋅=,解得10ln 32a =,3210a e ∴=.故D 正确.考点:数列.第II 卷(非选择题)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.) 13.已知{}n a 为等差数列,472a a +=,则110a a += . 【答案】2考点:等差数列的性质.【方法点睛】本题主要考查等差数列的性质,属容易题.法一: 根据等差数列的通项公式可将4710,,a a a 均用首相1a 和公差d 表示,即可求得110a a +的值.法二根据等差数列的性质:若m n p q +=+,则m n p q a a a a +=+,即可求得110a a +的值.显然第二种方法比第一种简单快捷.14. 已知抛物线方程22y x =,其焦点坐标为 . 【答案】1,08⎛⎫ ⎪⎝⎭【解析】试题分析:由22x y =可得抛物线的标准方程为212y x =,可知其焦点坐标为1,08⎛⎫ ⎪⎝⎭. 考点:抛物线方程.【易错点睛】本题主要考查抛物线的方程和焦点坐标,属容易题.本题应先将方程变形为抛物线的标准方程形式,从而可知122P =,14P =,从而可得其焦点坐标.若不变形易将2看做2P 的值,得1P =,同时还可能误认为焦点在y 轴,而将焦点坐标写为10,2⎛⎫⎪⎝⎭,从而使问题出错,解题时一定要注意.15.由直线1y x =+上的一点向圆22(3)1x y -+=引切线,则切线长的最小值为 .考点:1直线与圆相切;2数形结合思想.16. 若函数()b x f x +-=12有两个零点,则实数b 的取值范围是 . 【答案】()0,1- 【解析】试题分析:函数()b x f x +-=12有两个零点等价于函数21x y =-的图像与y b =-的图像有两个不同的交点.由数形结合分析可得01b <-<,则10b -<<. 考点:1转化思想;2数形结合思想.三、解答题(本大题共6小题,共70分.应写出必要的文字说明、证明过程及演算步骤.) 17. (本小题满分10分)已知n S 是数列{}n a 的前n 项和,且n n S 2= ⑴求{}n a 的通项公式;⑵设n a b n n +=,求1021b b b +++ 的值。
江西省宜春市高二上学期期中数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016高二上·桓台期中) 已知集合A={x|y= },B={x|﹣1≤2x﹣1≤3},则A∩B=()A . [0,1]B . [1,2]C . [0,2]D . [1, ]2. (2分)某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍。
为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为A . 9B . 18C . 27D . 363. (2分) (2016高二上·温州期中) 已知直线m和平面α,β,若α⊥β,m⊥α,则()A . m⊥βB . m∥βC . m⊂βD . m∥β或m⊂β4. (2分)执行如图所示的程序框图,输出的结果是()A . 11B . 12C . 13D . 145. (2分)三棱锥P﹣ABC中中,顶点P中在底面ABC中内的射影为O中,若(1)三条侧棱与底面所成的角相等,(2)三条侧棱两两垂直,(3)三个侧面与底面所成的角相等;则点O中依次为垂心、内心、外心的条件分别是()A . (1)(2)(3)B . (3)(2)(1)C . (2)(1)(3)D . (2)(3)(1)6. (2分)直线y=kx+3与圆(x-2)2+(y-3)2 =4相交于A,B两点,若|AB|=2,则k=()A . ±B . ±C .D .7. (2分) (2015高二下·乐安期中) 已知圆C:(x﹣a)2+(y﹣b)2=1,设平面区域Ω= ,若圆心C∈Ω,且圆C与x轴相切,则a2+b2的最大值为()A . 49B . 37C . 29D . 58. (2分)(2017·万载模拟) 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x)=,称为狄利克雷函数,则关于函数f(x)有以下四个命题:①f(f(x))=1;②函数f(x)是偶函数;③任意一个非零有理数T,f(x+T)=f(x)对任意x∈R恒成立;④存在三个点A(x1 , f(x1)),B(x2 , f(x2)),C(x3 , f(x3)),使得△ABC为等边三角形.其中真命题的个数是()A . 4B . 3C . 2D . 19. (2分)已知椭圆,过点P(2,1)且被点P平分的椭圆的弦所在的直线方程是()A . 8x+y-17=0B . x+2y-4=0C . x-2y=0D . 8x-y-15=010. (2分)如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是()A . AC⊥SBB . AB∥平面SCDC . AB与SC所成的角等于DC与SA所成的角D . SA与平面SBD所成的角等于SC与平面SBD所成的角11. (2分) (2017高一下·张家口期末) 四棱锥S﹣ABCD的底面ABCD是正方形,各侧棱长与底面的边长均相等,M为SA的中点,则直线BM与SC所成的角的余弦值为()A .B .C .D .12. (2分)(2014·江西理) 一几何体的直观图如图所示,下列给出的四个俯视图中正确的是()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6,O′C′=2,则原图形OABC的面积为________.14. (1分)(2017·达州模拟) 如图,已知正方形OABC边长为3,点M,N分别为线段BC,AB上一点,且2BM=MC,AN=NB,P为△BNM内一点(含边界),设(λ,μ为实数),则的最大值为________15. (1分) (2016高二上·怀仁期中) 经过两条直线2x+y+2=0和3x+4y﹣2=0的交点,且垂直于直线3x﹣2y+4=0的直线方程为________16. (1分)设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1 ,则Sn=________ .三、解答题 (共6题;共55分)17. (10分) (2018高二上·嘉兴月考) 已知两条直线.(1)若,求实数的值;(2)若,求实数的值.18. (10分) (2015高三上·丰台期末) 如图,在△ABC中,AB=12,,点D在边BC上,且∠ADC=60°.(1)求cosC;(2)求线段AD的长.19. (5分)在P是直角梯形ABCD所在平面外一点,PA⊥平面ABCD,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,PD与底面成30°角,BE⊥PD于E,求直线BE与平面PAD所成的角.20. (10分) (2017高二下·新乡期末) 已知等比数列{an}的前n项和为Sn ,且6Sn=3n+1+a(n∈N+)(1)求a的值及数列{an}的通项公式;(2)设bn=(1﹣an)log3(an2•an+1),求的前n项和为Tn.21. (10分)(2018·安徽模拟) 如图,四棱柱的底面是正方形,为和的交点,若。
