【多套试卷】新七年级下学期期末考试数学试题及答案
- 格式:docx
- 大小:1.27 MB
- 文档页数:32
2024年人教版初一数学下册期末考试卷(附答案)一、选择题(每题1分,共5分)1. 若一个数的立方根是2,则这个数是()A. 2B. 8C. 16D. 42. 在直角坐标系中,点(3,4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 下列哪个数是负数()A. 0B. 3/4C. 5/6D. 24. 若一个数的绝对值是3,则这个数是()A. 3B. 3C. 3或35. 下列哪个图形是平行四边形()A. 矩形B. 正方形C. 梯形D. 菱形二、判断题(每题1分,共5分)1. 两个互质的数的最小公倍数是它们的乘积。
()2. 一个数既是偶数又是奇数。
()3. 任何两个数的和都是正数。
()4. 任何两个数的差都是负数。
()5. 任何两个数的积都是正数。
()三、填空题(每题1分,共5分)1. 5的平方根是______。
2. 下列数中,最大的是______(2,3,0,5)。
3. 两个相邻的自然数之和是______。
4. 下列数中,最小的数是______(3,4,2,1)。
5. 下列数中,既是偶数又是合数的是______(4,5,6,7)。
四、简答题(每题2分,共10分)1. 请简述什么是勾股定理。
2. 请简述什么是绝对值。
3. 请简述什么是分数。
4. 请简述什么是比例。
5. 请简述什么是方程。
五、应用题(每题2分,共10分)1. 若一个数的平方是16,求这个数。
2. 若一个数的三分之一是4,求这个数。
3. 若一个数的二分之一是5,求这个数。
4. 若一个数的四分之一是3,求这个数。
5. 若一个数的五分之一是2,求这个数。
六、分析题(每题5分,共10分)1. 请分析什么是正比例函数,并举例说明。
2. 请分析什么是反比例函数,并举例说明。
七、实践操作题(每题5分,共10分)1. 请用尺规作一个边长为5cm的正方形。
2. 请用尺规作一个半径为3cm的圆。
八、专业设计题(每题2分,共10分)1. 设计一个包含两个变量的线性方程组,并给出一个解法。
新七年级下学期期末考试数学试题及答案人教版七年级下学期期末考试数学试题(考试时间120分钟满分120分)一.选择题:(每小题3分,共24分)1.在实数:3.14159,3.46,1.010010001…,π,227中,无理数有()A、1个B、2个C、3个D、4个答案:B考点:实数的概念。
解析:无限不循环的小数为无理数,无理数有:1.010010001…,π,共2个,其它为有理数。
2.下列运算正确的是()A、3a+2a=5a2B、2a2b﹣a2b=a2b C.3a+3b=3ab D、a5﹣a2=a3答案:B考点:整式的运算。
解析:A、3a+2a=5a,故错误;B、正确;C、不是同类项,不能合并;D、不是同类项,不能合并;3.下列调查中,最适合采用全面调查的是()A、对全国中学生睡眠时间的调查B.了解一批节能灯的使用寿命C.对“中国诗词大会”节目收视率的调查D.对玉免二号月球车零部件的调查答案:D考点:统计。
解析:A、B、C容量大,不能做全面调查,只有D适合做全面调查。
4.如图,直线l 1∥l 2,且分别与直线l 交于C ,D 两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=50°,则∠2的度数为( ) A 、90° B 、110° C 、108° D 、100°答案:D考点:两直线平行的性质。
解析:如下图,因为l 1∥l 2, 所以,∠3=∠1=50°, ∠3+∠2+30°=180°,∠2=180°-50°-30°=100°5.买1本笔记本和3支水笔共需14元,买3本笔记本和1支水笔共需18元,则购买1本笔记本和1支水笔共需( )A 、3元B 、5元C 、8元D 、13元 答案:C考点:二元一次方程组。
解析:购买1本笔记本和1支水笔分别需x 、y 元,则有314318x y x y ⎧⎨+=⎩+=,解得:53x y =⎧⎨=⎩, x +y =5+3=86.将点A (2,﹣1)向左平移3个单位长度,再向上平移4个单位长度得到点B ,则点B 的坐标是( )A 、(-1,3)B 、(5,3)C 、(﹣1,﹣5)D 、(5,﹣5) 答案:A考点:平移。
新七年级(下)期末考试数学试题(含答案)一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合要求的请将答案选项填在下表中.1.如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是()A.①③B.②④C.①③④D.①②③④2.下列结论正确的是()A.B.C 6 D.-(2=16253.在平面直角坐标系中,点(-1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限4.解方程组437435x yx y-⎨⎩+⎧==时,较为简单的方法是()A.代入法B.加减法C.试值法D.无法确定5.不等式组2130xx≤+≥⎧⎨⎩的整数解的个数为()A.1 B.2 C.3 D.46.为了了解我市参加中考的75000名学生的视力情况,抽查了1000名学生的视力进行统计分析,下面四个判断中,正确的是()A.75000名学生是总体B.1000名学生的视力是总体的一个样本C.每名学生是总体的一个个体D.上述调查是普查7.下列四个命题:①若a>b,则a+1>b+1;②若a>b,则a-c>b-c;③若a>b,则-2a<-2b;④若a>b,则ac>bc.其中正确的个数是()A.1 B.2 C.3 D.48.甲、乙两人做同样的零件,如果甲先做1天,乙再开始做,5天后两人做的一样多,如果甲先做30个,乙再开始做,4天后乙反比甲多做10个.甲,乙两人每天分别做多少个?设甲,每天做x个,乙每天做y个,列出的方程组是()A.65304410x yx y⎩++⎧⎨==B.156304410x yx y⎨⎩++-⎧==C.65304410x yx y⎩+-⎧⎨==D.155304410x yx y⎨⎩+++⎧==9.如图所示是甲、乙两户居民家庭全年支出费用的扇形统计图,根据统计图,下面对全年食品支出费用判断正确的是()A.甲户比乙户多B.乙户比甲户多C.甲、乙两户一样多D.无法确定哪一户多10.如果点M在y轴的左侧,且在x轴的上侧,到两坐标轴的距离都是1,则点M的坐标为()A.(-1,2)B.(-1,-1)C.(-1,1)D.(1,1)11.关于x的方程5x+12=4a的解都是负数,则a的取值范围()A.a>3 B.a<-3 C.a<3 D.a>-312.解方程组278ax bycx y-⎨⎩+⎧==时,正确的解是32xy-⎧⎨⎩==,由于看错了系数c得到的解是22xy⎩-⎧⎨==,则a+b+c的值是()A.5 B.6 C.7 D.无法确定二、填空题:本大题共6小题,每小题3分,共18分,请将答案直接填在题中横线上.13.如图,已知直线AB∥CD,∠1=50°,则∠2=(1)这天共销售了多少个粽子?(2)销售B品牌粽子多个个?并补全图1中的条形图;(3)求出A品牌粽子在图2中所对应的圆心角的度数;(4)根据上述统计信息,明年端午节期间该商场对A、B、C三种品牌的粽子如何进货?请你提一条合理化的建议.参考答案及试题解析1.【分析】根据平行线的判定方法可以一一证明①、②、③、④都能判断a∥b.【解答】解:∵∠1=∠2,∴a∥b,故①正确.∵∠3=∠6,∠3=∠5,∴∠5=∠6,∴a∥b,故②正确,∵∠4+∠7=180°,∠4=∠6,∴∠6+∠7=180°,∴a∥b,故③正确,∵∠5+∠8=180°,∠5=∠3,∠8=∠2,∴∠2+∠3=180°,∴a∥b,故④正确,故选:D.【点评】本题考查平行线的判定,记住同位角相等两直线平行,内错角相等两直线平行,同旁内角互补两直线平行,解题的关键是搞清楚同位角、内错角、同旁内角的概念,属于中考常考题型.2.【分析】根据二次根式的性质即可求出答案【解答】解:(B)原式B错误;(C)原式=16,故C错误;(D)原式=-1625故D错误;故选:A.【点评】本题考查二次根式的性质,解题的关键熟练运用二次根式的性质,本题属于基础题型.3.【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因为点(-1,m2+1),横坐标<0,纵坐标m2+1一定大于0,所以满足点在第二象限的条件.故选:B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4【分析】先观察两方程的特点,因为y的系数互为相反数,x的系数相同,故用加减消元法比较简单.【解答】解:∵两方程中y的系数互为相反数,x的系数相同,∴用加减消元法比较简单.故选:B.【点评】本题考查的是解二元一次方程的加减消元法和代入消元法,当两方程中相同的未知数的系数相等或互为相反数时用加减消元法解方程比较简单.5.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:2130xx≤⋯+≥⎨⋯⎧⎩①②,解①得x≤12,解②得x≥-3.则不等式组的解集是:-3≤x≤12.则整数解是-3,-2,-1,0共有4个.故选:D.【点评】此题考查的是一元一次不等式组的解法和一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.【分析】总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本;样本容量:样本中个体的数目.【解答】解:A、75000名学生的视力情况是总体,故错误;B、1000名学生的视力情况是总体的一个样本,正确;C、每名学生的视力情况是总体的一个个体,故错误;D、上述调查是抽样调查,故错误;故选:B.【点评】本题考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.7.【分析】利用不等式的性质分别判断后即可确定正确的选项.【解答】解:①若a>b,则a+1>b+1,正确;②若a>b,则a-c>b-c,正确;③若a>b,则-2a<-2b,正确;④若a>b,则ac>bc当c≤0时错误.其中正确的个数是3个,故选:C.【点评】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.8.【分析】此题中的等量关系有:①甲先做一天,乙再开始做5天后两人做的零件一样多;②甲先做30个,乙再开始做,4天后乙反比甲多做10个.【解答】解:设甲,每天做x 个,乙每天做y 个,根据题意.列方程组为65304410x y x y ⎩+-⎧⎨==. 故选:C .【点评】此题考查方程组问题,找准等量关系是解决应用题的关键,正确理解题意中的数量关系.9. 【分析】根据扇形图的定义,本题中的总量不明确,所以在两个图中无法确定哪一户多.【解答】解:因为两个扇形统计图的总体都不明确,所以A 、B 、C 都错误,故选:D .【点评】本题考查的是扇形图的定义.利用圆和扇形来表示总体和部分的关系用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图.10. 【分析】先判断出点M 在第二象限,再根据点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度解答.【解答】解:∵点M 在y 轴的左侧,且在x 轴的上侧,∴点M 在第二象限,∵点M 到两坐标轴的距离都是1,∴点M 的横坐标为-1,纵坐标为1,∴点M 的坐标为(-1,1).故选:C .【点评】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的关键.11. 【分析】本题首先要解这个关于x 的方程,求出方程的解,根据解是负数,可以得到一个关于a 的不等式,就可以求出a 的范围.【解答】解:解关于x 的方程得到:x=4125a -,根据题意得: 4125a -<0,解得a <3. 故选:C .【点评】本题是一个方程与不等式的综合题目.解关于x 的不等式是本题的一个难点.12.【分析】根据方程的解的定义,把32xy-⎧⎨⎩==代入ax+by=2,可得一个关于a、b的方程,又因看错系数c解得错误解为22xy⎩-⎧⎨==,即a、b的值没有看错,可把解为22xy⎩-⎧⎨==,再次代入ax+by=2,可得又一个关于a、b的方程,将它们联立,即可求出a、b的值,进而求出c的值【解答】解:∵方程组278ax bycx y-⎨⎩+⎧==时,正确的解是32xy-⎧⎨⎩==,由于看错了系数c得到的解是22xy⎩-⎧⎨==,∴把32xy-⎧⎨⎩==与22xy⎩-⎧⎨==代入ax+by=2中得:322222a ba b⎧+⎨⎩--=①=②,①+②得:a=4,把a=4代入①得:b=5,把32xy-⎧⎨⎩==代入cx-7y=8中得:3c+14=8,解得:c=-2,则a+b+c=4+5-2=7;故选:C.【点评】此题实际上是考查解二元一次方程组的能力.本题要求学生理解方程组的解的定义,以及看错系数c的含义:即方程组中除了系数c看错以外,其余的系数都是正确的.13.【分析】先根据对顶角相等求出∠1的对顶角的度数,再根据两直线平行同位角相等即可得∠2的度数.【解答】解:如图,∵∠3=∠1=50°,又AB∥CD,∴∠2=∠3=50°.故答案为:50°.【点评】本题主要考查了平行线的性质,正确观察图形,熟练掌握平行线的性质和对顶角相等是解决此类问题的关键.14. 【分析】因为二次根式的被开方数2x+3是非负数.所以根据2x+3≥0来求x 的取值范围即可.【解答】解:根据题意,知 当被开方数2x+3≥0,即x≥-32故答案是:≥-32. 【点评】本题考查了二次根式有意义的条件.函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负.15. 【分析】将x=2,y=1代入方程组求出m 与n 的值,即可确定出所求式子的值. 【解答】解:将x=2,y=1代入方程组得:412211m n ⎨-+⎩+⎧==, 解得:m=-1,n=0,则(m+n )2016=(-1)2016=1. 故答案为:1【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值,熟练掌握方程组的解是解题的关键.16. 【分析】根据不等式的性质可得a-3<0,由此求出a 的取值范围. 【解答】解:∵(a-3)x >1的解集为x <13a -, ∴不等式两边同时除以(a-3)时不等号的方向改变, ∴a-3<0, ∴a <3. 故答案为:a <3.【点评】本题考查了不等式的性质:在不等式的两边同时乘以或除以同一个负数不等号的方向改变.本题解不等号时方向改变,所以a-3小于0.17. 【分析】样本容量是一个样本包括的个体数量,根据定义即可解答. 【解答】解:样本容量是600. 故答案是600.【点评】本题考查了样本容量的定义,样本容量是一个样本包括的个体数量,样本容量没有单位.18. 【分析】首先确定不等式组的解集,先利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围. 【解答】解:解不等式①得x≥a , 解不等式②得x <2,因为不等式组有5个整数解,则这5个整数是1,0,-1,-2,-3, 所以a 的取值范围是-4<a≤-3.【点评】正确解出不等式组的解集,确定a 的范围,是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 19. 【分析】(1)原式利用算术平方根及立方根定义计算即可得到结果; (2)原式利用绝对值的代数意义化简,计算即可得到结果. 【解答】解:(1)原式=0.2-2-12=-2.3; (2)原式最新七年级(下)期末考试数学试题【含答案】一、选择题(本大题共6小题,每小题3分,共18分) 1、下列实数是无理数的是( )A 、-1B 、0C 、3.14D 、 5 2、如图,能判断AB ∥CD 的条件是( )A 、∠1=∠2B 、∠3=∠4C 、∠1+∠3=180°D 、∠3+∠4=180° 3、下列结论正确的是( )A 、-(-6)2 =-6B 、(- 3 )2=9C 、(-16)2 =±16D 、-(-1625 )2=16254、已知二元一次方程3x +y =0的一个解是⎩⎨⎧x =ay =b,其中a ≠0,那么( )A 、b a >0B 、b a =0C 、ba <0 D 、以上都不对5、下列说法错误的是( )A 、不等式x -3>2的解是x >5B 、不等式x <3的整数解有无数个题2 1A BCD234C 、x =0是不等式2x <3的一个解D 、不等式x +3<3的整数解是0 6、如图,矩形BCDE 的各边分别平等于x 轴或y 轴,物体甲 和物体乙分别由点A (2,0)同时出发,沿矩形BCDE 的边 作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动, 物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体 运动后第26次相遇地点的坐标是( )A 、(2,0)B 、(-1,-1)C 、(-2,1)D 、(-1,1) 二、填空题(本大题共8小题,每小题3分,共24分) 7、1的平方根是 。
2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。
2. 已知一个数的平方等于36,则这个数是______或______。
3. 下列各数中,是无理数的是______、______、______。
4. 一个等边三角形的周长为15,则它的边长是______,面积是______。
5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。
三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。
2. (10分)解方程:2x - 5 = 3x + 1。
3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。
20232024学年全国初中七年级下数学人教版期末试卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()。
A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()。
A. 2B. 0.5C. √3D. 3/43. 下列等式中,正确的是()。
A. 2^3 = 8B. 3^2 = 9C. 4^0 = 1D. 5^(1) = 54. 若一个正方形的边长是a,则它的面积是()。
A. 2aB. 4aC. a^2D. a^35. 下列各数中,是正数的是()。
A. 3B. 0C. 1/2D. 5/46. 若一个数的平方是9,则这个数是()。
A. 3B. 3C. 3和3D. 07. 下列各数中,是分数的是()。
A. 2B. 3/4C. 5D. 68. 若一个数的绝对值是5,则这个数是()。
A. 5B. 5C. 5和5D. 09. 下列各数中,是整数的是()。
A. 1/2B. 3/4C. 5D. 610. 若一个数的立方是8,则这个数是()。
A. 2B. 2C. 2和2D. 0二、填空题(每题3分,共30分)11. 一个数的立方根是2,则这个数是__________。
12. 下列各数中,是无理数的是__________。
13. 下列等式中,正确的是__________。
14. 若一个正方形的边长是a,则它的面积是__________。
15. 下列各数中,是负数的是__________。
16. 若一个数的平方是16,则这个数是__________。
17. 下列各数中,是正整数的是__________。
18. 若一个数的绝对值是7,则这个数是__________。
19. 下列各数中,是偶数的是__________。
20. 若一个数的立方是27,则这个数是__________。
三、解答题(每题10分,共50分)21. 已知一个正方形的边长是a,求它的面积。
22. 已知一个数的平方是9,求这个数。
李庄七年级数学下册期末测试题及答案姓名: 学号 班级 一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A 。
16=±4B 。
±16=4 C.327-=-3 D 。
2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B ) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( )A 。
135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C 。
331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210。
人教版七年级数学下册期末测试题及答案解析共六套人教版七年级数学第二学期期末考试试卷(一)一、选择题(每题3分,计24分,请把各小题答案填到表格内)1.如下图,以下条件中,不能判定l1∥l2的是A.∠1=∠3.B.∠2=∠3.C.∠4=∠5.D.∠2+∠4=180°2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是C.被抽取500名学生的数学成绩3.___某月电话话费中的各项费用统计情形见以下图表,请你依照图表信息完成以下各题:项目月功能费基本话费长途话费短信费金额/元50 60 20 51)请将表格补充完整;2)请将条形统计图补充完整;3)扇形统计图中,表示短信费的扇形的圆心角是多少度?月功能费基本话费长途话费短信费金额/元50 60 20 5第23题图)4.___会期为2020年5月1日至2020年10月31日。
门票设个人票和团队票两大类。
个人一般票160元/张,学生优惠票100元/张;成人团队票120元/张,学生团队票50元/张。
1)若是2名教师、10名学生均购买个人票去参观世博会,请问一共要花多少元钱购买门票?个人票:2*160+10*100=1320元2)用方程组解决以下问题:若是某校共30名师生去参观世博会,并得知他们都是以团队形式购买门票,累计花去2200元,请问该校本次别离有多少名教师、多少名学生参观世博会?设教师人数为x,学生人数为y,则:x+y=30120x+50y=2200解得:x=10,y=20人教版七年级第二学期综合测试题(二)一、填空题:(每题3分,共15分)1.121的算术平方根是11,364=-61.2.若是1<x<2,化简│x-1│+│x-2│=2-x。
3.在△ABC中,已知两条边a=3,b=4,那么第三边c的取值范围是1<c<7.4.假设三角形三个内角度数的比为2:3:4,那么相应的外角比是3:2:1.5.已知两边相等的三角形一边等于5cm,另一边等于11cm,那么周长是27cm。