江西省宜春市高二上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017高一上·武邑月考) 已知圆与圆关于直线对称,则圆的方程为()A .B .C .D .2. (2分)椭圆上一点到焦点的距离为2,是的中点,则等于()A . 2B . 4C . 6D .3. (2分)已知直线l过点(0,7),且与直线y=﹣4x+2平行,则直线l的方程为()A . y=﹣4x﹣7B . y=4x﹣7C . y=﹣4x+7D . y=4x+74. (2分)圆上的点到直线距离的最大值是()A .B .C .D .5. (2分) (2020高一上·林芝期末) 过点且与直线:平行的直线的方程是()A .B .C .D .6. (2分)几何体的三视图如图所示,则该几何体的体积为()A . 2π+2√3B . 4π+2√3C . 2π+2√3/3D . 4π+2√3/37. (2分)已知F是拋物线y2=x的焦点,A,B是该拋物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为()A .B . 1C .D .8. (2分)(2018·泉州模拟) 已知直线:,圆: .若对任意,存在被截得弦长为,则实数的取值范围是()A .B .C .D .9. (2分)(2016·四川理) 设p:实数x,y满足(x﹣1)2+(y﹣1)2≤2,q:实数x,y满足,则p是q的()A . 必要不充分条件B . 充分不必要条件C . 充要条件D . 既不充分也不必要条件10. (2分) (2018高一下·瓦房店期末) 已知锐角的外接圆半径为,且,则()A .B .C .D .11. (2分)(2018高二上·黑龙江期末) 已知椭圆的左、右焦点分别为,是椭圆上任意一点,从任一焦点引的外角平分线的垂线,垂足为 ,则点的轨迹为()A . 圆B . 椭圆C . 双曲线D . 抛物线12. (2分)设圆锥曲线C的两个焦点分别为、,若曲线C上存在点P满足::=4:3:2,则曲线C的离心率等于()A . 或B . 或2C . 或2D . 或二、填空题 (共7题;共7分)13. (1分)(2017·丰台模拟) 双曲线的焦点坐标是________.14. (1分) (2016高二上·莆田期中) 某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为________元.15. (1分) (2017高二下·嘉兴期末) 已知直线与相交于点,若,则 ________,此时点的坐标为________.16. (1分) (2016高一下·厦门期中) 过点M(﹣3,﹣3)的直线l被圆x2+y2+4y﹣21=0所截得的弦长为,则直线l方程为________.17. (1分)(2017·广西模拟) 已知双曲线﹣y2=1(a>0)的一条渐近线与直线2x+y﹣3=0垂直,则该双曲线的离心率是________.18. (1分)两定点A(﹣2,0),B(2,0)及定直线,点P是l上一个动点,过B作BP的垂线与AP交于点Q,则点Q的轨迹方程为________.19. (1分)(2018·辽宁模拟) 设抛物线的焦点为,过点的直线与抛物线相交于两点,与抛物线的准线相交于点,,则与的面积之比 ________.三、解答题 (共4题;共30分)20. (5分)(2018·河北模拟) 选修4-4:坐标系与参数方程在直角坐标系中,直线过,倾斜角为.以为极点,轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.(Ⅰ)求直线的参数方程和曲线的直角坐标方程;(Ⅱ)已知直线与曲线交于、两点,且,求直线的斜率.21. (5分)(2016·四川文) 已知椭圆E: =1(a>b>0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P(,)在椭圆E上.(1)求椭圆E的方程;(2)设不过原点O且斜率为的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E交于C,D,证明:︳MA︳•︳MB︳=︳MC︳•︳MD︳22. (10分) (2018高三上·贵阳月考) 已知,直线的斜率之积为.(Ⅰ)求顶点的轨迹方程;(Ⅱ)设动直线,点关于直线的对称点为,且点在曲线上,求的取值范围.23. (10分)(2017·银川模拟) 已知椭圆E: + =1(a>b>0)过点,且离心率e为.(1)求椭圆E的方程;(2)设直线x=my﹣1(m∈R)交椭圆E于A,B两点,判断点G 与以线段AB为直径的圆的位置关系,并说明理由.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共7题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共4题;共30分)20-1、21-1、21-2、22-1、23-1、23-2、第11 页共11 页。
绝密★启用前2016-2017学年江西省宜春市高二第一学期期末统考学理数试卷(带解析)试卷副标题考试范围:xxx ;考试时间:66分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、已知双曲线与椭圆有相同的焦点,则该双曲线的渐近线方程为( )A .B .C .D .2、在中,角、、所对的边分别为、、,若,则当角取最大值时,的周长为( ) A . B .C .D .3、如图,焦点在轴上的椭圆()的左、右焦点分别为,,是椭圆上位于第一象限内的一点,且直线与轴的正半轴交于点,的内切圆在边上的切点为,若,则该椭圆的离心率为()A .B .C .D .4、如图,在正方体中,是的中点,为底面内一动点,设与底面所成的角分别为均不为.若,则动点的轨迹为( )A .直线的一部分B .圆的一部分C .椭圆的一部分D .抛物线的一部分5、实系数一元二次方程的一个根在上,另一个根在上,则的取值范围是( )A .B .C .D .6、《张丘建算经》是我国北魏时期大数学家丘建所著,约成书于公元年间,其记臷着这么一道题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布尺,天其织布尺,则该女子织布每天增加的尺数(不作近似计算)为( )A .B .C .D .7、如图,空间四边形中,,点在上,且是的中点,则()A .B .C .D .8、下列命题的逆命题为真命题的是( ) A .