七年级下学期期末考试数学试卷(带答案)一、选择题(本题共10个小题,每小题3分,共30分)1.下列四个图形中,不是轴对称图形的为()A. B.C. D.2.在球的体积公式V=πR3中,下列说法正确的是()A.V、π、R是变量,为常量B.V、π是变量,R为常量C.V、R是变量,、π为常量D.以上都不对3.下列事件中是不可能事件的是()A.从一副扑克牌中任抽一张牌恰好是“红桃”B.在装有白球和黑球的袋中摸球,摸出了红球C.2022年大年初一早晨艳阳高照D.从两个班级中任选三名学生,至少有两名学生来自同一个班级4.新型冠状病毒(2019﹣nCoV)是目前已知的第7种可以感染人的冠状病毒,经研究发现,它的单细胞的平均直径约为0.000000203米,该数据用科学记数法表示为()A.2.03×10﹣8B.2.03×10﹣7C.2.03×10﹣6D.0.203×10﹣65.已知a,b,c分别为三角形的三边长,则化简|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a+b|的结果为()A.a+b+c B.﹣a+b﹣3c C.a+2b﹣c D.﹣a+b+3c6.等腰三角形的两边长分别为4和8,则这个等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对7.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,E是边AB上一点,若CD=6,则DE的长可以是()A.1 B.3 C.5 D.78.如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°9.已知∠1=∠2,AC=AD,要使△ABC≌△AED,还需添加一个条件,那么在以下条件中不能选择的是()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E10.已知(x﹣2019)2+(x﹣2021)2=34,则(x﹣2020)2的值是()A.4 B.8 C.12 D.16二、填空题(本题共6小题,每小题3分,共18分.)11. 2-的相反数是_____.12. 如图,将三角形ABC沿直线BC平移得到三角形DEF,其中点A与点D是对应点,点B与点E是对应点,点BC=,EC=2,那么线段CF的长是_______.C与点F是对应点.如果513. 已知点P (2a −2,a +5),点Q (4,5),且直线PQ ∥y 轴,则点P 的坐标为________.14. 如图a ∥b,∠1+∠2=75°,则∠3+∠4=______________.15. 方程组{4x +3y =1,mx +(m −1)y =3的解x 和y 的值相等,则m =___.16. 已知实数x 满足{5(x +1)≥3x −112x −1≤7−32x ,若S =|x ﹣1|+|x+1|的最大值为m ,最小值为n ,则mn =_____.三、解答题(本题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(6分)计算:||﹣+﹣(﹣1)2019.18.(6分)解方程组:.19.(6分)解不等式组.20.(8分)如图,在平面直角坐标系中,有三点A (1,0),B (3,0),C (4,﹣2).(1)画出三角形ABC ;(2)将三角形ABC 先向左平移4个单位长度,再向上平移3个单位长度,画出平移后的三角形DEF ,并写出D、E、F三点的坐标;(3)求三角形ABC的面积.21.(8分)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了不完整的统计图表.身高分组频数频率152≤x<155 3 0.06155≤x<158 7 0.14158≤x<161 m0.28161≤x<164 13 n164≤x<167 9 0.18167≤x<170 3 0.06170≤x<173 1 0.02根据以上统计图表完成下列问题:(1)统计表中m=,n=;并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在什么范围内?22.(8分)实验室需要一批无盖的长方体模型,一张大纸板可以做成长方体的侧面30个,或长方体的底面25个,一个无盖的长方体由4个侧面和一个底面构成.现有26张大纸板,则用多少张做侧面,多少张做底面才可以使得刚好配套,没有剩余?23.(10分)已知,如图,∠CDG=∠B,AD⊥BC于点D,∠1=∠2,EF分别交AB、BC于点E、F,试判断EF与BC的位置关系,并说明理由.24.(10分)某业主贷款18920元购进一台机器,生产某种产品.已知产品的成本是每个5元,售价是每个8元,应付的税款和其他费用是售价的10%.若每个月能生产、销售2000个产品.(1)问每个月所获得利润为多少元?(2)问至少几个月后能赚回这台机器的贷款?25.(10分)已知数轴上三点A、O、B表示的数分别为4、0、﹣2,动点P从A点出发,以每秒3个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是.(2)另一动点R从点B出发,以每秒2个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多长时间追上点R?(3)若点M为AP的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.参考答案一、选择题1.选:C.2.选:C.3.选:B.4.选:B.5.选:D.6.选:B.7.选:D.8.选:B.9.选:B.10.选:D.二、填空题11、【答案】√5-212、【答案】313、【答案】(4,8)14、【答案】105°15、【答案】1116、【答案】16三、解答题17.【解答】解:原式=﹣1﹣2+2+1=.18.【解答】解:方程组整理得:,①+②得:﹣6y=6,解得:y=﹣1,把y=﹣1代入②得:x﹣2=1,解得:x=3,则方程组的解为.19.【解答】解:∵由①得:x≤3,由②得:x>﹣4,∴不等式组的解集为﹣4<x≤3.20.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,△DEF即为所求;其中D(﹣3,3),E(﹣1,3),F(0,1);(3)三角形ABC的面积=×2×2=2.21.【解答】解:(1)测量的总人数是:3÷0.06=50(人),则m=50×0.28=14,n==0.26.补全频数分布直方图:故答案为14,0.26.(2)观察表格可知中位数在 161≤x<164范围内.22.【解答】解:设用x张做侧面,y张做底面才可以使得刚好配套,没有剩余,根据题意得:,解得:.答:用20张做侧面,6张做底面才可以使得刚好配套,没有剩余.23.【解答】解:EF与BC的位置关系是垂直关系.证明:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),又∠1=∠2(已知),∴∠2=∠DAB(等量代换),∴EF∥AD(同位角相等,两直线平行),∴∠EFB=∠ADB(两直线平行,同位角相等),又AD⊥BC(已知),∴∠ADB=90°,∴∠EFB=∠ADB=90°,∴EF与BC的位置关系是垂直(垂直的定义).24.【解答】解:(1)每个月总收入为:2000×8=16000(元),则应付的税款和其他费用为:16000×10%=1600(元),利润=16000﹣2000×5﹣1600=4400(元),答:每个月所获得利润为4400元;(2)设需要x个月后能赚回这台机器贷款,依题意,得:4400x≥18920,解得:x≥43.答:至少43个月后能赚回这台机器贷款.25.【解答】解:(1)∵A,B表示的数分别为4,﹣2,∴AB=6,∵PA=PB,∴点P表示的数是1,故答案为:1;(2)设P点运动x秒追上R点,由题意得:2x+6=3x 解得:x=6答:P点运动6秒追上R点.(3)MN的长度不变.①当P点在线段AB上时,如图示:∵M为PA的中点,N为PB的中点∴又∵MN=MP+NP∴∵AP+BP=AB,AB=6∴②当P点在线段AB的延长线上时,如图示:∵MN=MP﹣NP,AB=AP﹣BP=6∴=.。
七年级数学下册期末测试题及答案(共五套)七年级数学下册期末测试题及答案姓名。
学号。
班级:一、选择题(共10小题,每小题3分,共30分)1.若m。
-1,则下列各式中错误的是()A。
6m。
-6B。
-5m < -5C。
m+1.0D。
1-m < 22.下列各式中,正确的是()A。
16=±4B。
±16=4C。
3-27=-3D。
(-4)^2=163.已知a。
b。
0,那么下列不等式组中无解的是()A。
{x-a。
x>-b}B。
{x>a。
x<-a。
x<-b}C。
{x>a。
xb}D。
{x-a。
x<b}4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A。
先右转50°,后右转40°B。
先右转50°,后左转40°C。
先右转50°,后左转130°D。
先右转50°,后左转50°5.解为{x=1.y=2}的方程组是()A。
{x-y=1.x-y=-1}B。
{x-y=1.3x+y=5}C。
{x-y=3.3x+y=-5}D。
{x-2y=-3.3x+y=5}6.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A。
100°B。
110°C。
115°D。
120°7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A。
4B。
3C。
2D。
18.在各个内角都相等的多边形中,一个外角等于一个内角的1/2,则这个多边形的边数是()A。
5B。
6C。
7D。
89.如图,△A'B'C'是由△XXX沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm²,则四边形A'CC'B'的面积为()A。
人教版七年级下学期期末考试数学试卷(一)一、选择题(共10小题,每小题3分,满分30分)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠52.下列实数中,无理数是()A.﹣ B. C. |﹣2| D.3.下列语句中,假命题是()A.如果直线a,b,c满足a∥b,b∥c,那么a∥cB.三角形的内角和为180°C.内错角相等D.对顶角相等4.若x>y,则下列式子中错误的是()A. x﹣2>y﹣2 B. x+2>y+2 C.﹣2x>﹣2y D.>5.下列调查中,调查方式选择正确的是()A.为了了解全班同学的视力情况,采用全面调查B.为调查乘坐飞机的旅客是否携带了违禁物品,采用抽样调查C.为了解某一种节能灯的使用寿命,采用全面调查D.为了解某鱼塘里鱼的生长情况,采用全面调查6.已知甲、乙、丙、丁共有30本,又知甲、乙、丙、丁的课外书制作的条形统计图的高度之比为2:3:4:1,则乙的课外书的本数为()A. 6本 B. 9本 C. 11本 D. 12本7.线段EF是由线段PQ平移得到的,点P(﹣1,3)的对应点为E(4,7),则点Q(﹣3,1)的对应点F的坐标是()A.(﹣8,﹣3) B.(﹣2,﹣2)C.(2,5) D.(﹣6,﹣1)8.已知是二元一次方程组的解,则m﹣n的值是()A. 1 B. 2 C. 3 D. 49.如图,数轴上点P表示的数可能是()A. B. C. D.10.探照灯、汽车灯等很多灯具都与平行线有关,如图所示是一探照灯碗的剖面,从位于O点的灯泡发出的两束光线OB,OC,经灯碗反射以后平行射出,其中∠ABO=α,∠BOC=β,则∠DCO的度数是.二、填空题(共6小题,每小题3分,满分18分)11.如图,直线a、b相交于点O,若∠1=50°,则∠2=,∠3=,∠4=.12.如图,B、A、E三点在同一线上,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠EAC=.13.在第三象限内的点P到x轴的距离是2,到y轴的距离是5,则点P的坐标是.14.如图所示,△ABC沿直线AB向下平移可以得到△DEF,如果AB=6,BD=4,那么BE= .15.已知≈2.078,≈20.78,则y= .16.已知关于x的不等式组无解,则a的取值范围为.三、解答题(共9小题,满分102分)17.(10分)(1)计算:﹣﹣(2)计算:|﹣|+2.18.(10分)(1)已知(x+2)3=﹣8,求x的值.(2)解不等式组:并把解集在数轴上表示出来.19.如图,直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,);(2)将△ABC先向右平移3个单位长度,再向下平移2个单位长度,得到△A′B′C′,请在网格中画出△A′B′C′;(3)△ABC的面积= .20.(10分)如图,已知AD∥BC,∠1=∠2,求证:∠3+∠4=180°.21.(12分)李红在学校的研究性学习小组中负责了解七年级200名女生掷实心球的测试成绩.她从中随机调查了若干名女生的测试成绩(单位:米),并将统计结果绘制成了如下的统计图表(内容不完整).测试成绩3≤x<4 4≤x<5 5≤x<7 6≤x<7 7≤x<8 合计频数 3 27 9 m 1 n请你结合图表中所提供的信息,回答下列问题:(1)表中m= ,n= ;(2)请补全频数分布直方图;(3)在扇形统计图中,6≤x<7这一组所占圆心角的度数为度;(4)如果掷实心球的成绩达到6米或6米以上为优秀,请你估计该校七年级女生掷实心球的成绩达到优秀的总人数.22.(12分)若不等式x﹣<2x﹣+1的最小整数解是方程2x﹣ax=4的解,求a的值.23.(12分)某文具店销售每台进价分别为80元、68元的A,B两种型号的计算器,如表是近两周的销售情况:销售时段销售数量销售收入第一周 3台A种型号 5台B种型号 720元第二周 4台A种型号 10台B种型号 1240元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的计算器的销售单价;(2)若文具店准备用不多于2200元的金额再采购这两种型号的计算器共30台,求A种型号的计算器最多能采购多少台?(3)在(2)的条件下,文具店销售完这30台计算器能否实现利润为600元的目标?若能,请给出相应的采购方案;若不能,请说明理由.24.(14分)如果点P(x,y)的坐标满足(1)求点P的坐标.(用含m,n的式子表示x,y)(2)如果点P在第二象限,且符合要求的整数只有两个,求n的范围.(3)如果点P在第二象限,且所有符合要求的整数m之和为9,求n的范围.25.(14分)已知平面直角坐标系内点A(m,n),将点A向上平移4个单位,向左平移1个单位得到点B,再向下平移2个单位,向左平移3个单位得到点C,再将C向上平移3个单位,向右平移7个单位得到点D,且D(2n,2﹣4m),连接直线AC,DC,AB,BD,得到如图所示.(1)求n,m的值;(2)请运用平行线的性质说明:∠1+∠2+∠3+∠4=360°;(3)若有一动点E(a,b),其横、纵坐标a,b分别同时满足三个条件,请你在平面直角坐标系内画出点E(a,b)可能运动的范围,用阴影部分标注,并求出其阴影部分的面积.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角可得答案.解答:解:∠1的同位角是∠5,故选:D.点评:此题主要考查了同位角的概念,关键是掌握同位角的边构成“F“形.2.下列实数中,无理数是()A.﹣ B. C. |﹣2| D.考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、是分数,是有理数,选项错误;B、是无理数,选项正确;C、|﹣2|=2是整数,是有理数,选项错误;D、=2是整数,是有理数,选项错误.故选B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.下列语句中,假命题是()A.如果直线a,b,c满足a∥b,b∥c,那么a∥cB.三角形的内角和为180°C.内错角相等D.对顶角相等考点:命题与定理.分析:分别利用平行线的性质以及三角形内角和定理分析得出即可.解答:解:A、如果直线a,b,c满足a∥b,b∥c,那么a∥c,是真命题,不合题意;B、三角形的内角和为180°,是真命题,不合题意;C、两直线平行,内错角相等,故原命题是假命题,符合题意;D、对顶角相等,是真命题,不合题意;故选:C.点评:此题主要考查了命题与定理,正确把握平行线的性质是解题关键.4.若x>y,则下列式子中错误的是()A. x﹣2>y﹣2 B. x+2>y+2 C.﹣2x>﹣2y D.>考点:不等式的性质.分析: A:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.B:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.C:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.D:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.解答:解:∵x>y,∴x﹣2>y﹣2,∴选项A正确;∵x>y,∴x+2>y+2,∴选项B正确;∵x>y,∴﹣2x<﹣2y,∴选项C不正确;∵x>y,∴,∴选项D正确.故选:C.点评:此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.5.下列调查中,调查方式选择正确的是()A.为了了解全班同学的视力情况,采用全面调查B.为调查乘坐飞机的旅客是否携带了违禁物品,采用抽样调查C.为了解某一种节能灯的使用寿命,采用全面调查D.为了解某鱼塘里鱼的生长情况,采用全面调查考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、为了了解全班同学的视力情况,采用全面调查,正确;B、为调查乘坐飞机的旅客是否携带了违禁物品,采用全面调查,故此选项错误;C、为了解某一种节能灯的使用寿命,采用抽样调查,故此选项错误;D、为了解某鱼塘里鱼的生长情况,采用抽样调查,故此选项错误;故选:A.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.已知甲、乙、丙、丁共有30本,又知甲、乙、丙、丁的课外书制作的条形统计图的高度之比为2:3:4:1,则乙的课外书的本数为()A. 6本 B. 9本 C. 11本 D. 12本考点:条形统计图.分析:解决本题需要从统计图获取信息,关键是明确图表中数据的来源及所表示的意义,依据所示的实际意义获取正确的信息.解答:解:∵甲、乙、丙、丁各自拥有的课外书情况制作的条形统计图的高度之比为2:3:4:1∴乙拥有的课外书占总数的30%∴乙的课外书的本数为30×30%=9,故选:B.点评:本题考查的是条形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.7.线段EF是由线段PQ平移得到的,点P(﹣1,3)的对应点为E(4,7),则点Q(﹣3,1)的对应点F的坐标是()A.(﹣8,﹣3) B.(﹣2,﹣2)C.(2,5) D.(﹣6,﹣1)考点:坐标与图形变化-平移.分析:首先根据P点的对应点为E可得点的坐标的变化规律,则点Q的坐标的变化规律与P点的坐标的变化规律相同即可.解答:解:∵点P(﹣1,3)的对应点为E(4,7),∴E点是P点横坐标+5,纵坐标+4得到的,∴点Q(﹣3,1)的对应点F坐标为(﹣3+5,1+4),即(2,5).故选:C.点评:此题主要考查了坐标与图形变化﹣平移,关键是掌握把一个图形平移后,各点的变化规律都相同.8.已知是二元一次方程组的解,则m﹣n的值是()A. 1 B. 2 C. 3 D. 4考点:二元一次方程组的解.专题:计算题.分析:将x与y的值代入方程组求出m与n的值,即可确定出m﹣n的值.解答:解:将x=﹣1,y=2代入方程组得:,解得:m=1,n=﹣3,则m﹣n=1﹣(﹣3)=1+3=4.故选:D点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.9.如图,数轴上点P表示的数可能是()A. B. C. D.考点:估算无理数的大小;实数与数轴.分析:先根据数轴估算出P点所表示的数,再根据选项中的数值进行选择即可.解答:解:A、∵9<10<16,32<<4,故本选项错误;B、∵4<5<9,∴2<<3,故本选项正确;C、∵1<3<4,∴1<<2,故本选项错误;D、∵1<2<4,∴1<<2,故本选项错误.故选B.点评:本题考查的是估算无理数的大小,先根据题意得出各无理数的取值范围是解答此题的关键.10.探照灯、汽车灯等很多灯具都与平行线有关,如图所示是一探照灯碗的剖面,从位于O点的灯泡发出的两束光线OB,OC,经灯碗反射以后平行射出,其中∠ABO=α,∠BOC=β,则∠DCO的度数是β﹣α.考点:平行线的性质.专题:应用题;跨学科.分析:过O作直线EF∥AB,则EF∥CD,再由平行线的性质即可得出结论.解答:解:过O作直线EF∥AB,则EF∥CD,∵AB∥EF,∴∠1=∠ABO=α.∵EF∥CD,∴∠2=∠DCO=β﹣α.故答案为:β﹣α.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.二、填空题(共6小题,每小题3分,满分18分)11.如图,直线a、b相交于点O,若∠1=50°,则∠2=130°,∠3=50°,∠4=130°.考点:对顶角、邻补角.分析:根据对顶角相等可得∠3=50°,根据邻补角互补可得∠2=130°,再根据对顶角相等可得∠4的度数.解答:解:∵∠1=50°,∴∠3=50°,∠2=180°﹣50°=130°,∴∠4=130°.故答案为:130°;50°;130°.点评:此题主要考查了对顶角和邻补角,关键是掌握对顶角相等、邻补角互补.12.如图,B、A、E三点在同一线上,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠EAC=60°.考点:平行线的性质.分析:先根据平行线的性质求出∠EAD的度数,再由角平分线的定义即可得出结论.解答:解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°.∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=60°.故答案为:60°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.13.在第三象限内的点P到x轴的距离是2,到y轴的距离是5,则点P的坐标是(﹣5,﹣2).考点:点的坐标.分析:根据点的坐标的几何意义及第三象限点的坐标特点解答即可.解答:解:∵x轴的距离为2,到y轴的距离为5,∴点的纵坐标是±2,横坐标是±5,又∵第三象限内的点横坐标小于0,纵坐标小于0,∴点的横坐标是﹣5,纵坐标是﹣2.故此点的坐标为(﹣5,﹣2).故答案为:(﹣5,﹣2).点评:本题主要考查了点的坐标的几何意义:横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.14.如图所示,△ABC沿直线AB向下平移可以得到△DEF,如果AB=6,BD=4,那么BE= 2 .考点:平移的性质.专题:计算题.分析:先计算出AD=AB﹣BD=2,然后根据平移的性质求解.解答:解:∵△ABC沿直线AB向下平移得到△DEF,∴AD=BE,∵AB=6,BD=4,∴AD=AB﹣BD=2,∴BE=2.故答案为2.点评:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.15.已知≈2.078,≈20.78,则y= 8996 .考点:立方根.分析:根据被开方数的小数点每移动三位,其立方根的小数点就移动一位得出即可.解答:解:∵≈2.078,≈20.78,∴y=8996,故答案为:8996.点评:本题考查了立方根的应用,注意:被开方数的小数点每移动三位,其立方根的小数点就相应的移动一位.16.已知关于x的不等式组无解,则a的取值范围为a≥3.考点:解一元一次不等式组.分析:先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a 的取值范围即可.解答:解:,由①得,x≤3,由②得,x>a,∵不等式组无解,∴a≥3.故答案为:a≥3.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.三、解答题(共9小题,满分102分)17.(10分)(1)计算:﹣﹣(2)计算:|﹣|+2.考点:实数的运算.专题:计算题.分析:(1)原式利用算术平方根及立方根定义计算即可得到结果;(2)原式利用绝对值的代数意义化简,合并即可得到结果.解答:解:(1)原式=10﹣﹣0.5=8;(2)原式=﹣+2=3﹣.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(10分)(1)已知(x+2)3=﹣8,求x的值.(2)解不等式组:并把解集在数轴上表示出来.考点:解一元一次不等式组;立方根;在数轴上表示不等式的解集.专题:计算题.分析:(1)已知等式利用立方根定义开立方求出x的值即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.解答:解:(1)开立方得:x+2=﹣2,解得:x=﹣4;(2),由①得:x>2;由②得:x≤3;则不等式组的解集为2<x≤3,如图所示:点评:此题考查了解一元一次不等式组,立方根以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.19.如图,直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1,2).(1)写出点A、B的坐标:A( 3 ,﹣2 )、B( 4 , 3 );(2)将△ABC先向右平移3个单位长度,再向下平移2个单位长度,得到△A′B′C′,请在网格中画出△A′B′C′;(3)△ABC的面积= 7 .考点:作图-平移变换.分析:(1)根据平面坐标系直接得出A,B点坐标即可;(2)利用平移的性质得出对应点位置进而得出答案;(3)利用三角形所在矩形面积减去周围三角形面积进而得出答案.解答:解:(1)A(3,﹣2),B(4,3);故答案为:3,﹣2;4,3;(2)如图所示:△A′B′C′即为所求;(3)△ABC的面积为:3×5﹣×1×3﹣×2×4﹣×1×5=7.故答案为:7.点评:此题主要考查了平移变换以及三角形面积求法,得出平移后对应点位置是解题关键.20.(10分)如图,已知AD∥BC,∠1=∠2,求证:∠3+∠4=180°.考点:平行线的判定与性质.专题:证明题.分析:欲证∠3+∠4=180°,需证BE∥DF,而由AD∥BC,易得∠1=∠3,又∠1=∠2,所以∠2=∠3,即可求证.解答:证明:∵AD∥BC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴BE∥DF,∴∠3+∠4=180°.点评:此题考查平行线的判定和性质:同位角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补.要灵活应用.21.(12分)李红在学校的研究性学习小组中负责了解七年级200名女生掷实心球的测试成绩.她从中随机调查了若干名女生的测试成绩(单位:米),并将统计结果绘制成了如下的统计图表(内容不完整).测试成绩3≤x<4 4≤x<5 5≤x<7 6≤x<7 7≤x<8 合计频数 3 27 9 m 1 n请你结合图表中所提供的信息,回答下列问题:(1)表中m= 10 ,n= 50 ;(2)请补全频数分布直方图;(3)在扇形统计图中,6≤x<7这一组所占圆心角的度数为72 度;(4)如果掷实心球的成绩达到6米或6米以上为优秀,请你估计该校七年级女生掷实心球的成绩达到优秀的总人数.考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.分析:(1)根据4≤x<5之间的频数和所占的百分比,求出总人数,再用总人数减去其它成绩段的人数,即可得出6≤x<7的频数;(2)根据(1)求出的m的值,从而把频数分布直方图补全;(3)用360度乘以6≤x<7所占的百分比,即可求出6≤x<7这一组所占圆心角的度数;(4)用总人数乘以成绩达到6米或6米以上所占的百分比,求出该校七年级女生掷实心球的成绩达到优秀的总人数.解答:解:(1)根据题意得:n==50;m=50﹣3﹣27﹣9﹣1=10;故答案为:10,50;(2)根据(1)得出的m=10,补图如下:(3)6≤x<7这一组所占圆心角的度数为:360°×=72°;故答案为:72;(4)根据题意得:200×=44(人),答:该校初一年级女生掷实心球的成绩达到优秀的总人数是44人.点评:此题考查了频数(率)分布直方图、扇形统计图以及频数(率)分布表,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(12分)若不等式x﹣<2x﹣+1的最小整数解是方程2x﹣ax=4的解,求a的值.考点:一元一次不等式的整数解;一元一次方程的解.分析:此题可先将不等式化简求出x的取值,然后取x的最小整数解代入方程2x﹣ax=4,化为关于a的一元一次方程,解方程即可得出a的值.解答:解:由不等式x﹣<2x﹣+1得x>0,所以最小整数解为x=1,将x=1代入2x﹣ax=4中,解得a=﹣2.点评:此题考查的是一元一次不等式的解,将x的值解出再代入方程即可得出a的值.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.23.(12分)某文具店销售每台进价分别为80元、68元的A,B两种型号的计算器,如表是近两周的销售情况:销售时段销售数量销售收入第一周 3台A种型号 5台B种型号 720元第二周 4台A种型号 10台B种型号 1240元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的计算器的销售单价;(2)若文具店准备用不多于2200元的金额再采购这两种型号的计算器共30台,求A种型号的计算器最多能采购多少台?(3)在(2)的条件下,文具店销售完这30台计算器能否实现利润为600元的目标?若能,请给出相应的采购方案;若不能,请说明理由.考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设A种型号计算器的销售单价为x元、B种型号计算器的销售单价为y元,根据3台A型号5台B型号的计算器收入是720元,4台A型号10台B 型号的计算器收入1240元,列方程组求解;(2)设采购A种型号计算器a台,则采购B种型号计算器(30﹣a)台,根据金额不多余2200元,列不等式求解;(3)设利润为600元,列方程求出a的值为30,不符合(2)的条件,可知不能实现目标.解答:解:(1)设A种型号计算器的销售单价为x元、B种型号计算器的销售单价为y元,依题意有,解得.答:A种型号计算器的销售单价为100元、B种型号计算器的销售单价为84元.(2)设采购A种型号计算器a台,则采购B种型号计算器(30﹣a)台.依题意得:68(30﹣a)+80a≤2200,解得:a≤13.答:A种型号的计算器最多能采购13台;(3)依题意有:(100﹣80)a+(84﹣68)(30﹣x)=600,解得:a=30,∵a≤13,∴在(2)的条件下文具店不能实现利润为600元的目标.点评:本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.24.(14分)如果点P(x,y)的坐标满足(1)求点P的坐标.(用含m,n的式子表示x,y)(2)如果点P在第二象限,且符合要求的整数只有两个,求n的范围.(3)如果点P在第二象限,且所有符合要求的整数m之和为9,求n的范围.考点:解一元一次不等式组;二元一次方程组的解;点的坐标.分析:(1)把m、n当作已知条件,求出xy的值即可;(2)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n的不等式组,求出即可.(3)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n的不等式组,求出即可.解答:解:(1)∵解方程组得,,∴(m﹣5,m﹣n);(2)∵点P在第二象限,且符合要求的整数只有两个,由,得n<m<5∴2≤n<3(3)∵点P在第二象限,且符合要求的整数之和为9,由,得n<m<5∴m的整数值为2,3,4,∴1≤n<2,点评:本题考查了解二元一次方程组,解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出关于n的不等式组.25.(14分)已知平面直角坐标系内点A(m,n),将点A向上平移4个单位,向左平移1个单位得到点B,再向下平移2个单位,向左平移3个单位得到点C,再将C向上平移3个单位,向右平移7个单位得到点D,且D(2n,2﹣4m),连接直线AC,DC,AB,BD,得到如图所示.(1)求n,m的值;(2)请运用平行线的性质说明:∠1+∠2+∠3+∠4=360°;(3)若有一动点E(a,b),其横、纵坐标a,b分别同时满足三个条件,请你在平面直角坐标系内画出点E(a,b)可能运动的范围,用阴影部分标注,并求出其阴影部分的面积.考点:坐标与图形性质;平行线的性质;三角形的面积;坐标与图形变化-平移.分析:(1)根据横坐标右移加,左移减;纵坐标上移加,下移减可得关于n,m的二元一次方程组,解方程组即可求解;(2)过C点作JF∥AB,交BD于E,过D点作GH∥AB,根据平行线的性质即可求得;(3)根据题意在坐标系中,画出点E可能运动的范围是RT△ABC,根据三角形面积公式即可求得.解答:解:(1)由题意得,解得.故n的值为1,m的值为﹣1;(2)如图1,过C点作JF∥AB,交BD于E,过D点作GH∥AB,∴∠3=∠BEJ,∠BDG=∠BEC,∠GDK=∠ECB,∠CAB=∠ACF,∠BEJ+∠BEC=180°,∠∠ECB+∠1+∠ACF=180°,∴∠3+∠BDG+∠GDK+∠1+∠CAB=360°,∵∠4=∠CAB,∠BDG+∠GDK=∠2,∴∠1+∠2+∠3+∠4=360°;(3)根据题意画出点E可能运动的范围是△ABC,如图2所示:=×2×2=2.S阴影点评:本题考查了坐标和图形的关系,平行线的性质,三角形的面积,根据题意作出图形是解题的关键.人教版七年级下学期期末考试数学试卷(二)一、选择题1、的平方根是()A、±9B、9C、3D、±32、下列实数3.1415,﹣23,,,,﹣,无理数的个数有()A、1个B、2个C、3个D、4个3、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是()A、 B、C、 D、4、若m>n>0,则下列不等式一定成立的是()A、>1B、m﹣n<0C、﹣m<﹣nD、m+n<05、(x﹣3)(2x+1)=2x2+mx+n,则m,n的值分别是()A、5,﹣3B、﹣5,3C、﹣5,﹣3D、5,36、如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A、30°B、45°C、60°D、75°7、如图,以下条件能判定GE∥CH的是()A、∠FEB=∠ECDB、∠AEG=∠DCHC、∠GEC=∠HCFD、∠HCE=∠AEG8、分式方程=2的解为()A、x=4B、x=3C、x=0D、无解9、将分式方程1﹣= 去分母,整理后得()A、8x+1=0B、8x﹣3=0C、x2﹣7x+2=0D、x2﹣7x﹣2=010、为改善生态环境,某村拟在荒土上种植960棵树,由于青年团的支持,每日比原计划多种20棵,结果提前4天完场任务,原计划每天种植多少棵?设原计划每天种植x棵,下面方程正确的是()A、﹣=4B、﹣=4C、﹣=4D、﹣=4二、填空题11、一个正方形的面积是20,通过估算,它的边长在整数________与________之间.12、不等式2﹣x<2x+5的解集是________.13、分解因式:9x2﹣4y2=________.14、当x________时,分式有意义.15、观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103=________.三、解答题16、计算(1)|﹣1|﹣+(π﹣3)0+2﹣2(2)(a+2b)(a﹣2b)(a2+4b2)17、解方程(1)3(2x﹣1)2﹣27=0(2)﹣1= .18、解不等式组,并求出不等式组的非负整数解.19、先化简再求值÷(x+3)• ,其中x=3.20、如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD.21、李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距聚会还有42分钟,于是分立即步行(匀速)回家,在家拿道具用了1分钟,然后骑自行车(匀速)返回学校,已知李明骑自行车的速度是步行速度的3倍,李明骑自行车到学校比他从学校步行到家少用了20分钟.(1)李明步行的速度是多少米/分?(2)李明能否在联欢会开始前赶到学校?22、观察下列各式:= =1﹣,= = ﹣,= = ﹣,= = ﹣,…(1)由此可推导出=________;(2)猜想出能表示上述特点的一般规律,用含字母n的等式表示出来(n是正整数);(3)请用(2)中的规律计算+ +…+ 的结果.答案解析部分一、选择题1、【答案】D【考点】平方根,算术平方根【解析】【解答】解:∵ =9,∴ 的平方根是±3,故选D.【分析】求出=9,求出9的平方根即可.2、【答案】B【考点】无理数【解析】【解答】解:,是无理数,故选:B.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,。
2024—2025学年最新人教新版七年级下学期数学期末考试试卷(问卷)考生注意:本试卷共三道大题,25道小题一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、在平面直角坐标系中,下列各点在第四象限的是()A.(﹣1,﹣2)B.(1,﹣2)C.(1,2)D.(﹣1,2)2、在同一平面内,将直尺、含30°角的三角尺和木工角尺(CD⊥DE)按如图方式摆放,若AB∥CD,则∠1的大小为()A.30°B.45°C.60°D.75°3、下列调查方式,你认为最合适全面调查的是()A.调查某地全年的游客流量B.乘坐地铁前的安检C.调查某种型号灯泡的使用寿命D.调查春节联欢晚会的收视率4、关于x,y的二元一次方程组的解满足x﹣y=4,则m的值为()A.0B.1C.2D.35、在平面直角坐标系中,点A(1,5),B(m﹣2,m+1),若直线AB与y轴垂直,则m的值为()A.0B.3C.4D.76、下列命题为假命题的是()A.垂线段最短B.同旁内角互补C.对顶角相等D.两直线平行,同位角相等7、打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折后,买500件A商品和500件B商品用了9600元,比不打折少花()A.200元B.300元C.400元D.500元8、我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x间,房客y人,则列出关于x、y的二元一次方程组正确的是()A.B.C.D.9、的整数部分是a,的整数部分是b,则a、b的大小关系是()A.a>b B.a=b C.a<b D.无法确定10、在平面直角坐标系中,已知点A(m﹣4,m+2),B(m﹣4,m),C(m,0),D(2,0),三角形ABD的面积是三角形ABC面积的2倍,则m的值为()A.﹣14B.2C.﹣14或2D.14或﹣2二、填空题(每小题3分,满分18分)11、已知是方程kx+2y=﹣8的解,则k=.12、由方程组,可用含x的代数式来表示y为.13、如图,将长方形纸片ABCD沿对角线BD折叠,点C的对应点为E,若∠CBD=34°,则∠ADE的大小为度.14、如图,七个相同的小长方形组成一个大长方形ABCD,若CD=14,则长方形ABCD的面积为.15、如图,直径为1个单位长度的圆,从数轴上的A点处沿数轴向右滚动一周后到达B点,若点A表示的数为﹣1,则点B对应的数是.16、已知关于x,y的方程组的解为非负数,m﹣2n=3,z=2m+n,且n<0,则z的取值范围是.2024—2025学年最新人教新版七年级下学期数学期末考试试卷(答题卡)考生注意:本试卷共三道大题,25道小题姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解不等式组:.18、已知正实数a的两个平方根分别是x和x+y.(1)若x=2,求y的值;(2)若x﹣y=3,求a的值.19、在平面直角坐标系中,已知点M(m﹣1,2m+3).(1)若AM∥x轴且A(0,1),求m的值.(2)若点M在第一、三象限的角平分线上,求m的值.20、端午节是我国的传统佳节,民间历来有吃“粽子”的习俗.某食品厂为了解市民对去年销量较好的肉(A)、豆沙馅(B)、花生馅(C)、蜜枣馅(D)四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民人数是人.(2)将图①②补充完整;(直接补填在图中)(3)求图②中表示“A”的圆心角的度数;(4)若居民区有100人,请估计爱吃蜜枣馅粽子的人数.21、如图,已知AC∥DE,∠D+∠BAC=180°.(1)求证:AB∥CD;(2)连接CE,恰好满足CE平分∠ACD.若AB⊥BC,∠CED=35°,求∠ACB的度数.22、已知关于x,y的方程组,满足x﹣2y为负数.(1)求出x,y的值(用含m的代数式表示);(2)求出m的取值范围;(3)当m为何正整数时,求s=2x﹣3y+m的最大值?23、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:第一次第二次25甲种货车的辆数36乙种货车的辆数3170累计运货的吨数(1)现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货物,如果按每吨付运费50元计算,货主应付运费多少元?(2)能否租用这两种货车一次恰好运走125吨货物(不超载也不少运)?若能,请说出有哪几种装运方案?若不能,请说明理由.24、在平面直角坐标系xOy中,点P坐标为(x,y),且x﹣2a=﹣1,,其中a,b为实数.(1)若a=3,则点P到y轴的距离为;(2)若实数a,b满足4a﹣b=4.①求证:点P(x,y)不可能在第三象限;②若点Q(﹣2,0),△OPQ的面积为5,求点P的坐标.25、如图1,在平面直角坐标系中,点A,B,C,D均在坐标轴上,其坐标分别是A(a,0),B(0,b),C(0,c),D(d,0),若,c<0,d>0,且∠ABO=∠DCO.(1)求三角形AOB的面积;(2)求证:3d=﹣4c;(3)如图2,若﹣3<c<0,延长CD到Q,使CQ=AB,线段AQ交y轴于点K,求的值.2024—2025学年最新人教新版七年级下学期数学期末考试试卷(参考答案)11、7 12、22 13、y=4﹣2x 14、280 15、π﹣1 16、1≤z<6三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、1<x≤4.18、(1)y=﹣4 (2)a=119、(1)﹣1(2)﹣420、(1)600;(2)略(3)108°(4)4000人21、(1)略(2)20°22、(1);(2)m<6;(3)m=5时,最大值为123、(1)略(2)略24、(1)5(2)①证明略②(﹣1,5)或(9,﹣5).25、(1)6(2)略(3)1.。
新人教版七年级数学下册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±3 2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元5.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°6.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如图,在菱形ABCD 中,2,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a+1)2+|b+5|=b+5,且|2a-b-1|=1,则ab=___________.2.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.3.正五边形的内角和等于______度.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.2的相反数是________.5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解方程:1314(1)(5) 243x x x⎡⎤--=+⎢⎥⎣⎦.2.已知x、y满足方程组52251x yx y-=-⎧⎨+=-⎩,求代数式()()()222x y x y x y--+-的值.3.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.5.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、C7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、40°3、5404、-405、﹣2.6、2或-8三、解答题(本大题共6小题,共72分)1、1x2、3 53、(1)S=ab﹣a﹣b+1;(2)矩形中空白部分的面积为2;4、(1)略;(2)略.5、(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.6、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元。