若,则B .若,则C .若,则D .若,则9、在等比数列中,若,则( )A .B .C .D .10、不等式的解集为( ) A . B .C .D .11、在中,角、、所对的边分别为、、,若,则的面积为( )A .B .C .D .12、已知命题,则为( )C. D.第II卷(非选择题)二、填空题(题型注释)13、对于正整数,记表示的最大奇数因数,例如.设.当时,__________.14、设是抛物线上两点,是坐标原点,若,则下列结论正确的有__________.①②③直线过抛物线的焦点④到直线的距离小于或等于15、空间直角坐标系中,已知,则直线与的夹角为__________.16、不等式的解集为__________.三、解答题(题型注释)17、如图,已知圆,点,是圆上任意一点,线段的垂直平分线和半径相交于.(1)求动点的轨迹的方程; (2)设直线与(1)中轨迹相交两点,直线的斜率分别为(其中),的面积为,以为直径的圆的面积分别为,若依次构成等比数列,求的取值范围.18、若数列的前项和满足:,记.(1)求数列的通项公式; (2)数列满足,它的前项和为,求;(3)求证:.19、如图所示,在三棱锥中,已知平面,点在平面内的射影在直线上.(1)求证: 平面; (2)设,直线与平面所成的角为,求二面角的余弦值.20、设命题实数满足不等式,命题的解集为.已知“”为真命题,并记为条件,且条件 实数满足或,若是的必要不充分条件,求正整数的值.21、在中,角、、所对的边分别为、、,且满足.(1)求角的大小;(2)若,求角的大小.22、已知不等式的解集为或.解不等式.参考答案1、A2、C3、D4、B5、D6、A7、B8、B9、D10、B11、A12、A13、14、①②④15、16、17、(1);(2).18、(1),;(2);(3)见解析.19、(1)见解析; (2) .20、.21、(1);(2).22、(1);(2)当时,不等式解集为当时,不等式解集为当时,不等式解集为.【解析】1、试题分析:抛物线的焦点坐标为,所以双曲线的焦点坐标为,故双曲线的标准方程得,即,即双曲线的标准方程为,所以双曲线的渐近线方程为,故选A.考点:1.抛物线的标准方程及几何性质;2.双曲线的标准方程及几何性质.2、由题设可得,即,由此可得,所以,又,当且仅当,即时,,由正弦定理可得,而,故三角形的周长为,应选答案C。
2016-2017学年江西省宜春三中高二(上)期中数学试卷一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)等差数列{a n}的前n项和为S n,已知a5=8,S3=6,则a9=()A.8 B.12 C.16 D.242.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5 B.C.2 D.13.(5分)在等差数列{a n}中,若a4+a6+a8+a10+a12=120,则a7﹣a5的值为()A.8 B.12 C.16 D.724.(5分)在△ABC中,角A、B、C所对的边分别是a、b、c,若a=b,A=2B,则cosB等于()A.B.C.D.5.(5分)不等式﹣x2+3x﹣2≥0的解集是()A.{x|x>2或x<1}B.{x|x≥2或x≤1}C.{x|1≤x≤2}D.{x|1<x<2} 6.(5分)两座灯塔A和B与海洋观察站C的距离都等于akm,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为()A.akm B.akm C.2akm D.akm7.(5分)二次不等式ax2+bx+1>0的解集为{x|﹣1<x<},则ab的值为()A.﹣5 B.5 C.﹣6 D.68.(5分)已知各项均为正数的等比数列{a n}中,3a1,a3,2a2成等差数列,则=()A.27 B.3 C.﹣1或3 D.1或279.(5分)在△ABC中,若==,则△ABC是()A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形10.(5分)一个蜂巢里有1只蜜蜂,第一天它飞出去找回3个伙伴;第2天有4只蜜蜂飞出去各自找回了3个伙伴,…,如果这个找伙伴的过程继续下去,第6天所有的蜜蜂归巢后,蜂巢中一共有()只蜜蜂.A.972 B.1456 C.4096 D.546011.(5分)在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2﹣a2=bc,且b=a,则下列关系一定不成立的是()A.a=c B.b=c C.2a=c D.a2+b2=c212.(5分)已知数列{a n}的前n项和为S n,且a1=0,a n+1=(n∈N+).则a33=()A.4(4﹣) B.4(4﹣) C.4(﹣4) D.4(﹣)二、填空题:(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.(5分)已知数列{a n}的前n项和满足S n=2n+1﹣1,则a n=.14.(5分)在△ABC中,a、b、c分别为角A、B、C的对边,若,且,则cosB的值为.15.(5分)如图,为测得河对岸塔AB的高,先在河岸上选一点,C使在塔底的正东方向上,测得点的仰角为60°,再由点沿北偏东15°方向走10米到位置,测得∠BDC=45°,若AB⊥平面BCD,则塔AB的高是米.16.(5分)已知函数f(x)是定义在R上的不恒为零的函数,且对于任意实数x,y满足:f(2)=2,f(xy)=xf(y)+yf(x),a n=(n∈N*),b n=(n∈N*),考查下列结论:①f(1)=1;②f(x)为奇函数;③数列{a n}为等差数列;④数列{b n}为等比数列.以上命题正确的是.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.18.(12分)已知函数f(x)=x2+ax+6.(1)当a=5时,解不等式f(x)<0;(2)若不等式f(x)>0的解集为R,求实数a的取值范围.19.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=a•cosB.(1)求角B的大小;(2)若b=3,sinC=2sinA,分别求a和c的值.20.(12分)等差数列{a n}中,已知a n>0,a1+a2+a3=15,且a1+2,a2+5,a3+13构成等比数列{b n}的前三项.(1)求数列{a n},{b n}的通项公式;(2)求数列{a n b n}的前n项和T n.21.(12分)在△ABC中,角A,B,C对的边分别为a,b,c,且c=2,C=60°.