人教版七年级下学期期末考试数学试卷(一)一、选择题(共12小题,每小题3分,满分36分)1.4的算术平方根等于()A.±2 B.2 C.﹣2 D.42.下列各式化简后,结果为无理数的是()A. B. C. D.3.不等式﹣2x﹣1≥1的解集是()A.x≥﹣1 B.x≤﹣1 C.x≤0 D.x≤14.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是()A.∠AOC=40°B.∠COE=130° C.∠EOD=40° D.∠BOE=90°5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于()A.30°B.40°C.45°D.60°6.把不等式组的解集表示在数轴上,下列选项正确的是()A. B.C. D.7.下列推理中,错误的是()A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD8.已知是二元一次方程4x+ay=7的一组解,则a的值为()A.﹣5 B.5 C. D.﹣9.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③10.如图,把“笑脸”放在平面直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B 的坐标是()A.(3,3)B.(﹣3,3) C.(0,3)D.(3,﹣3)11.若实数a,b在数轴上的位置如图所示,则以下说法正确的是()A.a>b B.ab>0 C.a+b>0 D.|a|>|b|12.同学们喜欢足球吗足球一般是用黑白两种颜色的皮块缝制而成,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()A.16块、16块B.8块、24块 C.20块、12块 D.12块、20块二、填空题(共4小题,每小题3分,满分12分)13.计算|1﹣|﹣= .14.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a 与b平行,则∠1的度数必须是.15.已知关于x的不等式组的解集是x>4,则m的取值范围是.16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2018的坐标是.三、解答题(共8小题,满分72分)17.计算:().18.解方程组:.19.解不等式组,并把它的解集用数轴表示出来..20.已知x是的整数部分,y是的小数部分,求x(﹣y)的值.21.如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.22.收集和整理数据.某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班学生的上学方式进行一次全面调查,如图是一同学通过收集数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(每个学生只选择1种上学方式).(1)求该班乘车上学的人数;(2)将频数分布直方图补充完整;(3)若该校七年级有1200名学生,能否由此估计出该校七年级学生骑自行车上学的人数,为什么?23.解决问题.学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.(1)求A,B两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?24.如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x 轴,且满足(a+b)2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.4的算术平方根等于()A.±2 B.2 C.﹣2 D.4【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵22=4,∴4算术平方根为2.故选B.【点评】本题考查的是算术平方根的概念,掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键.2.下列各式化简后,结果为无理数的是()A.B.C.D.【分析】根据无理数的三种形式求解.【解答】解: =8, =4, =3, =2,无理数为.故选D.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3.不等式﹣2x﹣1≥1的解集是()A.x≥﹣1 B.x≤﹣1 C.x≤0 D.x≤1【分析】先移项合并同类项,然后系数化为1求解.【解答】解:移项合并同类项得:﹣2x≥2,系数化为1得:x≤﹣1.故选B.【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.4.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是()A.∠AOC=40° B.∠COE=130°C.∠EOD=40° D.∠BOE=90°【分析】首先由垂线的定义可知∠EOB=90°,然后由余角的定义可求得∠EOD,然后由邻补角的性质可求得∠EOC,由对顶角的性质可求得∠AOC.【解答】解:由对顶角相等可知∠AOC=∠BOD=40°,故A正确,所以与要求不符;∵OE⊥AB,∴∠EOB=90°,故D正确,与要求不符;∵∠EOB=90°,∠BOD=40°,∴∠EOD=50°.故C错误,与要求相符.∴∠EOC=180°﹣∠EOD=180°﹣50°=130°.故B正确,与要求不符.故选:C.【点评】本题主要考查的是垂线的定义、对顶角、邻补角的性质,掌握相关定义是解题的关键.5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于()A.30°B.40°C.45°D.60°【分析】首先过点A作l∥m,由直线l∥m,可得n∥l∥m,由两直线平行,内错角相等,即可求得答案:∠1+∠2=∠3+∠4的度数.【解答】解:如图,过点A作l∥m,则∠1=∠3.又∵m∥n,∴l∥n,∴∠4=∠2,∴∠1+2=∠3+∠4=45°.故选:C.【点评】此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握“两直线平行,内错角相等”性质定理的应用.6.把不等式组的解集表示在数轴上,下列选项正确的是()A. B.C. D.【分析】本题的关键是先解不等式组,然后再在数轴上表示.【解答】解:由(1)得x>﹣1,由(2)得x≤1,所以﹣1<x≤1.故选B.【点评】本题考查一元一次不等式组的解集及在数轴上的表示方法.7.下列推理中,错误的是()A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、由等量代换,故A选项正确B、由等量代换,故B选项正确;C、如果两条直线都与第三条直线平行,那么这两条直线也平行,属于平行公理的推论,故C选项正确;D、∵AB⊥EF,EF⊥CD,∴AB∥CD,故D选项错误.故选:D.【点评】本题需对等量代换的运用,平行公理的推论等知识点熟练掌握.8.已知是二元一次方程4x+ay=7的一组解,则a的值为()A.﹣5 B.5 C.D.﹣【分析】把x与y的值代入方程计算即可求出a的值.【解答】解:把代入方程得:8﹣3a=7,解得:a=.故选C.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:①食品数量较大,不易普查,故适合抽查;②不能进行普查,必须进行抽查;③人数较多,不易普查,故适合抽查.故选D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.如图,把“笑脸”放在平面直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B 的坐标是()A.(3,3)B.(﹣3,3)C.(0,3)D.(3,﹣3)【分析】首先根据左眼坐标可得右眼坐标,再根据平移方法可得平移后右眼B的坐标是(0+3,3).【解答】解:∵左眼A的坐标是(﹣2,3),∴右眼的坐标是(0,3),∴笑脸向右平移3个单位后,右眼B的坐标是(0+3,3),即(3,3),故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.11.若实数a,b在数轴上的位置如图所示,则以下说法正确的是()A.a>b B.ab>0 C.a+b>0 D.|a|>|b|【分析】先根据数轴确定a,b的范围,再进行逐一分析各选项,即可解答.【解答】解:由数轴可得:a<0<b,|a|<|b|,A、a<b,故错误;B、ab<0,故错误;C、a+b>0,正确;D、|a|<|b|,故错误;故选:C.【点评】此题主要考查了实数与数轴,解答此题的关键是根据数轴确定a,b的范围.12.同学们喜欢足球吗足球一般是用黑白两种颜色的皮块缝制而成,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()A.16块、16块B.8块、24块 C.20块、12块D.12块、20块【分析】根据题意可知:本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有3y块,而黑皮共有边数为5x块,依此列方程组求解即可.【解答】解:设黑色皮块和白色皮块的块数依次为x,y.则,解得,即黑色皮块和白色皮块的块数依次为12块、20块.故选D.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.二、填空题(共4小题,每小题3分,满分12分)13.计算|1﹣|﹣= ﹣1 .【分析】原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣1﹣=﹣1,故答案为:﹣1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a 与b平行,则∠1的度数必须是80°.【分析】先求出∠2的对顶角的度数,再根据同旁内角互补,两直线平行解答.【解答】解:如图,∵∠2=100°,∴∠3=∠2=100°,∴要使b与a平行,则∠1+∠3=180°,∴∠1=180°﹣100°=80°.故答案为:80°.【点评】本题主要考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键,15.已知关于x的不等式组的解集是x>4,则m的取值范围是m≤3 .【分析】先求出不等式的解集,根据已知不等式组的解集即可得出关于m的不等式,求出不等式的解集即可.【解答】解:∵不等式①的解集为x>4,不等式②的解集为x>m+1,,又∵不等式组的解集为x>4,∴m+1≤4,∴m≤3,故答案为:m≤3.【点评】本题考查了解一元一次不等式组,不等式组的解集的应用,能根据不等式的解集和已知不等式组的解集得出关于m的不等式是解此题的关键.16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2018的坐标是(﹣505,505).【分析】根据每一个正方形有4个顶点可知每4个点为一个循环组依次循环,用2018除以4,根据商和余数判断出点A2018所在的正方形以及所在的象限,再利用正方形的性质即可求出顶点A2018的坐标.【解答】解:∵每个正方形都有4个顶点,∴每4个点为一个循环组依次循环,∵2018÷4=504…2,∴点A2018是第505个正方形的第2个顶点,在第二象限,∵从内到外正方形的边长依次为2,4,6,8,…,∴A2(﹣1,1),A6(﹣2,2),A10(﹣3,3),…,A2018(﹣505,505).故答案为(﹣505,505).【点评】本题是对点的坐标变化规律的考查,根据四个点为一个循环组求出点A2018所在的正方形和所在的象限是解题的关键.三、解答题(共8小题,满分72分)17.计算:().【分析】先进行二次根式的除法运算,然后化简后合并即可.【解答】解:原式=×﹣×=﹣=﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①×2+②×3得:13x=﹣1,即x=﹣,把x=﹣代入①得:y=﹣,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.解不等式组,并把它的解集用数轴表示出来..【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:∵解不等式①得:x≥﹣2,解不等式②得:x<,∴不等式组的解集为﹣2≤x<,在数轴上表示不等式组的解集为:.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,能根据不等式的解集找出不等式组的解集是解此题的关键.20.已知x是的整数部分,y是的小数部分,求x(﹣y)的值.【分析】由于3<<4,由此可确定的整数部分x,接着确定小数部分y,然后代入所求代数式中计算出结果即可.【解答】解:∵3<<4,∴的整数部分x=3,小数部分y=﹣3,∴﹣y=3,∴x(﹣y)=3×3=9.【点评】此题考查了二次根式的性质,估算无理数的大小;利用二次根式的性质确定x、y的值是解决问题的关键.21.如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.【分析】(1)求出∠ABC+∠A=180°,根据平行线的判定推出即可;(2)根据平行线的性质求出∠3,根据垂直推出BD∥EF,根据平行线的性质即可求出∠2.【解答】(1)证明:∵∠ABC=180°﹣∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)解:∵AD∥BC,∠1=36°,∴∠3=∠1=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠2=∠3=36°.【点评】本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.22.收集和整理数据.某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班学生的上学方式进行一次全面调查,如图是一同学通过收集数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(每个学生只选择1种上学方式).(1)求该班乘车上学的人数;(2)将频数分布直方图补充完整;(3)若该校七年级有1200名学生,能否由此估计出该校七年级学生骑自行车上学的人数,为什么?【分析】(1)先求出该班学生的人数,再乘以乘车上学的百分比求解即可,(2)求出步行的人数,再补全条形统计图,(3)利用全面调查与抽样调查的区别来分析即可.【解答】解:(1)该班学生的人数为:15÷30%=50(人),该班乘车上学的人数为:50×(1﹣50%﹣30%)=10(人),(2)步行的人数为:50×50%=25(人),补全条形统计图,(3)不能由此估计出该校七年级学生骑自行车上学的人数.这是七(1)班数学老师要求每个学生就本班学生的上学方式进行一次全面调查,不是七年级学生上学方式的抽样调查,收集的数据对本校七年级学生的上学方式不具有代表性.【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.解决问题.学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.(1)求A,B两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?【分析】(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元列出方程组解答即可;(2)设购买A型号足球x个,则B型号足球(20﹣x)个,根据费用不低于1300元,不超过1500元,列出不等式组解答即可.【解答】解:(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由题意得解得答:A,B两种型号足球的销售价格各是50元/个,90元/个.(2)设购买A型号足球x个,则B型号足球(20﹣x)个,由题意得,解得7.5≤x≤12.5∵x是整数,∴x=8、9、10、11、12,有5种购球方案:购买A型号足球8个,B型号足球12个;购买A型号足球9个,B型号足球11个;购买A型号足球10个,B型号足球10个;购买A型号足球11个,B型号足球9个;购买A型号足球12个,B型号足球8个.【点评】此题考查二元一次方程组与一元一次不等式组的实际运用,找出题目蕴含的等量关系与不等关系是解决问题的关键.24.如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x 轴,且满足(a+b)2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.【分析】(1)根据非负数的性质得到a=﹣b,a﹣b+4=0,解得a=﹣2,b=2,则A(﹣2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积=4;(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E 作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°;(3)先根据待定系数法确定直线AC的解析式为y=x+1,则G点坐标为(0,1),然后利用S△PAC =S△APG+S△CPG进行计算.【解答】解:(1)∵(a+b)2≥0,≥0,∴a=﹣b,a﹣b+4=0,∴a=﹣2,b=2,∵CB⊥AB∴A(﹣2,0),B(2,0),C(2,2)∴三角形ABC的面积=×4×2=4;(2)∵CB∥y轴,BD∥AC,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,过E作EF∥AC,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED=∠1+∠2=×90°=45°;(3)存在.理由如下:设P点坐标为(0,t),直线AC的解析式为y=kx+b,把A(﹣2,0)、C(2,2)代入得,解得,∴直线AC的解析式为y=x+1,∴G点坐标为(0,1),∴S△PAC =S△APG+S△CPG=|t﹣1|2+|t﹣1|2=4,解得t=3或﹣1,∴P点坐标为(0,3)或(0,﹣1).【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.也考查了非负数的性质.人教版七年级下学期期末考试数学试卷(二)一、选择题(本大题共12个小题,每小题3分,共36分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.4的算术平方根等于( )A.±2B.2 C.﹣2 D.42.下列各式化简后,结果为无理数的是( )A.B.C.D.3.不等式﹣2x﹣1≥1的解集是( )A.x≥﹣1 B.x≤﹣1 C.x≤0D.x≤14.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是( )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于( )A.30°B.40°C.45°D.60°6.二元一次方程组的解是( )A.B.C.D.7.下列推理中,错误的是( )A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD8.若a>b,且c<0,则下列不等式中正确的是( )A.a÷c<b÷c B.a×c>b×c C.a+c<b+c D.a﹣c<b﹣c 9.要调查下列问题,你认为哪些适合抽样调查( )①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①② B.①③ C.②③ D.①②③10.如图,在5×5方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( )A.先向下平移3格,再向右平移1格B.先向下平移2格,再向右平移1格C.先向下平移2格,再向右平移2格D.先向下平移3格,再向右平移2格11.若实数a,b在数轴上的位置如图所示,则以下说法正确的是( )A.a>b B.ab>0 C.a+b>0 D.|a|>|b|12.小亮问老师有多少岁了,老师说:“我像你这么大时,你才4岁,你到我这么大时,我就40岁了.”求小亮和老师的岁数各是多少?若设小亮和老师的岁数分别为x岁和y岁,则可列方程组( )A.B.C.D.二、填空题(本大题共4个小题,每小题3分,共12分,把答案直接填在答题纸对应的位置上)13.计算|1﹣|﹣=__________.14.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a 与b平行,则∠1的度数必须是__________.15.已知关于x的不等式组的解集是x>4,则m的取值范围是__________.16.观察数表,若用有序整数对(m,n)表示第m行第n列的数,如(4,3)表示实数6,则表示的数是__________.三、解答题(本大题共8个小题,共72分,解答时应写出文字说明、证明过程或演算步骤)17.计算:().18.解方程组:.19.解不等式组,并把它的解集用数轴表示出来..20.推理与证明:我们在小学就已经知道三角形的内角和等于180°,你知道为什么吗?下面是一种证明方法,请你完成下面的问题.(1)作图:在三角形ABC的边BC上任取一点D,过点D作DE平行于AB,交AC 于E点,过点D作DF平行于AC,交AB于F点.(2)利用(1)所作的图形填空:∵DE∥AB,∴∠A=∠DEC,∠B=∠EDC(__________),又∵DF∥AC,∴∠DEC=∠EDF(__________),∠C=∠FDB(__________),∴∠A=∠EDF(等量代换),∴∠A+∠B+∠C=__________=180°.21.如图,某小区有大米产品加工点3个(M1,M2,M3),大豆产品加工点4个(D1,D 2,D3,D4),为了加强食品安全监督,政府要求对食品加工点进行网格化管理,管理员绘制了坐标网格和建立了平面直角坐标系(隐藏),把图中的大米加工点用坐标表示为M1(﹣5,﹣1),M2(4,4),M3(5,﹣4).