(1)求的值;(2)若a+b=ab,求△ABC的面积S.△ABC22.(12分)已知数列{a n}的前n项和S n满足S n=a n+n﹣3.(1)求证:数列{a n﹣1}是等比数列,并求{a n}的通项公式;(2)令c n=log3(a1﹣1)+log3(a2﹣1)+…+log3(a n﹣1),对任意n∈N*,++…+<k都成立,求k的最小值.2016-2017学年江西省宜春三中高二(上)期中数学试卷参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)等差数列{a n}的前n项和为S n,已知a5=8,S3=6,则a9=()A.8 B.12 C.16 D.24【解答】解:设等差数列{a n}的首项为a1,公差为d,则,解得:a1=0,d=2,所以a9=a1+8d=0+8×2=16.故选:C.2.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5 B.C.2 D.1【解答】解:∵钝角三角形ABC的面积是,AB=c=1,BC=a=,∴S=acsinB=,即sinB=,当B为钝角时,cosB=﹣=﹣,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2+2=5,即AC=,当B为锐角时,cosB==,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2﹣2=1,即AC=1,此时AB2+AC2=BC2,即△ABC为直角三角形,不合题意,舍去,则AC=.故选:B.3.(5分)在等差数列{a n}中,若a4+a6+a8+a10+a12=120,则a7﹣a5的值为()A.8 B.12 C.16 D.72【解答】解:∵{a n}为等差数列且a4+a6+a8+a10+a12=5a1+35d=120,∴a1+7d=24,∴=(a1+7d)=16.故选:C.4.(5分)在△ABC中,角A、B、C所对的边分别是a、b、c,若a=b,A=2B,则cosB等于()A.B.C.D.【解答】解:∵a=b,A=2B,∴由正弦定理得:,∴,∴cosB=,故选:B.5.(5分)不等式﹣x2+3x﹣2≥0的解集是()A.{x|x>2或x<1}B.{x|x≥2或x≤1}C.{x|1≤x≤2}D.{x|1<x<2}【解答】解:不等式﹣x2+3x﹣2≥0化为x2﹣3x+2≤0,因式分解为(x﹣1)(x﹣2)≤0,解得1≤x≤2.∴原不等式的解集为{x|1≤x≤2},故选:C.6.(5分)两座灯塔A和B与海洋观察站C的距离都等于akm,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为()A.akm B.akm C.2akm D.akm【解答】解:根据题意,△ABC中,∠ACB=180°﹣20°﹣40°=120°,∵AC=BC=akm,∴由余弦定理,得cos120°=,解之得AB=akm,即灯塔A与灯塔B的距离为akm,故选:D.7.(5分)二次不等式ax2+bx+1>0的解集为{x|﹣1<x<},则ab的值为()A.﹣5 B.5 C.﹣6 D.6【解答】解:∵不等式ax2+bx+1>0的解集为{x|﹣1<x<},∴a<0,∴原不等式等价于﹣ax2﹣bx﹣1<0,由韦达定理知﹣1+=﹣,﹣1×3=,∴a=﹣3,b=﹣2,∴ab=6.故选:D.8.(5分)已知各项均为正数的等比数列{a n}中,3a1,a3,2a2成等差数列,则=()A.27 B.3 C.﹣1或3 D.1或27【解答】解:设等比数列{a n}的公比为q,由题意可得a3=3a1+2a2,∴a1q2=3a1+2a1q,即q2=3+2q解得q=3,或q=﹣1(舍去),∴==q3=27故选:A.9.(5分)在△ABC中,若==,则△ABC是()A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形【解答】解:由=,得=.又=,∴=.∴=.∴sinAcosB=cosAsinB,sin(A﹣B)=0,A=B.同理B=C.∴△ABC是等边三角形.故选:B.10.(5分)一个蜂巢里有1只蜜蜂,第一天它飞出去找回3个伙伴;第2天有4只蜜蜂飞出去各自找回了3个伙伴,…,如果这个找伙伴的过程继续下去,第6天所有的蜜蜂归巢后,蜂巢中一共有()只蜜蜂.A.972 B.1456 C.4096 D.5460【解答】解:设此数列为{a n},由题意可得:a1=4,公比为q=3,∴S6==1456,故选:B.11.(5分)在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2﹣a2=bc,且b=a,则下列关系一定不成立的是()A.a=c B.b=c C.2a=c D.a2+b2=c2【解答】解:∵b2+c2﹣a2=bc,∴cosA==,∴A=30°,由正弦定理化简b=a,得到sinB=sinA=,∴B=60°或120°,当B=60°时,C=90°,此时△ABC为直角三角形,得到a2+b2=c2,2a=c;当B=120°时,C=30°,此时△ABC为等腰三角形,得到a=c,综上,b=c不一定成立,故选:B.12.(5分)已知数列{a n}的前n项和为S n,且a1=0,a n+1=(n∈N+).则a33=()A.4(4﹣) B.4(4﹣) C.4(﹣4) D.4(﹣)=(n∈N+),a n+1=S n+1﹣S n,∴﹣=n,【解答】解:∵a n+1∴=﹣++…++=(n﹣1)+(n﹣2)+…+1+0=.∴S n=,∴a33=S33﹣S32=﹣=4,故选:D.二、填空题:(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.(5分)已知数列{a n}的前n项和满足S n=2n+1﹣1,则a n=.【解答】解:∵S n=2n+1﹣1,当n=1时,a1=S1=3,当n≥2时,a n=S n﹣S n﹣1=(2n+1﹣1)﹣(2n﹣1)=2n,显然,n=1时a1=3≠2,不符合n≥2的关系式.∴a n=.故答案为:.14.(5分)在△ABC中,a、b、c分别为角A、B、C的对边,若,且,则cosB的值为.【解答】解:将cosB=,cosC=代入已知等式得:=,整理得:b=c,∴cosA===,即6b2﹣3a2=4b2,整理得:b=a,即a=b,则cosB===.故答案为:15.(5分)如图,为测得河对岸塔AB的高,先在河岸上选一点,C使在塔底的正东方向上,测得点的仰角为60°,再由点沿北偏东15°方向走10米到位置,测得∠BDC=45°,若AB⊥平面BCD,则塔AB的高是米.【解答】解:设塔高AB为x米,根据题意可知在△ABC中,∠ABC=90°,∠ACB=60°,AB=x,从而有BC=x,AC=x,在△BCD中,CD=10,∠BCD=60°+30°+15°=105°,∠BDC=45°,∠CBD=30°由正弦定理可得,,∴BC==10.∴.∴x=10.故答案为:.16.(5分)已知函数f(x)是定义在R上的不恒为零的函数,且对于任意实数x,y满足:f(2)=2,f(xy)=xf(y)+yf(x),a n=(n∈N*),b n=(n ∈N*),考查下列结论:①f(1)=1;②f(x)为奇函数;③数列{a n}为等差数列;④数列{b n}为等比数列.以上命题正确的是②③④.【解答】解:(1)因为对定义域内任意x,y,f(x)满足f(xy)=yf(x)+xf(y),∴令x=y=1,得f(1)=0,故①错误,(2)令x=y=﹣1,得f(﹣1)=0;令y=﹣1,有f(﹣x)=﹣f(x)+xf(﹣1),代入f(﹣1)=0得f(﹣x)=﹣f(x),故f(x)是(﹣∞,+∞)上的奇函数.故②正确,(3)若,=﹣则a n﹣a n﹣1===为常数,故数列{a n}为等差数列,故③正确,④∵f(2)=2,f(xy)=xf(y)+yf(x),∴当x=y时,f(x2)=xf(x)+xf(x)=2xf(x),则f(22)=4f(2)=8=2×22,f(23)=22f(2)+2f(22)=23+2×23═3×23,…则f(2n)=n×2n,若,则====2为常数,则数列{b n}为等比数列,故④正确,故答案为:②③④.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.【解答】解:(1)由a n=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5解得d=﹣2,a1=9,数列{a n}的通项公式为a n=11﹣2n(2)由(1)知S n=na1+d=10n﹣n2.因为S n=﹣(n﹣5)2+25.所以n=5时,S n取得最大值.18.(12分)已知函数f(x)=x2+ax+6.(1)当a=5时,解不等式f(x)<0;(2)若不等式f(x)>0的解集为R,求实数a的取值范围.【解答】解:(1)∵当a=5时,不等式f(x)<0即x2+5x+6<0,∴(x+2)(x+3)<0,∴﹣3<x<﹣2.∴不等式f(x)<0的解集为{x|﹣3<x<﹣2}(2)不等式f(x)>0的解集为R,∴x的一元二次不等式x2+ax+6>0的解集为R,∴△=a2﹣4×6<0⇒﹣2<a<2∴实数a的取值范围是(﹣2,2)19.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=a•cosB.(1)求角B的大小;(2)若b=3,sinC=2sinA,分别求a和c的值.【解答】解:(1)∵bsinA=a•cosB,由正弦定理可得:sinBsinA=sinAcosB,∵sinA≠0,∴sinB=cosB,B∈(0,π),可知:cosB≠0,否则矛盾.∴tanB=,∴B=.(2)∵sinC=2sinA,∴c=2a,由余弦定理可得:b2=a2+c2﹣2accosB,∴9=a2+c2﹣ac,把c=2a代入上式化为:a2=3,解得a=,∴.20.(12分)等差数列{a n}中,已知a n>0,a1+a2+a3=15,且a1+2,a2+5,a3+13构成等比数列{b n}的前三项.(1)求数列{a n},{b n}的通项公式;(2)求数列{a n b n}的前n项和T n.【解答】解:(1)设设等差数列的公差为d,则由已知得:a1+a2+a3=3a2=15,即a2=5,又(5﹣d+2)(5+d+13)=100,解得d=2或d=﹣13(舍),a1=a2﹣d=3,∴a n=a1+(n﹣1)×d=2n+1,又b1=a1+2=5,b2=a2+5=10,∴q=2∴.(2)∵,,两式相减得,则.21.(12分)在△ABC中,角A,B,C对的边分别为a,b,c,且c=2,C=60°.(1)求的值;.(2)若a+b=ab,求△ABC的面积S△ABC【解答】解:(1)由正弦定理可设,所以,所以.…(6分)(2)由余弦定理得c2=a2+b2﹣2abcosC,即4=a2+b2﹣ab=(a+b)2﹣3ab,又a+b=ab,所以(ab)2﹣3ab﹣4=0,解得ab=4或ab=﹣1(舍去)所以.…(14分)22.(12分)已知数列{a n}的前n项和S n满足S n =a n+n﹣3.(1)求证:数列{a n﹣1}是等比数列,并求{a n}的通项公式;(2)令c n=log3(a1﹣1)+log3(a2﹣1)+…+log3(a n﹣1),对任意n∈N*,++…+<k都成立,求k的最小值.【解答】解:(1)①②①﹣②,得,即a n=3a n﹣1﹣2,∴a n﹣1=3(a n﹣1),即,﹣1由可得,a1=4∴{a n﹣1}是以3为首项,3为公比的等比数列,则,∴(2)log3(a n﹣1)=n,∴,恒成立,∴k≥2,即k min=2赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
一、选择题1.(0分)[ID :13028]某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生2.(0分)[ID :13008]为研究某种细菌在特定环境下,随时间变化的繁殖情况,得到如下实验数据: 天数x (天) 3 4 56 繁殖个数y (千个)2.5344.5由最小二乘法得y 与x 的线性回归方程为ˆˆ0.7yx a =+,则当7x =时,繁殖个数y 的预测值为( ) A .4.9 B .5.25 C .5.95D .6.153.(0分)[ID :13000]“三个臭皮匠,赛过诸葛亮”,这是我们常说的口头禅,主要是说集体智慧的强大. 假设李某智商较高,他独自一人解决项目M 的概率为10.3P =;同时,有n 个水平相同的人也在研究项目M ,他们各自独立地解决项目M 的概率都是0.1.现在李某单独研究项目M ,且这n 个人组成的团队也同时研究项目M ,设这个n 人团队解决项目M 的概率为2P ,若21P P ≥,则n 的最小值是( ) A .3B .4C .5D .64.(0分)[ID :12999]汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油5.(0分)[ID:12998]用电脑每次可以从区间()0,1内自动生成一个实数,且每次生成每个实数都是等可能性的,若用该电脑连续生成3个实数,则这3个实数都大于13的概率为()A.127B.23C.827D.496.(0分)[ID:12991]在去年的足球甲A联赛上,一队每场比赛平均失球数是1.5,全年比赛失球个数的标准差为1.1;二队每场比赛平均失球数是2.1,全年失球个数的标准差是0.4,你认为下列说法中正确的个数有()①平均来说一队比二队防守技术好;②二队比一队防守技术水平更稳定;③一队防守有时表现很差,有时表现又非常好;④二队很少不失球.A.1个B.2个C.3个D.4个7.