(1)请你画出管理员所建立的平面直角坐标系;(2)类似地,在所画平面直坐标系内,用坐标表示出大豆产品加工点的位置.22.收集和整理数据.某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班学生的上学方式进行一次全面调查,如图是一同学通过收集数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(每个学生只选择1种上学方式).(1)求该班乘车上学的人数;(2)将频数分布直方图补充完整;(3)若该校2019-2020学年七年级有1200名学生,能否由此估计出该校2019-2020学年七年级学生骑自行车上学的人数,为什么?23.几何证明.如图,已知AB∥CD,BC交AB于B,BC交CD于C,∠ABE=∠DCF,求证:BE∥CF.24.解决问题.学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.(1)求A,B两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?参考答案一、选择题(本大题共12个小题,每小题3分,共36分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.4的算术平方根等于( )A.±2B.2 C.﹣2 D.4考点:算术平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:∵22=4,∴4算术平方根为2.故选B.点评:本题考查的是算术平方根的概念,掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键.2.下列各式化简后,结果为无理数的是( )A.B.C.D.考点:无理数.分析:根据无理数的三种形式求解.解答:解:=8,=4,=3,=2,无理数为.故选D.点评:本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3.不等式﹣2x﹣1≥1的解集是( )A.x≥﹣1 B.x≤﹣1 C.x≤0D.x≤1考点:解一元一次不等式.分析:先移项合并同类项,然后系数化为1求解.解答:解:移项合并同类项得:﹣2x≥2,系数化为1得:x≤﹣1.故选B.点评:本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.4.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是( )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°考点:垂线;对顶角、邻补角分析:首先由垂线的定义可知∠EOB=90°,然后由余角的定义可求得∠EOD,然后由邻补角的性质可求得∠EOC,由对顶角的性质可求得∠AOC.解答:解:由对顶角相等可知∠AOC=∠BOD=40°,故A正确,所以与要求不符;∵OE⊥AB,∴∠EOB=90°,故D正确,与要求不符;∵∠EOB=90°,∠BOD=40°,∴∠EOD=50°.故C错误,与要求相符.∴∠EOC=180°﹣∠EOD=180°﹣50°=130°.故B正确,与要求不符.故选:C.点评:本题主要考查的是垂线的定义、对顶角、邻补角的性质,掌握相关定义是解题的关键.5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于( )A.30°B.40°C.45°D.60°考点:平行线的性质.分析:首先过点A作l∥m,由直线l∥m,可得n∥l∥m,由两直线平行,内错角相等,即可求得答案:∠1+∠2=∠3+∠4的度数.解答:解:如图,过点A作l∥m,则∠1=∠3.又∵m∥n,∴l∥n,∴∠4=∠2,∴∠1+2=∠3+∠4=45°.故选:C.点评:此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握“两直线平行,内错角相等”性质定理的应用.6.二元一次方程组的解是( )A.B.C.D.考点:解二元一次方程组.分析:运用加减消元法,两式相加消去y,求出x的值,把x的值代入①求出y 的值,得到方程组的解.解答:解:,①+②得:3x=﹣3,即x=﹣1,把x=﹣1代入①得:y=2,则方程组的解为,故选:B.点评:此题考查了解二元一次方程组,利用了消元的思想,掌握加减消元法的步骤是解题的关键.7.下列推理中,错误的是( )A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD考点:命题与定理.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:A、由等量代换,故A选项正确B、由等量代换,故B选项正确C、如果两条直线都与第三条直线平行,那么这两条直线也平行,属于平行公理的推论,故C选项正确;D、∵AB⊥EF,EF⊥CD,∴AB∥CD,故D选项错误.故选:D.点评:本题需对等量代换的运用,平行公理的推论等知识点熟练掌握.。
最新七年级下册数学期末考试试题【答案】一、选择题(每题3分,共10题,共30分)1.气温由-2℃上升3℃后是()A.-5℃B.1℃C.5℃D.3℃2.下列各式运算正确的是()A.2(a-1)=2a-1 B.a2b-ab2=0C.2a3-3a3=a3D.a2+a2=2a23.下列调查中,适宜采用全面调查方式的是()A.对我国中学生体重的调查B.对我国市场上某一品牌食品质量的调查C.了解一批电池的使用寿命D.了解某班学生的身高情况4.点C在线段AB上,下列条件不能确定点C为线段AB中点的是()A.AB=2AC B.AC=2BC C.AC=BC D.BC=12AB5.如图,点A位于点O的()A.南偏东35°方向上B.北偏西65°方向上C.南偏东65°方向上D.南偏西65°方向上6.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字()A .的B .中C .国D .梦7.式子2285,,2,,5n m x xπ+--中,单项式有( ) A .1个B .2个C .3个D .4个8.有理数a 、b 在数轴上对应的位置如图所示,则下列关系正确的是( )A .-a <-bB .a <-bC .b <-aD .-b <a9.代数式m3+n 的值为5,则代数式-m3-n+2的值为( ) A .-3B .3C .-7D .710.下列说法:①两点之间,线段最短;②正数和负数统称为有理数;③多项式3x2-5x2y2-6y4-2是四次四项式;④一个容量为80的样本最大值是123,最小值是50,取组距为10,则可以分成7组;⑤一个锐角的补角与这个角的余角的差是直角,其中正确的有( ) A .2个B .3个C .4个D .5个二、填空题(每题3分,共10题,共30分)11.四川航空一航班在近万米高空遭遇驾驶舱挡风玻璃破裂脱落,随后安全备降成都双流国际机场.航班事发时距离地面32000英尺,请用科学记数法表示32000为 . 12.计算:18°26′+20°46′=13.多项式5x+2y 与多项式6x-3y 的差是14.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、五组数据的个数分别为2,8,15,5,则第四组的频率是15.写出一个x 的值,使|x-1|=-x+1成立,你写出的x 的值是 16.多项式321232m m m -+-的各项系数之积为 17.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则∠AOC+∠DOB=18.如图,以图中的A 、B 、C 、D 为端点的线段共有 条.19.观察下列图形:它们是按一定规律排列的,依照此规律,第n 个图形共有 个点.20.已知点B 、C 为线段AD 上的两点,AB=12BC=13CD ,点E 为线段CD 的中点,点F 为线段AD 的三等分点,若BE=14,则线段EF=三、解答题(共7题,共60分)21.计算: (1)215132824⎛⎫-+-÷ ⎪⎝⎭ (2)2241233⎛⎫-÷⨯- ⎪⎝⎭22.先化简,再求值:22113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中x=-1,y=23. 23.按要求解答 (1)①画直线AB ; ②画射线CD③连接AD 、BC 相交于点P④连接BD 并延长至点Q ,使DQ=BD(2)已知一个角的补角比这个角的余角的3倍少50°,求这个角是多少度24.哈市要对2.8万名初中生“学段人数分布情况”进行调查,采取随机抽样的方法从四个学年中抽取了若干名学生,并将调查结果绘制成了如下两幅不完整的条形统计图和扇形统计图,请根据图中提供的信息解答下列问题:(1)在这次随机抽样中,一共调查了多少名学生?(2)请通过计算补全条形统计图,并求出六年级所对应扇形的圆心角的度数;(3)全市共有2.8万名学生,请你估计全市六、七年级的学生一共有多少万人?25.已知,点O是直线AB上一点,OC、OD为从点O引出的两条射线,∠BOD=30°,∠COD=87∠AOC.(1)如图①,求∠AOC的度数;(2)如图②,在∠AOD的内部作∠MON=90°,请直接写出∠AON与∠COM之间的数量关系;(3)在(2)的条件下,若OM为∠BOC的角平分线,试说明∠AON=∠CON.26.在汶川地震十周年纪念日,某教育集团进行了主题捐书活动,同学们热情高涨,仅仅五天就捐赠图书m万册,其中m与514互为倒数.此时教育集团决定把所捐图书分批次运往市区周边的“希望学校”,而捐书活动将再持续一周.下表为活动结束前一周所捐图书存量的增减变化情况(单位:万册):(1)m的值为.(2)求活动结束时,该教育集团所捐图书存量为多少万册;(3)活动结束后,该教育集团决定在6天内把所捐图书全部运往“希望学校”,现有A、B 两个运输公司,B运输公司每天的运输数量是A运输公司的1.5倍,学校首先聘请A运输公司进行运输,工作两天后,由于某些原因,A运输公司每天运输的数量比原来降低了25%,学校决定又聘请B运输公司加入,与A运输公司共同运输,恰好按时完成任务,求A运输公司每天运输多少万册图书?27.如图,O为原点,数轴上两点A、B所对应的数分别为m、n,且m、n满足关于x、y 的整式x41+myn+60与2xy3n之和是单项式,动点P以每秒4个单位长度的速度从点A向终点B运动.(1)求m、n的值;(2)当PB-(PA+PO)=10时,求点P的运动时间t的值;(3)当点P开始运动时,点Q也同时以每秒2个单位长度的速度从点B向终点A运动,若PQ=12AB,求AP的长.2018-2019学年黑龙江省哈尔滨市香坊区七年级(下)期末数学试卷参考答案与解析一、选择题(每题3分,共10题,共30分)1.【分析】根据有理数的加法,即可解答.【解答】解:-2+3=1(℃),故选:B.【点评】本题考查了有理数的加法,解决本题的关键是熟记有理数的加法.2.【分析】直接利用合并同类项法则判断得出答案.【解答】解:A、2(a-1)=2a-2,故此选项错误;B、a2b-ab2,无法合并,故此选项错误;C、2a3-3a3=-a3,故此选项错误;D、a2+a2=2a2,正确.故选:D.【点评】此题主要考查了合并同类项,正确掌握合并同类项法则是解题关键.3.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:对我国中学生体重的调查适宜采用抽样调查方式;对我国市场上某一品牌食品质量的调查适宜采用抽样调查方式;了解一批电池的使用寿命适宜采用抽样调查方式;了解某班学生的身高情况适宜采用全面调查方式;故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.【解答】解:A:若点C在线段AB上,AB=2AC,则点C为线段AB的中点;B:若点C在线段AB上,AC=2BC,则点C不是线段AB的中点;C:若点C在线段AB上,AC=BC,则点C为线段AB的中点;D:若点C在线段AB上,BC=12AB,则点C为线段AB的中点..故选:B.【点评】本题考查了两点间的距离,掌握线段中点的定义是本题的关键.5.【分析】根据方位角的概念,结合上北下南左西右东的规定进行判断.【解答】解:由图可得,点A位于点O的北偏西65°的方向上.故选:B.【点评】本题主要考查了方向角,结合图形,正确认识方位角是解决此类问题的关键.方向角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.6.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”字一面的相对面上的字是“梦”.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.【分析】根据单项式定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式可得答案.【解答】解:式子22,2,5nxπ-是单项式,共3个,故选:C.【点评】此题主要考查了单项式,关键是掌握单项式定义.8.【分析】观察数轴,可知:-1<a<0,b>1,进而可得出-b<-1<a,此题得解.【解答】解:观察数轴,可知:-1<a<0,b>1,∴-b<-1<a<0<-a<1<b.故选:D.【点评】本题考查了数轴,观察数轴,找出a、b、-a、-b之间的关系是解题的关键.9.【分析】观察题中的两个代数式m3+m和-m3-m,可以发现,-(m3+m)=-m3-m,因此可整体代入求值.【解答】解:∵代数式m3+n的值为5,∴m3+n=5∴-m3-n+2=-(m3+n)+2=-5+2=-3故选:A.【点评】本题主要考查代数式的求值,代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题目中获取代数式m3+m与-m3-m的关系,然后利用“整体代入法”求代数式的值.10.【分析】根据线段的基本事实、有理数的分类、多项式概念、频数分布直方图中组数的确定及补余角的性质逐一判断可得.【解答】解:①两点之间,线段最短,此结论正确;②正有理数、负有理数和0统称为有理数,此结论错误;③多项式3x2-5x2y2-6y4-2是四次四项式,此结论正确;④一个容量为80的样本最大值是123,最小值是50,取组距为10,则可以分成8组,此结论错误;⑤一个锐角的补角与这个角的余角的差是直角,此结论正确;故选:B.【点评】本题主要考查频数(率)分布表,解题的关键是掌握线段的基本事实、有理数的分类、多项式概念、频数分布直方图中组数的确定及补余角的性质.二、填空题(每题3分,共10题,共30分)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法表示32000为3.2×104.故答案为:3.2×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【分析】两个度数相加,度与度,分与分对应相加,分的结果若满60,则转化为度.【解答】解:18°26′+20°46′=38°72′=39°12′.故答案为:39°12′.【点评】此类题考查了度、分、秒的加法计算,相对比较简单,注意以60为进制即可.13.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:(5x+2y)-(6x-3y)=5x+2y-6x+3y=-x+5y,故答案为:-x+5y【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.14.【分析】首先计算出第四项组的频数,然后再利用频数除以总数可得第四组的频率.【解答】解:第四组的频数为:50-2-8-15-5=20,第四组的频率是:2050=0.4,故答案为:0.4.【点评】此题主要考查了频数与频率,关键是掌握频率=频数总数.15.【分析】根据绝对值的非负性,求出x的范围,即可得出结论.【解答】解:∵|x-1|=-x+1且|x-1|≥0,∴-x+1≥0,∴x≤1,故答案为:0(答案不唯一)【点评】此题主要考查了绝对值的非负性,掌握绝对值的非负性,求出x≤1是解本题的关键.16.【分析】根据多项式各项系数的定义求解.多项式的各项系数是单项式中各项的系数,由此即可求解.【解答】解:多项式-2m3+3m2-12m的各项系数之积为:-2×3×(-12)=3.故答案为:3.【点评】此题主要考查了多项式的相关定义,解题的关键是熟练掌握多项式的各项系数和次数的定义即可求解.17【分析】因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°-a,所以∠AOC+∠BOD=90°+a+90°-a=180°.故答案为:180°.【点评】本题考查了角度的计算问题,在本题中要注意∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.18.【分析】设AB=x,则BC=2x,CD=3x,CE=DE=12CD=32x,由BE=14可求出x的值,由点F为线段AD的三等分点,可得出AF=2x或DF=2x,分AF=2x、DF=2x两种情况找出EF 的长度,此题得解.【解答】解:设AB=x ,则BC=2x ,CD=3x ,CE=DE=12CD=32x ,∵BE=BC+CE=2x+32x=14, ∴x=4.∵点F 为线段AD 的三等分点, ∴AF=13AD=2x 或DF=13AD=2x . 当AF=2x 时,如图1所示,EF=AB+BC+CE-AF=52x=10; 当DF=2x 时,如图2所示,EF=DF-DE=2x=2. 综上,线段EF 的长为2或10. 故答案为:2或10.【点评】本题考查了两点间的距离,分AF=2x 、DF=2x 两种情况找出EF 的长度是解题的关键.19. 【分析】由已知图形中点的个数知点的个数是2的序数倍与6的和,据此可得. 【解答】解:∵第1个图形中点的个数8=2×1+6, 第2个图形中点的个数10=2×2+6, 第3个图形中点的个数12=2×3+6, 第4个图形中点的个数14=2×4+6, ……∴第n 个图形中点的个数为2n+6, 故答案为:2n+6.【点评】此题考查了图形的变化类,是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.20. 【分析】按顺序分别写出各线段即可得出答案. 【解答】解:图中的线段有:线段AB ,线段AC ,线段AD ,线段BC ,线段BD ,线段CD ,共6条. 故答案为:6.【点评】本题考查了直线上点与线段的数量关系,线段是直线的一部分,用一个小写字母表示,如线段a ;用两个表示端点的字母表示,如:线段AB (或线段BA ).三、解答题(共7题,共60分)21. 【分析】(1)原式利用除法法则变形,再利用乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算即可求出值.【解答】解:(1)原式=215328⎛⎫-+- ⎪⎝⎭×24=-16+12-15=-19; (2)原式=3114493-⨯⨯=-. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22. 【分析】根据整式的运算法则即可求出答案.【解答】解:原式22123122323x x y x y =-+-+ =-3x+y 2 当x=-1,y=23时, 原式=-3×(-1)+49=319 【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.23. 【分析】(1)①画直线AB ;②画射线CD ;③连接线段AD 、BC 相交于点P ;④连接BD 并延长至点Q ,使DQ=BD .(2)设这个角是x 度,依据一个角的补角比这个角的余角的3倍少50°,即可得到方程180-x=3(90-x )-50,进而得出结论.【解答】解:(1)如图所示:(2)设这个角是x 度,则180-x=3(90-x )-50,解得:x=20.答:这个角是20度.【点评】本题主要考查了直线,线段和射线以及余角、补角,决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.24.【分析】(1)由九年级学生人数及其所占百分比可得被调查的学生人数;(2)总人数乘以八年级对应百分比求得其人数,根据各年级人数之和等于总人数求得六年级人数,据此补全条形图,再用360°乘以六年级人数所占百分比可得;(3)总人数乘以样本中六、七年级人数对应的比例可得.【解答】解:(1)本次调查的学生人数为25÷25%=100(名);(2)八年级的人数为100×20%=20人,则六年级的人数为100-(25+20+25)=30,补全图形如下:六年级所对应扇形的圆心角的度数为360°×30100=108°;(3)估计全市六、七年级的学生一共有2.8×30+25100=1.54(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.【分析】(1)由题意可知:∠AOD=∠AOC+∠COD,即∠AOC+87∠AOC=150°,即可求解;(2)由图可见:∠AON+20°=∠COM;(3)OM是∠BOC的角平分线,可以求出∠CON=∠MON-∠COM=35°,而∠AON=∠AOC-∠CON=35°,∴∠AON=∠CON.【解答】解:(1)由题意可知:∠AOB=180°,∠BOD=30°,∠AOD=∠AOB-∠BOD=150°,∵∠AOD=∠AOC+∠COD,∠COD=87∠AOC,∴∠AOC+87∠AOC=150°,∴∠AOC=70°;(2)由图可见:∠AON+20°=∠COM,故:答案为:∠AON+20°=∠COM;(3)证明:∵∠AOC=70°,∠AOB=180°,∴∠BOC=∠AOB-∠AOC=110°,∵OM是∠BOC的角平分线∴∠COM=12∠BOC=55°,∵∠MON=90°,∴∠CON=∠MON-∠COM=35°,∵∠AOC=70°,∴∠AON=∠AOC-∠CON=35°,∴∠AON=∠CON.【点评】本题主要考查的是角的计算,角平分线的定义,根据OD的位置进行分类讨论是解题的关键.26.【分析】(1)根据倒数的定义可求出m的值;(2)由(1)的结论结合所捐图书存量的增减变化情况统计表,即可求出活动结束时该教育集团所捐图书的存量;(3)设A运输公司每天运输x万册图书,则B运输公司每天运输1.5x万册图书,根据6天内要运输完成3.3万册图书,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)∵m与514互为倒数,∴m=145=2.8.故答案为:2.8;(2)2.8+0.2+0.1-0.1-0.4+0.3+0.5-0.1=3.3(万册).答:活动结束时,该教育集团所捐图书存量为3.3万册;(3)设A运输公司每天运输x万册图书,则B运输公司每天运输1.5最新人教版七年级(下)期末模拟数学试卷【答案】一、选择题(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算中,正确的是( )A 、x •x 2=x2 B 、(x +y )2=x 2+y 2 C .(x 2)3=x 6 D 、x 2+x 2=x 4 答案:C考点:整式的运算。