(0分)[ID:12985]某商场为了了解毛衣的月销售量y(件)与月平均气温x(C︒)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:月平均气温x C︒171382月销售量y(件)24334055由表中数据算出线性回归方程y bx a=+中的2b=-,气象部门预测下个月的平均气温为6C︒,据此估计该商场下个月毛衣销售量约为()A.58件B.40件C.38件D.46件8.(0分)[ID:12977]执行如图所示的程序框图,则输出的n值是()A .5B .7C .9D .119.(0分)[ID :12969]某城市2017年的空气质量状况如下表所示: 污染指数T 3060100110130140概率P110 16 13 730 215 130其中污染指数50T ≤时,空气质量为优;50100T <≤时,空气质量为良;100150T <≤时,空气质量为轻微污染,该城市2017年空气质量达到良或优的概率为( )A .35B .1180C .119D .5610.(0分)[ID :12964]已知某地区中小学生人数和近视情况分别如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A .100,20B .200,20C .100,10D .200,1011.(0分)[ID :12959]为计算11111123499100S =-+-++-…,设计了下面的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+12.(0分)[ID :12951]若框图所给的程序运行结果为S =20,那么判断框中应填入的关于k 的条件是( )A .k >8?B .k ≤8?C .k <8?D .k =9?13.(0分)[ID :12946]从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110B .35C .310D .2514.(0分)[ID :13019]设点(a,b)为区域4000x y x y +-≤⎧⎪>⎨⎪>⎩内任意一点,则使函数f(x)=2ax 2bx 3-+在区间[12,+∞)上是增函数的概率为 A .13B .2 3C .1 2D .1 415.(0分)[ID :13003]一组数据如下表所示:x1 2 3 4y e3e 4e 6e已知变量y 关于x 的回归方程为+0.5ˆbx ye =,若5x =,则预测y 的值可能为( ) A .5eB .112eC .132eD .7e二、填空题16.(0分)[ID :13117]已知直线l 的极坐标方程为2sin()24πρθ-=A 的极坐标为7(22,)4π,则点A 到直线l 的距离为____. 17.(0分)[ID :13113]如果执行如图所示的程序框图,输入正整数()2N N ≥和实数12,,...,N a a a ,输出,A B ,若输入的N 为20,12,,...,N a a a 依次为87,76,89,98,68,76,89,94,83,86,68,79,95,93,89,87,76,77,84,96,则A B =-________.18.(0分)[ID :13101]变量X 与Y 相对应的5组数据和变量U 与V 相对应的5组数据统计如表: X 10 11.3 11.8 12.5 13 U 10 11.3 11.8 12.5 13 Y12345V54321用b 1表示变量Y 与X 之间的回归系数,b 2表示变量V 与U 之间的回归系数,则b 1与b 2的大小关系是___.19.(0分)[ID :13093]执行如下图所示的程序框图,若输入n 的值为6,则输出S 的值为__________.20.(0分)[ID :13060]已知x ,y 取值如表,画散点图分析可知y 与x 线性相关,且求得回归方程为35y x =-,则m 的值为__________.x01356y12m3m- 3.89.221.(0分)[ID:13058]若按右上图所示的程序框图运行后,输出的结果是63,则判断框中的整数M的值是__________。
2016-2017学年江西省宜春市万载县株潭中学高二(上)期中数学试卷一、选择题(本题共12道小题,每小题5分,共60分)1.(5分)在等差数列{a n}中,a1+a5=8,a4=7,则a5=()A.11 B.10 C.7 D.32.(5分)满足条件a=6,b=5,B=120°的△ABC的个数是()A.零个B.一个C.两个D.无数个3.(5分)已知a,b,c∈R,且a>b,则一定成立的是()A.a2>b2B.C.ac2>bc2 D.4.(5分)下列函数中,最小值为2的函数是()A.y=x+B.y=sinθ+(0<θ<)C.y=sinθ+(0<θ<π)D.5.(5分)△ABC中,若=,则该三角形一定是()A.等腰三角形但不是直角三角形B.直角三角形但不是等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6.(5分)不等式ax2+5x﹣2>0的解集是{x|<x<2},则关于x的不等式ax2﹣5x+a2﹣1>0的解集为()A.(﹣∞,﹣)∪(1,+∞)B.(﹣,1)C.(﹣∞﹣3)∪(,+∞)D.(﹣3,)7.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于()A.m B.m C.m D.m 8.(5分)数列的前n项和为S n,且满足a1=1,a n=a n﹣1+n,(n≥2),则S n 等于()A.B.C.D.9.(5分)已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.10.(5分)已知S n是等差数列{a n}的前n项和,公差为d,且S2015>S2016>S2014,下列五个命题:①d>0 ②S4029>0 ③S4030<0 ④数列{S n}中的最大项为S4029,其中正确命题的个数是()A.1 B.2 C.3 D.411.(5分)在△ABC中,三个内角A,B,C所对的边为a,b,c,若S△ABC=2,a+b=6,=2cosC,则c=()A.2 B.4 C.2 D.312.(5分)把数列{2n+1}依次按一项、二项、三项、四项循环分为(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27,),(29,31,33),(35,37,39,41),…,在第100个括号内各数之和为()A.1992 B.1990 C.1873 D.1891二、填空题(本题共4道小题,每小题5分,共20分)13.