七年级下学期期末考试数学试卷(附答案)一、选择题(本大题共10小题,每小题4分,满分40分,)1、下列选项中能由如图平移得到的是()A.B.C.D.2、计算m6÷m2的结果是()A.m3B.m4C.m8D.m123、如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()A.AB∥BC B.BC∥CD C.AB∥DC D.AB与CD相交4、若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是()A.2cm B.3cm C.6cm D.9cm5、计算:(2x﹣y)2=()A.4x2﹣4xy+y2B.4x2﹣2xy+y2C.4x2﹣y2D.4x2+y26、若a<b,则下列结论中,不正确的是()A.a+2<b+2 B.a﹣2>b﹣2 C.2a<2b D.﹣2a>﹣2b7、学校计划用200元钱购买A、B两种奖品(两种都要买),A种每个15元,B种每个25元,在钱全部用完的情况下,有多少种购买方案()A.2种B.3种C.4种D.5种8、图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b29、将一个长为2a,宽为2b的长方形纸片(a>b),用剪刀沿图1中的虛线剪开,分成四块形状和大小都一样的小长方形纸片,然后按图2的方式拼成一个正方形,则中间小正方形的面积为( )A. a2+b2B. a2-b2C. (a+b)2D. (a-b)210、如图,已知AD∥EF∥BC,BD∥GF,且BD平分∠ADC,则图中与∠1相等的角(∠1除外)共有( )A. 4个B. 5个 C. 6个 D. 7个二、填空题(本大题共4小题,每小题5分,满分20分)11.8的立方根是________.12.因式分解:x3y2-x=________13.若分式方程mx−1+31−x=2的解为正数,则m的取值范围是________14.已知:AB∥CD,点C在点D的右侧,BE平分∠ABC,DE平分∠ADC,BE,DE所在直线交于点E,∠ADC=70°。
人教版七年级下学期期末考试数学试卷(一)一、选择题:本题共10小题,每小题4分,共40分.1.(4分)坐标平面内下列各点中,在x轴上的点是()A.(0,3)B.(﹣3,0)C.(﹣1,2) D.(﹣2,﹣3)2.(4分)已知是方程kx﹣y=3的解,那么k的值是()A.2 B.﹣2 C.1 D.﹣13.(4分)下列各式中,正确的是()A.=±2 B.=3 C.=﹣3 D.=﹣34.(4分)一个不等式组的解集在数轴上表示如图,则这个不等式组可能是()A.B.C. D .5.(4分)如图,下列条件能判定AD∥BC的是()A.∠C=∠CBE B.∠C+∠ABC=180° C.∠FDC=∠C D.∠FDC=∠A 6.(4分)下列调查中,调查方式选择合理的是()A.了解某种型号节能灯的使用寿命,选择全面调查B.了解电视剧《人民的名义》的收视率,选择抽样调查C.端午节期间,国家食品安全检查部门调查市场上粽子的质量情况,选择全面调查D.对神舟十一号宇宙飞船上某种零部件的检查,选择抽样调查7.(4分)有下列实数:,﹣3.14159,,0,,0.,,其中无理数的个数是()A.1个B.2个C.3个D.4个8.(4分)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图,已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中用水量在6吨以下的共有()组别月用水量x(单位:吨)A 0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12E x>12A.18户B.20户C.22户D.24户9.(4分)在平面直角坐标系中,已知点A(﹣4,0)和B(0,2),现将线段AB 沿着直线AB平移,使点A与点B重合,则平移后点B坐标是()A.(0,﹣2) B.(4,6) C.(4,4)D.(2,4)10.(4分)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分.11.(5分)如图,已知a∥b,直角三角板的直角顶点在直线a上,若∠1=60°,则∠2= .12.(5分)5﹣的整数部分是.13.(5分)不等式:2≤3x﹣7<8的所有整数解的和是.14.(5分)若点P(2﹣a,2a﹣1)到x轴的距离是3,则点P的坐标是.三、解答题:每小题8分,共16分.15.(8分)(1)计算:﹣+﹣(﹣1)2017;(2)求满足条件(x﹣2)2=9的x值.16.(8分)解方程组.四、解答题:每小题8分,共16分.17.(8分)解不等式组,并把解集表示在数轴上.18.(8分)已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=50°,求:∠BHF的度数.五、解答题:每题10分,共20分.19.(10分)甲、乙两个车间工人人数不等,若甲车间调10人给乙车间,则两车间人数相等;若乙车间调10人给甲车间,则甲车间现有的人数就是乙车间余下人数的2倍,问原来两车间各有多少名工人?20.(10分)在如图所示的正方形网格中,每个小正方形的边长均为1,△ABC 的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内画出平面直角坐标系,并写出点B的坐标.(2)请把△ABC先向右移5个单位长度,再向下移3个单位长度,得到△A′B′C′,请在图中画出△A′B′C′.(3)求△A′B′C′的面积.六、解答题:每题12分,共24分.21.(12分)某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:(1)这次活动一共调查了多少名学生?(2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于多少度?(4)若该学校有2000人,请你估计该学校选择羽毛球项目的学生人数.22.(12分)已知:如图,点D、E、G分别是△ABC边BC、AB和AC上的点,AD ∥EF,点F在BC上,∠1=∠2=∠B.求证:①AB∥DG;②DG平分∠ADC.七、解答题:14分.23.(14分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A种品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B 两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.1.(4分)坐标平面内下列各点中,在x轴上的点是()A.(0,3)B.(﹣3,0)C.(﹣1,2)D.(﹣2,﹣3)【分析】根据点在x轴上的坐标特点解答即可.【解答】解:∵在x轴上的点的纵坐标是0,∴结合各选项在x轴上的点是(﹣3,0).故选B.【点评】本题主要考查了点在x轴上的点的坐标特点:纵坐标为0.2.(4分)已知是方程kx﹣y=3的解,那么k的值是()A.2 B.﹣2 C.1 D.﹣1【分析】把x与y的值代入方程计算即可求出k的值.【解答】解:把代入方程得:2k﹣1=3,解得:k=2,故选A【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.(4分)下列各式中,正确的是()A.=±2 B.=3 C.=﹣3 D.=﹣3【分析】根据一个正数的算术平方根和平方根的性质可判断A、B;根据可判断C;根据立方根的定义可判断D.【解答】解:,故A错误;=±3,故B错误;=|﹣3|=3,故C错误;正确.故选D.【点评】本题主要考查的是立方根、平方根和算术平方根的性质,熟记性质是解题的关键.4.(4分)一个不等式组的解集在数轴上表示如图,则这个不等式组可能是()A. B. C. D.【分析】根据数轴上的解集,大于﹣1小于等于2,可得答案.【解答】解:数轴上表示的解集:﹣1<x≤2,B不等式组的解集是大于﹣,小于等于2,故选:B.【点评】本题考查了在数轴上表示不等式组的解集,观察数轴上的表示的解集是解题关键.5.(4分)如图,下列条件能判定AD∥BC的是()A.∠C=∠CBE B.∠C+∠ABC=180°C.∠FDC=∠C D.∠FDC=∠A【分析】根据平行线的判断对每一项分别进行分析即可得出答案.【解答】解:A、∵∠C=∠CBE,∴DC∥AB,故本选项错误;B、∵∠C+∠ABC=180°,∴DC∥AB,故本选项错误;C、∵∠FDC=∠C,∴AD∥BC,故本选项正确;D、∵∠FDC=∠A,∴DC∥AB,故本选项错误;故选C.【点评】本题考查的是平行线的判定,熟练掌握内错角相等,两直线平行;同旁内角互补,两直线平行;同位角相等,两直线平行是本题的关键.6.(4分)下列调查中,调查方式选择合理的是()A.了解某种型号节能灯的使用寿命,选择全面调查B.了解电视剧《人民的名义》的收视率,选择抽样调查C.端午节期间,国家食品安全检查部门调查市场上粽子的质量情况,选择全面调查D.对神舟十一号宇宙飞船上某种零部件的检查,选择抽样调查【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:∵了解某种型号节能灯的使用寿命,选择抽样调查,∴选项A不符合题意;∵了解电视剧《人民的名义》的收视率,选择抽样调查,∴选项B符合题意;∵端午节期间,国家食品安全检查部门调查市场上粽子的质量情况,选择抽样调查,∴选项C不符合题意;∵对神舟十一号宇宙飞船上某种零部件的检查,选择全面调查,∴选项D不符合题意.故选:B.【点评】此题主要考查了全面调查与抽样调查,要熟练掌握,如何选择调查方法要根据具体情况而定.7.(4分)有下列实数:,﹣3.14159,,0,,0.,,其中无理数的个数是()A.1个B.2个C.3个D.4个【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:,﹣3.14159,0,,0.是有理数,,是无理数,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.8.(4分)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图,已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中用水量在6吨以下的共有()组别月用水量x(单位:吨)A 0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12E x>12A.18户B.20户C.22户D.24户【分析】根据除B组以外参与调查的用户共64户及A、C、D、E四组的百分率可得参与调查的总户数及B组的百分率,将总户数乘以月用水量在6吨以下(A、B 两组)的百分率可得答案.【解答】解:∵被调查的户数为=80(户),其中B组用户数占被调查户数的百分比为:1﹣10%﹣35%﹣30%﹣5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户),故选:D.【点评】本题主要考查了扇形统计图,解题的关键是能识图,理解各部分百分率同总数之间的关系.9.(4分)在平面直角坐标系中,已知点A(﹣4,0)和B(0,2),现将线段AB沿着直线AB平移,使点A与点B重合,则平移后点B坐标是()A.(0,﹣2)B.(4,6)C.(4,4)D.(2,4)【分析】先根据点A、B的坐标确定出平移规律,再求解即可.【解答】解:∵点A(﹣4,0),点B(0,2),平移后点A、B重合,∴平移规律为向右平移4个单位,向上平移2个单位,∴点B的对应点的坐标为(4,4).故选:C.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10.(4分)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A. B.C. D.【分析】设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.【解答】解:设大马有x匹,小马有y匹,由题意得:,故选:C.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.二、填空题:本题共4小题,每小题5分,共20分.11.(5分)如图,已知a∥b,直角三角板的直角顶点在直线a上,若∠1=60°,则∠2= 30°.【分析】根据两直线平行,内错角相等可得∠3=∠1,再根据平角等于180°列式计算即可得解.【解答】解:如图,∵a∥b,∴∠3=∠1=60°,∴∠2=180°﹣90°﹣∠3=180°﹣90°﹣60°=30°.故答案为:30°.【点评】本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.12.(5分) 5﹣的整数部分是 2 .【分析】先估计的近似值,然后判断5﹣的近似值,最后得出5﹣的整数部分.【解答】解:∵4<5<9,∴2<<3,∴﹣3<<﹣2.∴2<5﹣<3.故5﹣的整数部分是2.【点评】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.13.(5分)不等式:2≤3x﹣7<8的所有整数解的和是7 .【分析】将已知的双向不等式转化为一个一元一次不等式组,求出不等式组的解集,找出解集中的所有整数解,求出之和即可.【解答】解:不等式:2≤3x﹣7<8可化为:,由不等式①移项合并得:3x≥9,解得:x≥3;由不等式②移项合并得:3x<15,解得:x<5,∴不等式组的解集为3≤x<5,即整数解为:3,4,则原不等式的所有整数解的和为3+4=7.故答案为:7【点评】此题考查了一元一次不等式组的整数解,以及一元一次不等式组的解法,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.(5分)若点P(2﹣a,2a﹣1)到x轴的距离是3,则点P的坐标是(0,3)或(3,﹣3).【分析】根据点到x轴的距离是纵坐标的绝对值,可得答案.【解答】解:由题意,得2a﹣1=3或2a﹣1=﹣3,解得a=2,或a=﹣1.点P的坐标是(0,3)或(3,﹣3),故答案为:(0,3)或(3,﹣3).【点评】本题考查了点的坐标,利用点到x轴的距离是纵坐标的绝对值是解题关键.三、解答题:每小题8分,共16分.15.(8分)(1)计算:﹣+﹣(﹣1)2017;(2)求满足条件(x﹣2)2=9的x值.【分析】(1)本题涉及二次根式化简、开立方和乘方.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)两边直接开平方可得x﹣2=±3,再解一元一次方程即可.【解答】解:(1)原式=﹣4++1=﹣4=﹣=﹣;(2)开平方得:x﹣2=±3,x﹣2=3,x﹣2=﹣3,解得:x1=5,x2=﹣1.【点评】此题主要考查了实数的运算,以及一元二次方程的解法,关键是掌握二次根式化简、开立方和乘方运算,掌握实数的运算顺序.16.(8分)解方程组.【分析】首先对原方程组化简,然后①×2运用加减消元法求解.【解答】解:原方程组可化为:,①×2+②得11x=22,∴x=2,把x=2代入①得:y=3,∴方程组的解为.【点评】此题考查的是解二元一次方程组,关键是先化简在运用加减消元法解方程组.四、解答题:每小题8分,共16分.17.(8分)解不等式组,并把解集表示在数轴上.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≥﹣1,解不等式②得:x<0.8,∴不等式组的解集为﹣1≤x<0.8,在数轴上表示为:.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.18.(8分)已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=50°,求:∠BHF的度数.【分析】由AB∥CD得到∠AGE=∠CFG,又FH平分∠EFD,∠AGE=50°,由此可以先后求出∠GFD,∠HFD,∠BHF.【解答】解:∵AB∥CD,∴∠CFG=∠AGE=50°,∴∠GFD=130°;又FH平分∠EFD,∴∠HFD=∠EFD=65°;∴∠BHF=180°﹣∠HFD=115°.【点评】两直线平行时,应该想到它们的性质;由两直线平行的关系可以得到角之间的数量关系,从而达到解决问题的目的.五、解答题:每题10分,共20分.19.(10分)甲、乙两个车间工人人数不等,若甲车间调10人给乙车间,则两车间人数相等;若乙车间调10人给甲车间,则甲车间现有的人数就是乙车间余下人数的2倍,问原来两车间各有多少名工人?【分析】可直接设两车间的人数,根据题意找出两个等量关系:①甲车间的人数﹣10=乙车间的人数;②甲车间的人数+10=2×(乙车间的人数﹣10),根据这两个等量关系可列出方程组.【解答】解:设甲车间有x名工人,乙车间有y名工人,由题意得:,整理得,解得.答:甲车间有70名工人,乙车间有50名工人.【点评】本题主要考查二元一次方程组的应用,关键在于理解清楚题意,找出等量关系,列出方程组求解.20.(10分)在如图所示的正方形网格中,每个小正方形的边长均为1,△ABC 的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内画出平面直角坐标系,并写出点B的坐标.(2)请把△ABC先向右移5个单位长度,再向下移3个单位长度,得到△A′B′C′,请在图中画出△A′B′C′.(3)求△A′B′C′的面积.【分析】(1)根据点C的坐标,即可找出x、y轴的位置,以此建立直角坐标系即可;(2)找出点A、B、C平移后的点A′、B′、C′,将其两两相连即可;(3)由△A′B′C′的面积等于矩形的面积减去三个小三角线的面积,即可求出△A′B′C′的面积.【解答】解:(1)如图所示建立直角坐标系,点B的坐标为(﹣2,1).(2)依照题意平移△ABC,得到△A′B′C′,如图所示.(3)S=3×4﹣×4×2﹣×3×2﹣×1×2=4.△A′B′C′【点评】本题考查了作图中的平移变换以及三角形的面积,解题的关键是:(1)根据点B的坐标确定x、y轴的位置;(2)找出点A、B、C平移后的点A′、B′、C′;(3)利用分割图形法求△A′B′C′的面积.六、解答题:每题12分,共24分.21.(12分)某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:(1)这次活动一共调查了多少名学生?(2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于多少度?(4)若该学校有2000人,请你估计该学校选择羽毛球项目的学生人数.【分析】(1)由“足球”人数及其百分比可得总人数;(2)根据各项目人数之和等于总人数求出“篮球”的人数,补全图形即可;(3)用“篮球”人数占被调查人数的比例乘以360°即可;(4)用总人数乘以样本中羽毛球所占百分比即可得.【解答】解:(1)80÷32%=250,答:这次活动一共调查了250名学生;(2)篮球的人数为250﹣(80+60+40)=70,补全图形如下:(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角为360°×=100.8°;(4)2000×=320,答:估计该学校选择羽毛球项目的学生人数为320人.【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(12分)已知:如图,点D、E、G分别是△ABC边BC、AB和AC上的点,AD ∥EF,点F在BC上,∠1=∠2=∠B.求证:①AB∥DG;②DG平分∠ADC.【分析】①根据平行线的性质得出∠1=∠BAD,求出∠2=∠BAD,根据平行线的判定得出即可;②根据平行线的性质得出∠B=∠CDG,求出∠2=∠CDG,根据平行线的判定得出即可.【解答】证明:①∵EF∥AD,∴∠1=∠BAD,∵∠1=∠2,∴∠2=∠BAD,∴AB∥DG;②∵AB∥DG,∴∠B=∠CDG,∵∠2=∠B,∴∠2=∠CDG,∴DG平分∠ADC.【点评】本题考查了平行线的性质和判定,能灵活运用平行线的判定和性质定理进行推理是解此题的关键.七、解答题:14分.23.(14分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A种品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B 两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?【分析】(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球单价比A种足球贵30元”可得出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设第二次购买A种足球m个,则购买B种足球(50﹣m)个,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球不小于23个”可得出关于m 的一元一次不等式组,解不等式组可得出m的取值范围,由此即可得出结论;(3)分析第二次购买时,A、B种足球的单价,即可得出哪种方案花钱最多,求出花费最大值即可得出结论.【解答】解:(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,依题意得:,解得:.答:购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元.(2)设第二次购买A种足球m个,则购买B种足球(50﹣m)个,依题意得:,解得:25≤m≤27.故这次学校购买足球有三种方案:方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球27个,B种足球23个.(3)∵第二次购买足球时,A种足球单价为50+4=54(元),B种足球单价为80×0.9=72(元),∴当购买方案中B种足球最多时,费用最高,即方案一花钱最多.∴25×54+25×72=3150(元).答:学校在第二次购买活动中最多需要3150元资金.【点评】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)根据数量关系找出关于x、y的二元一次方程组;(2)根据数量关系找出关于m的一元一次不等式组;(3)确定花费最多的方案.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组、不等式或不等式组)是关键.人教版七年级下学期期末考试数学试卷(二)一、选择题(每小题3分,共30分)1.(3分)不等式3x<18 的解集是()A..x>6 B..x<6 C.x<﹣6 D.x<02.(3分)下列各对数值,是方程2x﹣3y=6的解是()A.B.C.D.3.(3分)x与5的和的一半是负数,用不等式表示为()A.x+>0 B.(x+5)≥0 C.(x+5)>0 D.(x+5)<0 4.(3分)下列语句正确的是()A.0.64的平方根是0.8B.带根号的数都是无理数C.若x3=125,则125是x的立方根D.﹣是3的平方根5.(3分)不等式2x﹣5≥﹣1的解集在数轴上表示正确的是()A. B.C. D.6.(3分)已知实数a,b,若a>b,则下列结论错误的是()A.a﹣5>b﹣5 B.3+a>b﹣3 C.>D.﹣3a>﹣3b7.(3分)如果方程组的解为,那么被“★”“■”遮住的两个数分别是()A.10,4 B.4,10 C.3,10 D.10,38.(3分)一个长方形的周长是10,长比宽的2倍少1.若设长为x,宽为y,则x、y适合的方程组是()A. B. C. D.9.(3分)若不等式ax+x>1+a的解集是x<1,则a必须满足的条件是()A.a<﹣1 B.a<1 C.a>﹣1 D.a>110.(3分)不等式组的解集为x<4,则a满足的条件是()A.a<4 B.a=4 C.a≤4 D.a≥4二.填空题(每题3分,共24分)11.(3分)已知点A(﹣2,0),B(3,0),C(5,﹣4),则S= .△ABC12.(3分)已知二元一次方程组为,则x+y= .13.(3分)不等式4x≤12的自然数解是:.14.(3分)若|x+2|+(2y﹣x)2=0,则x= ,y= .15.(3分)如图,AB∥CD,CE平分∠BCD,∠DCE=16°,则∠B等于.16.(3分)若不等式组的解集是空集,则a、b的大小关系是.17.(3分)若点(m﹣3,m+2)在第二象限,则m的取值范围是.18.(3分)已知方程组,当m 时,x+y>0.三、解答题(共3小题,满分36分)19.(22分)解方程组或不等式(组)(1)(代入法)(2)(3)1+≥2﹣(4)解不等式组,并把解集表示在数轴上,再写出这个不等式组的整数解.20.(6分)x为何值时,代数式﹣的值不大于1?21.(8分)某旅游团有48人到某宾馆住宿,若全安排住宾馆的底层,每间住4人,房间不够;每间住5人,有一个房间没有住满5人,问该宾馆底层有多少间客房?四.学以致用(10分)22.(10分)甲、乙两班同学去购买苹果,价格如下表购买苹果a 千克α<30 30≤α≤50 α>50每千克价格(元) 3 2.5 2甲班同学分两次共买了70千克(第二次多于第一次),共付189元,而乙班同学一次性购买70千克.(1)乙班同学比甲班同学少付多少元?(2)甲班同学第一、二次分别购买苹果多少千克?参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)不等式3x<18 的解集是()A..x>6 B..x<6 C.x<﹣6 D.x<0【分析】不等式x系数化为1,即可求出解集.【解答】解:不等式3x<18,解得:x<6,故选B【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.2.(3分)下列各对数值,是方程2x﹣3y=6的解是()A.B.C.D.【分析】根据使二元一次方程左右相等的未知数的值,可得答案.【解答】解:把x=0,y=4代入2x﹣3y=6得:2×0﹣3×4=﹣12≠6,左边≠右边,∴选项A不是方程2x﹣3y=6的解;把x=1,y=﹣2.5代入2x﹣3y=6得:2×1﹣3×(﹣2)=8≠6,左边≠右边,∴选项B不是方程2x﹣3y=6的解;把x=2,y=﹣1代入2x﹣3y=6得:2×2﹣3×(﹣1)=7≠6,左边≠右边,∴选项C不是方程2x﹣3y=6的解;把x=3,y=0代入2x﹣3y=6得:2×3﹣3×0=6,左边=右边,∴选项D是方程2x﹣3y=6的解;故选:D.【点评】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.3.(3分) x与5的和的一半是负数,用不等式表示为()A.x+>0 B.(x+5)≥0 C.(x+5)>0 D.(x+5)<0【分析】理解:负数值小于0.【解答】解:由题意知.故选D.【点评】要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.4.(3分)下列语句正确的是()A.0.64的平方根是0.8B.带根号的数都是无理数C.若x3=125,则125是x的立方根D.﹣是3的平方根【分析】A、根据平方根的定义即可判定;B、根据无理数的定义即可判定;C、根据立方根的定义即可判定;D、根据平方根的定义即可判定.【解答】解:A、0.64的平方根为±0.8,故选项A错误;B、带根号的数不一定都是无理数,例如,故选项B错误;C、x是125的立方根,说法错误,故选项C错误;D、说法正确,故选项正确.故选D.【点评】此题主要考查了立方根、平方根、无理数的定义,要求学生熟练掌握平方根,立方根及无理数的含义.5.(3分)不等式2x﹣5≥﹣1的解集在数轴上表示正确的是()A.B.C.D.【分析】不等式2x﹣5≥﹣1的解集是x≥2,大于应向右画,且包括2时,应用实心表示,据此可判断答案.【解答】解:不等式2x﹣5≥﹣1的解集为x≥2.故选B.【点评】在数轴上表示不等式的解集时,大于向右,小于向左,有等于号的画实心原点,没有等于号的画空心圆圈.6.(3分)已知实数a,b,若a>b,则下列结论错误的是()A.a﹣5>b﹣5 B.3+a>b﹣3 C.>D.﹣3a>﹣3b【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:a>b,A、a﹣5>b﹣5,故A选项正确;B、3+a>b﹣3,故B选项正确;C、>,故C选项正确;D、﹣3a<﹣3b,故D选项错误.故选:D.【点评】本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.7.(3分)如果方程组的解为,那么被“★”“■”遮住的两个数分别是()A.10,4 B.4,10 C.3,10 D.10,3【分析】把代入2x+y=16先求出■,再代入x+y求★.【解答】解:把代入2x+y=16得12+■=16,解得■=4,再把代入x+y=★得★=6+4=10,故选:A.【点评】本题主要考查了二元一次方程组的解,解题的关键是理解题意,代入法求解.8.(3分)一个长方形的周长是10,长比宽的2倍少1.若设长为x,宽为y,则x、y适合的方程组是()A.B.C.D.【分析】利用长方形的周长=2×(长+宽),得出2(x+y)=10;由长比宽的2倍少1得出x=2y﹣1.根据这两个等量关系,可列方程组.【解答】解:设长为x,宽为y,由题意得或.。
2024年全新七年级数学下册期末试卷及答案(仁爱版)一、选择题(每题1分,共5分)1. 若一个数的立方根是3,则这个数是()A. 9B. 27C. 81D. 2432. 下列哪个数是负数?()A. 2B. 0C. 1/2D. 23. 若一个等腰三角形的底边长为8cm,腰长为5cm,则这个三角形的周长是()A. 16cmB. 18cmC. 20cmD. 22cm4. 若一个圆的半径是5cm,则这个圆的面积是()A. 25πcm²B. 50πcm²C. 100πcm²D. 200πcm²5. 若一个长方体的长、宽、高分别为4cm、3cm、2cm,则这个长方体的体积是()A. 24cm³B. 36cm³C. 48cm³D. 64cm³二、判断题(每题1分,共5分)1. 任何数的平方都是正数。
()2. 若两个数的和为正数,则这两个数中必有一个是正数。
()3. 一个等腰三角形的底边长等于腰长。
()4. 一个圆的直径等于半径的两倍。
()5. 一个长方体的体积等于长、宽、高的乘积。
()三、填空题(每题1分,共5分)1. 一个数的立方根是2,则这个数是______。
2. 若一个数的平方根是5,则这个数是______。
3. 若一个等腰三角形的底边长为10cm,腰长为6cm,则这个三角形的周长是______cm。
4. 若一个圆的半径是6cm,则这个圆的面积是______cm²。
5. 若一个长方体的长、宽、高分别为6cm、4cm、3cm,则这个长方体的体积是______cm³。
四、简答题(每题2分,共10分)1. 简述有理数的加法法则。
2. 简述等腰三角形的性质。
3. 简述圆的面积公式。
4. 简述长方体的体积公式。
5. 简述因式分解的概念。
五、应用题(每题2分,共10分)1. 若一个数的立方根是3,求这个数的平方根。
2. 若一个等腰三角形的底边长为8cm,腰长为5cm,求这个三角形的面积。
七年级数学下册期末考试卷(带答案解析)一、选择题(本大题共10小题,每小题3分,共30分.)1.下列各组图形中,一个图形经过平移能得到另一个图形的是()A.B.C. D.2.下列各数中是无理数的是()A.B.πC.6.25 D.3.下列运算正确的是()A.=±5 B.|﹣3|=3 C.=3 D.=﹣4 4.下列事件中,最适合采用普查的是()A.对我校七年级一班学生出生日期的调查B.对全国中学生节水意识的调查C.对山东省初中学生每天阅读时间的调查D.对某批次灯泡使用寿命的调查5.不等式4x<3x+1的解集在数轴上表示正确的是()A.B.C.D.6.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.7.如图,a⊥c,b⊥c,若∠1=70°,则∠2等于()A.70°B.90°C.110°D.80°8.如图,下列条件:①∠1=∠5;②∠2=∠6;③∠3=∠7;④∠4=∠8.其中能判定AB∥CD的是()A.①②B.②③C.①④D.②④9.小亮的妈妈用28元钱买了甲乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果多买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A.B.C.D.10.已知且0<y﹣x<1,则k的取值范围是()A.﹣1B.0C.0<k<1 D.<k<1二、填空题(本大题共6小题,每小题3分,共18分.)11.的平方根为.12.若+(a﹣1)2=0,则a+b的值为.13.已知点A(0,a)在y轴的负半轴上,则点B(a,a﹣1)在第象限.14.某校对七年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级,根据收集的评价结果绘制了如图所示的统计图,已知图中从左到右的五个长方形的高之比为2:3:3:1:1,评价结果为“A”的学生有68名,则该校七年级学生共有.15.如图,已知AB∥CD,∠BAC与∠ACD的平分线相交于点E,若∠ACE=31°,则∠BAE的度数是.16.关于x的不等式组无整数解,则a的取值范围为.三.解答题(共72分)17.计算:.18.如图,直线AB,CD相交于点O,∠BOC=130°,OE⊥AB于点O,求∠EOD的度数.19.解方程组:(1);(2).20.解不等式组,并把它的解集在数轴上表示出来.21.已知线段AB两端点的坐标为A(2,0),B(0,4),将线段AB平移后得到线段A'B',AB上任意一点P(x,y)平移后的对应点为P'(x+2,y+2).(1)在平面直角坐标系中画出线段AB和A'B';(2)连接OA',OB',求三角形OA'B'的面积.22.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.23.已知如图,△ABC过点A做∠DAE=∠BAC,且AD∥BC,∠1=∠2.(1)求证AB∥DE;(2)若已知AE平分∠BAC,∠C=35°,求∠BAD的度数.24.“地摊经济”已成为社会关注的热门话题,小明从市场得知如下信息:甲商品每件售价为90元,乙商品每件售价为10元,销售1件甲商品和4件乙商品可获得利润45元,销售2件甲商品和3件乙商品可获得利润65元.(1)求甲、乙商品的进货价格;(2)小明计划用不超过3500元的资金购进甲、乙商品共100件进行销售,设小明购进甲商品a件,求a的取值范围;(3)在(2)的条件下,若要求甲,乙商品全部销售完后获得的利润不少于1450元,请说明小明有哪些可行的进货方案,并计算哪种进货方案的利润最大,最大利润是多少?25.同学们,我们已学习了角平分线的概念和性质,那么你会用它们解决有关问题吗?(1)如图(1),已知∠AOB,请你画出它的角平分线OC,并填空:因为OC是∠AOB的平分线(已知)所以∠=∠=∠AOB(2)如图(2),已知∠AOC,若将∠AOC沿着射线OC翻折,射线OA落在OB处,请你画出射线OB,射线OC一定平分∠AOB.理由如下:因为∠BOC是由∠AOC翻折而成,而翻折不改变图形的形状和大小,所以∠BOC=∠所以射线是∠的角平分线.拓展应用(3)如图(3),将长方形纸片的一角折叠,使顶点A落在C处,折痕为OE,再将它的另一个角也折叠,顶点B落在D处并且使OD过点C,折痕为OF.直接利用(2)的结论;①若∠AOE=60°,求∠EOF的度数.②若∠AOE=m°,求∠EOF的度数,从计算中你发现了∠EOF的度数有什么规律?③∠DOF的补角为;∠DOF的余角为.参考答案与解析一.选择题(共10小题)1.解:各组图形中,选项D中的图形是一个图形经过平移能得到另一个图形,故选:D.2.解:A.5.34是分数,属于有理数,故这个选项不符合题意;B.是无理数,故这个选项符合题意;C.6.25是分数,属于有理数,故这个选项不符合题意;D.是分数,属于有理数,故这个选项不符合题意;故选:B.3.解:A、=5,故本选项错误;B、|﹣3|=3,故本选项正确;C、∵=3,∴≠3,故本选项错误;D、=4,故本选项错误;故选:B.4.解:A、对我校七年级一班学生出生日期的调查适合采用普查;B、对全国中学生节水意识的调查适合采用抽样调查;C、对山东省初中学生每天阅读时间的调查适合采用抽样调查;D、对某批次灯泡使用寿命的调查适合采用抽样调查;故选:A.5.解:4x<3x+1,移项得:4x﹣3x<1,合并同类项得:x<1,在数轴上表示为:故选:C.6.解:线段AD的长表示点A到直线BC距离的是图D,故选:D.7.解:∵a⊥c,b⊥c,∴a∥b,∴∠3=∠1=70°,∴∠2=∠3=70°.故选:A.8.解:①∵∠1=∠5,∴AB∥CD,能判定AB∥CD;②∵∠2=∠6,∴AD∥BC,不能判定AB∥CD;③∵∠3=∠7;∴AD∥BC,不能判定AB∥CD;④∵∠4=∠8,∴AB∥CD,能判定AB∥CD.故选:C.9.解:设小亮妈妈买了甲种水果x千克,乙种水果y千克,根据题意得:,故选:C.10.解:将两个方程相减得到y﹣x=2k﹣1,∵0<y﹣x<1,∴0<2k﹣1<1,解得<k<1.故选:D.二.填空题(共6小题)11.【答案】±【分析】根据平方根的定义求解.【解答】解:的平方根为±=±.故答案为:±.12.【答案】﹣1【分析】直接利用非负数的性质得出b,a的值,即可得出答案.【解答】解:∵+(a﹣1)2=0,∴3b+6=0,a﹣1=0,解得:b=﹣2,a=1,∴a+b=﹣2+1=﹣1.故答案为:﹣1.13.【答案】三【分析】根据点A(0,a)在y轴的负半轴上可得到a<0,再根据各象限内点的坐标特征解答.【解答】解:∵点A(0,a)在y轴的负半轴上,∴a<0,∴a﹣1<0,∴点B(a,a﹣1)在第三象限.故答案为:三.14.【答案】340名【分析】用A等级人数除以其对应权重,再乘以权重之和即可得出答案.【解答】解:该校七年级学生共有68÷2×(2+3+3+1+1)=340(名),故答案为:340名.15.【答案】59°【分析】根据平行线的性质得到∠BAC+∠ACD=180°,再根据角平分线的定义得到∠CAE+∠ACE=90°,根据题意即可得解.【解答】解:∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠BAC与∠ACD的平分线相交于点E,∴∠BAE=∠CAE=∠BAC,∠ACE=∠ACD,∴∠CAE+∠ACE=×(∠BAC+∠ACD)=90°,∵∠ACE=31°,∴∠CAE=90°﹣∠ACE=59°,∴∠BAE=59°,故答案为:59°.16.【答案】a≥2【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据“无整数解”这个条件分析答案;另外需考虑不等式组无解的情况.【解答】解:不等式组整理得:不等式组的解集是:a<x<,或a≥时,不等式组无解,∵不等式组无整数解,∴a≥2故答案为:a≥2.三.解答题17.计算:.【分析】首先计算开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:=2﹣﹣3+(﹣4)=﹣2﹣4.18.如图,直线AB,CD相交于点O,∠BOC=130°,OE⊥AB于点O,求∠EOD的度数.【答案】40°.【分析】利用对顶角的性质可得∠AOD=130°,再利用垂直定义计算即可.【解答】解:∵∠BOC=130°,∠AOD与∠BOC是对顶角,∴∠AOD=130°,∵OE⊥AB,∴∠AOE=90°,∴∠EOD=130°﹣90°=40°,即∠EOD的度数是40°.19.解方程组:(1);(2).【答案】(1);(2).【分析】(1)应用代入消元法,求出方程组的解即可.(2)应用加减消元法,求出方程组的解即可.【解答】解:(1),②代入①,可得:y﹣1+2y=8,解得y=3,把y=3代入②,解得x=2,∴原方程组的解是.(2),由②,可得:5x+5y=1③,①×5+③,可得20x=26,解得x=1.3,把x=1.3代入①,解得y=﹣1.1,∴原方程组的解是.20.解不等式组,并把它的解集在数轴上表示出来.【答案】x>2,解集在数轴上的表示见解答.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式5x+2≥3x,得:x≥﹣1,解不等式2﹣<x,得:x>2,则不等式组的解集为x>2,将不等式组的解集表示在数轴上如下:21.已知线段AB两端点的坐标为A(2,0),B(0,4),将线段AB平移后得到线段A'B',AB上任意一点P(x,y)平移后的对应点为P'(x+2,y+2).(1)在平面直角坐标系中画出线段AB和A'B';(2)连接OA',OB',求三角形OA'B'的面积.【答案】(1)见解答;(2)10.【分析】(1)先利用P点和P′点的坐标特征确定平移的方向与距离,再利用此平移规律写出A′、B′的坐标,然后描点得到线段AB和A'B';(2)用一个矩形的面积分别减去三个直角三角形的面积去计算三角形OA'B'的面积.【解答】解:(1)如图,线段AB和A'B'为所作;(2)三角形OA'B'的面积=4×6﹣×4×2﹣×2×4﹣×6×2=10.22.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.【答案】见试题解答内容【分析】(1)根据第二组频数为21,所占百分比为21%,求出数据总数,再用数据总数减去其余各组频数得到第四组频数,进而补全频数分布直方图;(2)用第三组频数除以数据总数,再乘以100,得到m的值;先求出“E”组所占百分比,再乘以360°即可求出对应的圆心角度数;(3)用3000乘以每周课外阅读时间不小于6小时的学生所占百分比即可.【解答】解:(1)数据总数为:21÷21%=100,第四组频数为:100﹣10﹣21﹣40﹣4=25,频数分布直方图补充如下:(2)m=40÷100×100=40;“E”组对应的圆心角度数为:360°×=14.4°;(3)3000×(25%+)=870(人).即估计该校3000名学生中每周的课外阅读时间不小于6小时的人数是870人.23.已知如图,△ABC过点A做∠DAE=∠BAC,且AD∥BC,∠1=∠2.(1)求证AB∥DE;(2)若已知AE平分∠BAC,∠C=35°,求∠BAD的度数.【答案】见试题解答内容【分析】(1)根据平行线的性质得出∠DAE=∠2,求出∠BAC=∠1,根据平行线的判定得出即可;(2)根据角平分线的定义得出∠BAE=∠CAE,根据∠DAE=∠BEA求出∠BAE=∠EAC=∠DAC,根据平行线的性质得出∠C=∠DAC,求出∠C=∠BAE=∠DAC=35°,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DAE=∠2,∵∠1=∠2,∴∠DAE=∠1,∵∠DAE=∠BAC,∴∠BAC=∠1,∴AB∥DE;(2)解:∵∠DAE=∠BEA,∴∠BAE=∠EAC=∠DAC,∵AD∥BC,∴∠C=∠DAC,∴∠C=∠BAE=∠DAC=35°,∵AE平分∠BAC,∴∠BAC=2∠BAE=70°,∴∠BAD=∠BAC+∠CAD=105°.24.“地摊经济”已成为社会关注的热门话题,小明从市场得知如下信息:甲商品每件售价为90元,乙商品每件售价为10元,销售1件甲商品和4件乙商品可获得利润45元,销售2件甲商品和3件乙商品可获得利润65元.(1)求甲、乙商品的进货价格;(2)小明计划用不超过3500元的资金购进甲、乙商品共100件进行销售,设小明购进甲商品a件,求a的取值范围;(3)在(2)的条件下,若要求甲,乙商品全部销售完后获得的利润不少于1450元,请说明小明有哪些可行的进货方案,并计算哪种进货方案的利润最大,最大利润是多少?【答案】(1)甲商品的进货价格为65元,乙商品的进货价格为5元;(2)a的取值范围是0≤a≤50;(3)进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;甲商品进50件,乙商品进50件利润最大,最大利润是1500元.【分析】(1)设甲、乙商品的进货价格分别是x元,y元,根据题意列方程组即可得到结论;(2)设小明购进甲商品a件,由题意列出不等式,即可求解;(3)由获得的利润不少于1450元,列出不等式可求a的范围,可求出答案.【解答】解:(1)设甲、乙商品的进货价格分别是x元,y元,由题意列方程组得:,解得,答:甲商品的进货价格为65元,乙商品的进货价格为5元;(2)设小明购进甲商品a件,由题意得,65a+5(100﹣a)≤3500,解得a≤50,∴a的取值范围是0≤a≤50;(3)由题意可得:(90﹣65)a+(10﹣5)(100﹣a)≥1450,解得:a≥47.5,∴47.5≤a≤50,又∵a为整数,∴a=48,49,50,∴进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;若甲商品进48件,乙商品进52件,利润为(90﹣65)×48+(10﹣5)×52=1460(元),若甲商品进49件,乙商品进51件,利润为(90﹣65)×49+(10﹣5)×51=1480(元),若甲商品进50件,乙商品进50件,利润为(90﹣65)×50+(10﹣5)×50=1500(元),∴当甲商品进50件,乙商品进50件,利润有最大值.利润最大值为1500(元).答:进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;甲商品进50件,乙商品进50件利润最大,最大利润是1500元.25.解:(1)如图1所示:∵OC是∠AOB的平分线,∴∠AOC=∠BOC=∠AOB,故答案为:AOC,BOC,;(2)如图2所示:∵∠BOC是由∠AOC翻折而成,而翻折不改变图形的形状和大小,∴∠BOC=∠AOC,∴射线OC是∠AOB的角平分线,故答案为:BOC,OC,AOB;(3))①∵△COE由△AOE翻折而成,△DOF由△BOF翻折而成,∠AOE=60°,∴∠AOE=∠EOC=60°,∠BOF=∠DOF=(180°﹣∠AOE﹣∠EOC)=×60°=30°,∴∠EOF=∠EOC+∠DOF=60°+30°=90°;②∵△COE由△AOE翻折而成,△DOF由△BOF翻折而成,∠AOE=m°∴∠AOE=∠EOC=m°,∠BOF=∠DOF=[180°﹣(∠AOE+∠EOC)]=×[18°﹣2m°]=90°﹣m°,∴∠EOF=∠EOC+∠DOF=m°+90°﹣m°=90°,发现∠EOF始终为90°;③∵由②知,∠DOF=∠BOF,∠BOF+∠AOF=180°,∴∠DOF的补角是∠AOF;∵∠DOF+∠EOC=90°,∴∠DOF的余角是∠EOC和∠AOE,故答案为:∠AOF,∠EOC和∠AOE.。