(5分)(文科做)命题“若a,b都是偶数,则a+b是偶数”的否命题是.14.(5分)两等差数列{a n}和{b n},前n项和分别为S n,T n,且,则等于.15.(5分)方程x2﹣2kx﹣3k=0一根大于1,一根小于﹣1,则实数k的取值范围.16.(5分)设M是,定义f(M)=(m,n,p),其中m、n、p分别是△MBC,△MCA,△MAB的面积,的最小值是.三、解答题17.(10分)等比数列{a n}的前n项和为S n,已知S1,S3,S2成等差数列,求{a n}的公比q.18.(12分)变量x,y满足(1)设z=,求z的最小值;(2)设z=x2+y2+6x﹣4y+13,求z的取值范围.19.(12分)已知△ABC的外接圆的半径为,内角A、B、C的对边分别为a、b、c,向量,,且.(I)求角C;(II)求△ABC的面积S的最大值,并判断此时△ABC的形状.20.(12分)已知函数y=的定义域为R.(1)求a的取值范围.(2)若函数的最小值为,解关于x的不等式x2﹣x﹣a2﹣a<0.21.(12分)已知关于x的不等式x2﹣(a2+3a+2)x+3a(a2+2)<0(a∈R).(Ⅰ)解该不等式;(Ⅱ)定义区间(m,n)的长度为d=n﹣m,若a∈[0,4],求该不等式解集表示的区间长度的最大值.22.(12分)已知等比数列{a n}的前n项和为S n=2•3n+k(k∈R,n∈N*)(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足a n=4,T n为数列{b n}的前n项和,试比较3﹣16T n与4(n+1)b n+1的大小,并证明你的结论.2016-2017学年江西省宜春市万载县株潭中学高二(上)期中数学试卷参考答案与试题解析一、选择题(本题共12道小题,每小题5分,共60分)1.(5分)在等差数列{a n}中,a1+a5=8,a4=7,则a5=()A.11 B.10 C.7 D.3【解答】解:设等差数列{a n}的公差为d,∵a1+a5=8,a4=7,∴2a1+4d=8,a1+3d=7,解得a1=﹣2,d=3.则a5=﹣2+4×3=10.故选:B.2.(5分)满足条件a=6,b=5,B=120°的△ABC的个数是()A.零个B.一个C.两个D.无数个【解答】解:由余弦定理可得:52=62+c2﹣12ccos120°,化为:c2+6c+11=0,△=62﹣44=﹣8<0,因此方程无解.∴满足条件a=6,b=5,B=120°的△ABC的个数是0.故选:A.3.(5分)已知a,b,c∈R,且a>b,则一定成立的是()A.a2>b2B.C.ac2>bc2 D.【解答】解:对于A、当a=﹣1,b=﹣2,显然不成立,故A项不一定成立;对于B、∵由于ab符号不确定,故与的大小不能确定,故B项不一定成立;对于C、当c=0时,则ac2=bc2,故C不一定成立;对于D、由c2+1≥1,故D项一定成立;故选:D.4.(5分)下列函数中,最小值为2的函数是()A.y=x+B.y=sinθ+(0<θ<)C.y=sinθ+(0<θ<π)D.【解答】解:A.x<0时,y<0.B.∵0<θ<,可得1>sinθ>0,∴y=sinθ+=2,最小值不可能为2.C..∵0<θ<π,可得1≥sinθ>0,∴y=sinθ+≥=2,当且仅当sinθ=1时取等号,最小值为2.D.+>=2,最小值不可能为2.故选:C.5.(5分)△ABC中,若=,则该三角形一定是()A.等腰三角形但不是直角三角形B.直角三角形但不是等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形【解答】解:由已知等式变形得:acosA=bcosB,利用正弦定理化简得:sinAcosA=sinBcosB,即sin2A=sin2B.∴2A=2B或2A+2B=180°,∴A=B或A+B=90°,则△ABC为等腰三角形或直角三角形.故选:D.6.(5分)不等式ax2+5x﹣2>0的解集是{x|<x<2},则关于x的不等式ax2﹣5x+a2﹣1>0的解集为()A.(﹣∞,﹣)∪(1,+∞)B.(﹣,1)C.(﹣∞﹣3)∪(,+∞)D.(﹣3,)【解答】解:由已知条件可知a<0,且,2是方程ax2+5x﹣2=0的两个根,由根与系数的关系得:×2=﹣解得a=﹣2所以ax2﹣5x+a2﹣1>0化为2x2+5x﹣3<0,化为:(2x﹣1)(x+3)<0解得﹣3<x<,所以不等式解集为:(﹣3,)故选:D.7.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于()A.m B.m C.m D.m【解答】解:如图,∠DAB=15°,∵tan15°=tan(45°﹣30°)==2﹣.在Rt△ADB中,又AD=60,∴DB=AD•tan15°=60×(2﹣)=120﹣60.在Rt△ADC中,∠DAC=60°,AD=60,∴DC=AD•tan60°=60.∴BC=DC﹣DB=60﹣(120﹣60)=120(﹣1)(m).∴河流的宽度BC等于120(﹣1)m.故选:B.8.(5分)数列的前n项和为S n,且满足a1=1,a n=a n﹣1+n,(n≥2),则S n 等于()A.B.C.D.【解答】解:由题意得,a n=a n﹣1+n(n≥2),则a n﹣a n﹣1=n,所以a2﹣a1=2,a3﹣a2=3,…,a n﹣a n﹣1=n,以上(n﹣1)个式子相加得,a n﹣a1=2+3+…+n,又a1=1,则a n=1+2+3+…+n=,所以=,则数列的前n项和为S n=[2+3+…+(n+1)]==,故选:B.9.(5分)已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.【解答】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.10.(5分)已知S n是等差数列{a n}的前n项和,公差为d,且S2015>S2016>S2014,下列五个命题:①d>0 ②S4029>0 ③S4030<0 ④数列{S n}中的最大项为S4029,其中正确命题的个数是()A.1 B.2 C.3 D.4【解答】解:∵S n是等差数列{a n}的前n项和,公差为d,且S2015>S2016>S2014,∴等差数列的前2015项和最大,∴a1>0,d<0,且前2015项为正数,从第2016项开始为负数,故①和④错误;再由S2016>S2014,得S2016﹣S2014=a2016+a2015>0,S4029=(a1+a4029)=×2a2015>0,故②正确;S4030==2015(a2015+a2016)>0,故③错误.故选:A.11.(5分)在△ABC中,三个内角A,B,C所对的边为a,b,c,若S△ABC=2,a+b=6,=2cosC,则c=()A.2 B.4 C.2 D.3【解答】解:===1,即有2cosC=1,可得C=60°,=2,则absinC=2,若S△ABC即为ab=8,又a+b=6,由c2=a2+b2﹣2abcosC=(a+b)2﹣2ab﹣ab=(a+b)2﹣3ab=62﹣3×8=12,解得c=2.故选:C.12.(5分)把数列{2n+1}依次按一项、二项、三项、四项循环分为(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27,),(29,31,33),(35,37,39,41),…,在第100个括号内各数之和为()A.1992 B.1990 C.1873 D.1891【解答】解:由已知可知:原数列按1、2、3、4项循环分组,每组中有4个括号,每组中共有10项,因此第100个括号应在第25组第4个括号,该括号内四项分别为a247、a248、a249、a250,因此在第100个括号内各数之和=a247+a248+a249+a250=495+497+499+501=1992,故选:A.二、填空题(本题共4道小题,每小题5分,共20分)13.(5分)(文科做)命题“若a,b都是偶数,则a+b是偶数”的否命题是若a,b不都是偶数,则a+b不是偶数.【解答】解:条件和结论同时进行否定,则否命题为:若a,b不都是偶数,则a+b不是偶数.故答案为:若a,b不都是偶数,则a+b不是偶数.14.(5分)两等差数列{a n}和{b n},前n项和分别为S n,T n,且,则等于.【解答】解:====.故答案为:.15.(5分)方程x2﹣2kx﹣3k=0一根大于1,一根小于﹣1,则实数k的取值范围(1,+∞).【解答】解:设f(x)=x2﹣2kx﹣3k,由题意可知,即,解得k>1.故答案为:(1,+∞).16.(5分)设M是,定义f(M)=(m,n,p),其中m、n、p分别是△MBC,△MCA,△MAB的面积,的最小值是18.【解答】解:由,得,所以,∴x+y=,则,当且仅当时,的最小值为18.故答案为:18三、解答题17.(10分)等比数列{a n}的前n项和为S n,已知S1,S3,S2成等差数列,求{a n}的公比q.【解答】解依题意有2S3=S1+S2,即2(a1+a1•q+)=a1+(a1+a1•q),由于a1≠0,∴2q2+q=0,又q≠0,∴q=﹣.18.(12分)变量x,y满足(1)设z=,求z的最小值;(2)设z=x2+y2+6x﹣4y+13,求z的取值范围.【解答】解由约束条件作出(x,y)的可行域,如图阴影部分所示:由,解得A(1,),由,解得C(1,1),由,可得B(5,2),(1)∵z==,∴z的值即是可行域中的点与原点O连线的斜率,观察图形可知z min=k OB=;(2)z=x2+y2+6x﹣4y+13=(x+3)2+(y﹣2)2的几何意义是可行域上的点到点(﹣3,2)的距离的平方,结合图形可知,可行域上的点到(﹣3,2)的距离中,d min=4,d max=8.故z的取值范围是[16,64].19.(12分)已知△ABC的外接圆的半径为,内角A、B、C的对边分别为a、b、c,向量,,且.(I)求角C;(II)求△ABC的面积S的最大值,并判断此时△ABC的形状.【解答】解:向量,,且.(I)∵,∴sin2A﹣sin2C=(a﹣b)sinB.由正弦定理可得:sinA=,sinB=,sinC=,∴a2﹣c2=(a﹣b)b.由余弦定理:cosC=.∵0<C<π,∴C=.(II)△ABC的面积S=absinC,∵C=,R=,∴c=2RsinC=.由余弦定理:得a2+b2=6+ab.∵a2+b2≥2ab,(当且仅当a=b是取等)∴ab≤6.故得△ABC的面积S=absinC=.∵C=,a=b.此时△ABC为等边三角形.20.(12分)已知函数y=的定义域为R.(1)求a的取值范围.(2)若函数的最小值为,解关于x的不等式x2﹣x﹣a2﹣a<0.【解答】解:(1)函数y=的定义域为R,∴ax2+2ax+1≥0恒成立,当a=0时,1>0恒成立,满足题意;当a≠0时,根据二次函数y=ax2+2ax+1的图象与性质,知不等式ax2+2ax+1≥0恒成立时,,即,解得0<a≤1;综上,a的取值范围是{a|0≤a≤1};(2)∵函数y的最小值为,∴≥,a∈[0,1];∴ax2+2ax+1≥;当a=0时,不满足条件;当1≥a>0时,ax2+2ax+1的最小值是=,∴a=;∴不等式x2﹣x﹣a2﹣a<0可化为x2﹣x﹣<0,解得﹣<x<;∴不等式的解集是{x|﹣<x<}.21.(12分)已知关于x的不等式x2﹣(a2+3a+2)x+3a(a2+2)<0(a∈R).(Ⅰ)解该不等式;(Ⅱ)定义区间(m,n)的长度为d=n﹣m,若a∈[0,4],求该不等式解集表示的区间长度的最大值.【解答】解:(Ⅰ)原不等式可化为[x﹣(a2+2)](x﹣3a)<0,…(1分)当a2+2<3a,即1<a<2时,原不等式的解为a2+2<x<3a;…(3分)当a2+2=3a,即a=1或a=2时,原不等式的解集为∅;…(5分)当a2+2>3a,即a<1或a>2时,原不等式的解为3a<x<a2+2.…(7分)综上所述,当1<a<2时,原不等式的解为a2+2<x<3a,当a=1或a=2时,原不等式的解集为∅,当a<1或a>2时,原不等式的解为3a<x<a2+2.(Ⅱ)当a=1或a=2时,该不等式解集表示的区间长度不可能最大.…(8分)当a≠1且a≠2时,,a∈[0,4].…(9分)设t=a2+2﹣3a,a∈[0,4],则当a=0时,t=2,当时,,当a=4时,t=6,…(11分)∴当a=4时,d max=6.…(12分)22.(12分)已知等比数列{a n}的前n项和为S n=2•3n+k(k∈R,n∈N*)(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足a n=4,T n为数列{b n}的前n项和,试比较3﹣16T n与4(n+1)b n+1的大小,并证明你的结论.【解答】解:(Ⅰ)由S n=2﹣3n+k可得n≥2 时,a n=S n﹣S n﹣1=4×3n﹣1∵{a n}是等比数列∴a1=S1=6+k=4∴k=﹣2,a n=4×3n﹣1(Ⅱ)由和a n=4×3n﹣1得(6分)T n=b1+b2+…+b n=两式相减可得,=4(n +1)b n +1﹣(3﹣16T n )=而n (n +1)﹣3(2n +1)=n 2﹣5n ﹣3 当或<0时,有n (n +1)>3(2n +1)所以当n >5时有3﹣16T n <4(n +1)b n +1 那么同理可得:当时有n (n +1)<3(2n +1),所以当1≤n ≤5时有3﹣16T n >4(n +1)b n +1 综上:当n >5时有3﹣16T n <4(n +1)b n +1; 当1≤n ≤5时有3﹣16T n >4(n +1)b n +1。