2024年最新人教版七年级数学(下册)期末考卷及答案(各版本)一、选择题:每题1分,共5分1. 一个等差数列的前三项分别是2,5,8,那么第10项是______。
A. 29B. 30C. 31D. 322. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是______。
A. 6B. 7C. 17D. 233. 下列哪一个数是有理数______?A. √2B. √3C. √5D. √94. 下列哪一个比例是正确的______?A. 3 : 4 = 6 : 8B. 4 : 5 = 8 : 9C. 5 : 6 = 10 : 12D.6 :7 = 12 : 145. 下列哪一个图形是平行四边形______?A. 矩形B. 正方形C. 梯形D.菱形二、判断题:每题1分,共5分1. 任何两个奇数之和都是偶数。
()2. 任何两个有理数相乘都是无理数。
()3. 一个等边三角形的三个角都是60度。
()4. 两个锐角之和一定大于90度。
()5. 任何两个等腰三角形的底角相等。
()三、填空题:每题1分,共5分1. 一个等差数列的第5项是15,第10项是______。
2. 如果一个三角形的两边分别是5和12,那么第三边的长度可能是______。
3. 下列哪一个数是无理数______。
4. 如果一个比例是3 : 4 = 6 : 8,那么比例的外项是______。
5. 下列哪一个图形是矩形______。
四、简答题:每题2分,共10分1. 简述等差数列的定义和通项公式。
2. 简述勾股定理及其应用。
3. 简述有理数的定义和性质。
4. 简述平行四边形的性质和判定。
5. 简述等边三角形的性质和判定。
五、应用题:每题2分,共10分1. 一个等差数列的前三项分别是2,5,8,求第10项。
2. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是多少?3. 下列哪一个数是有理数?4. 下列哪一个比例是正确的?5. 下列哪一个图形是平行四边形?六、分析题:每题5分,共10分1. 分析并证明等差数列的前n项和公式。
新人教版七年级数学下册期末测试卷(及答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知m,n为常数,代数式2x4y+mx|5-n|y+xy化简之后为单项式,则m n的值共有()A.1个B.2个C.3个D.4个2.2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确..的是()A.签约金额逐年增加B.与上年相比,2019年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98%3.如图,P是直线l外一点,A,B,C三点在直线l上,且PB⊥l于点B,∠APC=90°,则下列结论:①线段AP是点A到直线PC的距离;②线段BP的长是点P到直线l的距离;③PA,PB,PC三条线段中,PB最短;④线段PC的长是点P到直线l的距离,其中,正确的是( )A.②③B.①②③C.③④D.①②③④4.已知5x=3,5y=2,则52x﹣3y=()A.34B.1 C.23D.985.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D6.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l的有()A.5个B.4个C.3个D.2个7.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.8.若长度分别为,3,5a的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.3 D.89.若|abc|=-abc,且abc≠0,则||||ba ca b c++=()A.1或-3 B.-1或-3 C.±1或±3 D.无法判断10.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B .天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C .“篮球队员在罚球线上投篮一次,投中”为随机事件D .“a 是实数,|a|≥0”是不可能事件二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭的值为________. 4.若+x x -有意义,则+1x =___________.5.364 的平方根为________.5.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要______cm .三、解答题(本大题共6小题,共72分)1.解方程(1)2(1)25(2)x x -=-+ (2)3171124x x ++-=2.先化简,再求值(1)2229x 6x 3x x 3⎛⎫+-- ⎪⎝⎭,其中x 2=-; (2)()()()22222a b ab 2a b 12ab 1+---+,其中a 2=-,b 2=.3.如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.4.如图①,在△ABC 中,∠ABC 与∠ACB 的平分线相交于点P .(1)如果∠A =80°,求∠BPC 的度数;(2)如图②,作△ABC 外角∠MBC ,∠NCB 的角平分线交于点Q ,试探索∠Q 、∠A 之间的数量关系.(3)如图③,延长线段BP 、QC 交于点E ,△BQE 中,存在一个内角等于另一个内角的2倍,求∠A 的度数.5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2) 由表达式你能求出降价前每千克的土豆价格是多少?试求降价前y与x之间的关系式(3) 降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、B4、D5、C6、B7、B8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、x (x+2)(x ﹣2)2、10.3、0.4、15、±26、10三、解答题(本大题共6小题,共72分)1、(1)67x =- ;(2)3x =-2、(1)26x 8x +;20;(2)0;0;3、(1)略;(2)112.5°.4、(1)130°.(2)∠Q==90°﹣12∠A ;(3)∠A 的度数是90°或60°或120°.5、(1)40;(2)72;(3)280.6、(1) 5元(2) 0.5元/千克; y=12x+5(0≤x ≤30);(3)他一共带了45千克土豆.。
新七年级下学期期末考试数学试题及答案人教版七年级下学期期末考试数学试题(考试时间120分钟满分120分)一.选择题:(每小题3分,共24分)1.在实数:3.14159,3.46,1.010010001…,π,227中,无理数有()A、1个B、2个C、3个D、4个答案:B考点:实数的概念。
解析:无限不循环的小数为无理数,无理数有:1.010010001…,π,共2个,其它为有理数。
2.下列运算正确的是()A、3a+2a=5a2B、2a2b﹣a2b=a2b C.3a+3b=3ab D、a5﹣a2=a3答案:B考点:整式的运算。
解析:A、3a+2a=5a,故错误;B、正确;C、不是同类项,不能合并;D、不是同类项,不能合并;3.下列调查中,最适合采用全面调查的是()A、对全国中学生睡眠时间的调查B.了解一批节能灯的使用寿命C.对“中国诗词大会”节目收视率的调查D.对玉免二号月球车零部件的调查答案:D考点:统计。
解析:A、B、C容量大,不能做全面调查,只有D适合做全面调查。
4.如图,直线l 1∥l 2,且分别与直线l 交于C ,D 两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=50°,则∠2的度数为( ) A 、90° B 、110° C 、108° D 、100°答案:D考点:两直线平行的性质。
解析:如下图,因为l 1∥l 2, 所以,∠3=∠1=50°, ∠3+∠2+30°=180°,∠2=180°-50°-30°=100°5.买1本笔记本和3支水笔共需14元,买3本笔记本和1支水笔共需18元,则购买1本笔记本和1支水笔共需( )A 、3元B 、5元C 、8元D 、13元 答案:C考点:二元一次方程组。
解析:购买1本笔记本和1支水笔分别需x 、y 元,则有314318x y x y ⎧⎨+=⎩+=,解得:53x y =⎧⎨=⎩, x +y =5+3=86.将点A (2,﹣1)向左平移3个单位长度,再向上平移4个单位长度得到点B ,则点B 的坐标是( )A 、(-1,3)B 、(5,3)C 、(﹣1,﹣5)D 、(5,﹣5) 答案:A考点:平移。
解析:点A (2,﹣1)向左平移3个单位长度后得到点:(-1,-1), 再向上平移4个单位长度得到点B (-1,3),故选A 。
7.不等式组215xx m-<⎧⎨<⎩的解集是x<3,那么m的取值范围是()A、m>3B、m≥3C、m<2D、m≤2答案:B考点:一元一次不等式组。
解析:2x-1<5,得:x<3,因为不等式组的解集是x<3,所以,m≥38.已知实数a,b在数轴上对应的点如图所示,则下列式子正确的是()A、ab>0B、a+b<0C、|a|<|b|D、a﹣b>0答案:C考点:数轴,实数大小比较。
解析:由数轴可知:-1<a<0,1<b<2,所以,ab<0,A错误;a+b>0,B错误;C正确;a﹣b<0,D错误。
二、填空题(每小题3分,共21分)9.16的平方根是.答案:±4考点:平方根。
解析:因为(±4)2=16,所以,16的平方根是±410.如图,直线a,b相交,若∠1与∠2互余,则∠3的度数为.答案:135°考点:对顶角相等,互余、互补。
解析:依题意,有:∠1=∠2,又∠1与∠2互余,所以,∠1=∠2=45°,∠3+∠2=180°,所以,∠3=135°,11.某小区地下停车场入口了栏杆的平面示意图如图所示,BA 垂直地面AE 于点A ,CD 平行于地面AE ,若∠BCD =150°,则∠ABC = °. 答案:120考点:两直线平行的性质。
解析:过B 作BF ∥CD ,因为CD ∥AE ,所以,BF ∥AE , ∠BCD +∠CBF =180°,∠BCD =150°, 所以,∠CBF =30°,∠ABC =90°+30°=120°。
12.一件夹克衫先按成本提高20%标价,再以9折出售,售价为270元,这件夹克衫的成本是 . 答案:250考点:一元一次方程。
解析:设这件夹克衫的成本是x 元,则 x (1+20%)×0.9=270, 化为:1.2x =300 解得:x =250(元)。
13.已知关于x 的不等式0323x a x -≥⎧⎨-≥-⎩的整数解共有3个,则a 的取值范围是 .答案:0<a ≤1考点:一元一次不等式组。
解析:不等式组的解为:3a x ≤≤,整数解有3个,分别为:3、2、1, 所以,0<a ≤114.如图把“QQ 笑脸”图标放在直角坐标系中,已知左眼A 的坐标是(﹣2,3),右眼B的坐标为(0,3),则嘴唇C点的坐标是.答案:(﹣1,1)考点:平面直角坐标系。
解析:依题意,建立如下图所示的平面直角坐标系,则C点的坐标为(-1,1)。
15.某校为了解七年级同学的体能情况,随机选取部分学生测试一分钟仰卧起坐的次数,并绘制了如图所示的直方图,学校七年级共有600人,则计该校一分钟仰卧起坐的次数不少于25次的有人.答案:340考点:统计图。
解析:由直方图可知,样本的容量为:3+10+12+5=30,分钟仰卧起坐的次数不少于25次的有:12517 3030+=,学校七年级的600人中一分钟仰卧起坐的次数不少于25次的有:1760030⨯=340(人)。
16.按下面的程序计算:规定:程序运行到“判断结果是否大于7”为一次运算.若经过2次运算就停止,若开始输入的值x为正整数,则x可以取的所有值是.答案:2或3考点:程序框图。
解析:第一次运算:2x+1>7,不成立,即2x+1≤7,解得:x≤3,第二次运算:2x(2x+1)+1=4x2+2x+1>7,成立,x为正整数,x≤3,只有当x为2或3时,满足4x2+2x+1>7。
三、解答题:17.(12分)计算题:(1|1|(2)解方程组21 239 x yx y-=⎧⎨+=⎩(3)解不等式组:考点:根式的运算,二元一次方程组,一元一次不等式组。
解析:(1)原式=3-2-1..4分18.(6分)已知5a+2的立方根是3,4b+1的算术平方根是3,c求a+b+c的值.考点:立方根,算术平方根。
解析:19.(6分)已知不等式组122561x nx m-<⎧⎨+>-⎩的解集是﹣6<x<3,求2m+n的值.考点:一元一次不等式组。
解析:20.(6分)如图,已知单位长度为1的方格中有个△ABC.(1)请画出△ABC向上平移3格再向右平移2格所得△A′B′C.(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B、点B′的坐标:B(,);B′(,)考点:平移变换,平面直角坐标系。
解析:(1)如下图,(2)B(1,2),B’(3,5)21.(6分)如图,∠ADE=∠B,CD∥FG,证明:∠1=∠2.考点:两直线平行的判定与性质。
解析:22.(8分)我市正在努力创建“全国文明城市”,为进一步营造“创文”氛围,我市某学校组织了一次“创文知识竞赛”,竞赛题共10题.竞赛活动结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽査的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是;(2)在扇形统计图中,m=,n=.(3)补全条形统计图.考点:统计图。
解析:(1)样本容量是:510%=50(2)850=16%,所以,m=16,1-0.1-0.16-0.24-0.2=0.3=30%,所以,n=30(3)答对9题人数:30%×50=15, 答对10题人数:20%×50=10, 如下图,23.(9分)某学校准备从体育用品商店一次性购买若干个篮球和足球(每个篮球的价格相同,每个足球的价格相同),购买1个足球和2个篮球共需270元;购买2个足球和3个篮球共需440元.(1)问足球和篮球的单价各是多少元?(2)若购买足球和篮球共24个,且购买篮球的个数大于足球个数的2倍,购买球的总费用不超过2220元,问该学校有哪几种不同的购买方案? 考点:列二元一次方程组解应用题,一元一次不等式组。
解析:(1)设购买一个足球需要x 元,一个篮球需y 元,则有 x +2y =270 2x +3y =440解这个方程组得x =70,y =100,所以,足球的单价是70元,篮球的单价是100元。
(2)设购买x 个足球,则篮球是(24-x )个,则有70100(24)2220242x x x x +-≤⎧⎨->⎩, 解得:68x ≤<,x 是整数,所以,x 可取6、7两种, 即有2种不同的购买方案。
24.(9分)如图,已知l 1∥l 2,线段MA 分别与直线l 1,l 2交于点A ,B ,线段MC 分别与直线l 1,l 2交于点C ,D ,点P 在线段AM 上运动(P 点与A ,B ,M 三点不重合),设∠PDB =α,∠PCA =β,∠CPD =γ.(1)若点P在A,B两点之间运动时,若a=25°,β=40°,那么γ=.(2)若点P在A,B两点之间运动时,探究α,β,γ之间的数量关系,请说明理由;(3)若点P在B,M两点之间运动时,α,β,γ之间有何数量关系?(只需直接写出结论)考点:两直线平行的性质,分类讨论。
解析:(1)65°(2)γ=α+β,理由如下:如图,过点P作PE∥AC交CD于E,∵AC∥PE,∴β=∠CPE,又∵AC∥BD,∴PE∥BD,∴α=∠DPE,∴α+β=γ;(3)β﹣α=γ.人教版七年级下册第十章数据的收集、整理与描述单元练习题(含答案)一、选择题1.下列调查中,①调查本班同学的视力;②调查一批节能灯管的使用寿命;③为保证“神舟9号”的成功发射,对其零部件进行检查;④调查运动员兴奋剂的使用情况,其中适合采用抽样调查的是()A.①B.②C.③D.④2.为了测量调查对象每分钟的心跳次数,甲同学建议测量2分钟的心跳次数再除以2,乙同学建议测量10秒的心跳次数再乘以6,你认为哪位同学的方法更具有代表性()A.甲同学B.乙同学C.两种方法都具有代表性D.两种方法都不合理3.为了了解2016年我县九年级6 023名学生学业水平考试的数学成绩,从中随机抽取了200名学生的数学成绩,下列说法正确的是()A.2016年我县九年级学生是总体B.每一名九年级学生是个体C.200名九年级学生是总体的一个样本D.样本容量是2004.我市属国家珍稀动物“大鲵”保护地,科考人员某日在其中一个保护区捕捞6只大鲵,并在它们身上都做了标记后放回,几天后,在该保护区又捕捞18只大鲵,其中2只身上有标记,据此估计该保护区约有大鲵多少只()A.54B.24C.32D.1085.在设计调查问卷时,下面的提问比较恰当的是()A.我认为猫是一种很可爱的动物B.难道你不认为科幻片比武打片更有意思C.你给我回答到底喜不喜欢猫呢D.请问你家有哪些使用电池的电器6.为了从甲、乙两名学生中选拔一人参加电脑知识竞赛,在相同条件下对他们的电脑知识进行了10次测验,成绩(单位:分)如下:若测验分数在85分(含85分)以上的为优秀,则甲、乙的优秀率分别为()A.60%,40%B.50%,50%C.50%,40%D.60%,50%7.下列调查中,最适合采用全面调查方式的是()A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查8.下列调查中,适合全面调查的是()A.一批手机电池的使用寿命B.你所在学校的男、女同学的人数C.中国公民保护环境的意识D.端午节期间泰兴市场上粽子的质量二、填空题9.为了解佛山市老人的身体健康状况,在以下抽样调查中,你认为样本选择较好的是________.(填序号,答案格式如:“①②③”)①100位女性老人;②公园内100位老人;③在城市和乡镇选10个点,每个点任选10位老人.10.下列调查类型,是全面调查的有______,是抽样调查的有________.(填写序号)(1)电视机厂估计出厂电视机优等率,随机打开产品5%的电视机进行检测.(2)我国在2003年防治“非典”期间每日公布的疫情,收集有关数据.(3)某火车站要了解春运期间的客流量,从中随机的抽取了4天的客流量.11.文娱委员随机调查班级里7天内,每天收听综艺或音乐节目的人数,制成折线统计图.如图,判断收听人数比较稳定的是________节目.12.为了了解七年级同学每天的睡眠时间,在七年级的10个班中,每班抽5名学生做调查,这一调查中,总体是指____________________,样本是指____________________.13.为了保证婴幼儿的饮食安全,质检部门准备对某品牌罐装牛奶进行质量检测,这种检测适合用的调查是________________.(抽样调查或全面调查)14.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题中的样本是________________.15.某市要了解该市八年级学生的身高情况,在全市八年级学生中抽取了1 000名学生进行测量,在这个问题中,个体是______________________,样本容量是________.16.赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有________人.三、解答题17.在下列调查中,哪些适合做全面调查?哪些适合做抽样调查?(1)了解你所在班级的每个学生穿几号鞋;(2)了解节能灯的使用寿命;(3)了解我市八年级学生的视力情况;(4)了解实验田里水稻的穗长.18.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?19.由于天气逐渐转凉,同学们都订了厚厚校服冬装,学校为保证厂家生产的冬装质量冬装是否合格,在发放前对冬装进行了抽样调查.已知运来的冬装一共有10包,每包有10打,每打有12套.要求样本容量为100.(1)请你帮学校设计一个调查方案,并指出总体、个体、样本;(2)通过调查,冬装质量是合格的,但发放后未了解学生的满意程度,请你再设计一个方案,调查学生的满意程度.20.某校八年级共有8个班,241名同学,历史老师为了了解新中考模式下该校八年级学生选修历史学科的意向,请小红,小亮,小军三位同学分别进行抽样调查.三位同学调查结果反馈如下:小红、小亮和小军三人中,你认为哪位同学的调查结果较好地反映了该校八年级同学选修历史的意向,请说出理由,并由此估计全年级有意向选修历史的同学的人数.21.你对:“您觉得该不该在公共场所禁烟”作民意调查,下面是三名同学设计的调查方案:同学A:我把要调查的问题放到访问量最大的网站上,这样大部分上网的人就可以看到调查的问题,并很快就可以反馈给我.同学B:我给我们小区的居民每一位住户发一份问卷,一两天也可以得到结果了.同学C:我只要在班级上调查一下同学就可以了,马上就可以得到结果.请问:上面三个同学哪个能获得比较准确的民意吗?为什么?答案解析1.【答案】B【解析】①调查本班同学的视力,范围小,适宜全面调查;②调查一批节能灯管的使用寿命范围广且带有破坏性,适合抽样调查;③为保证“神舟9号”的成功发射,对其零部件进行检查,安全要求高,适宜全面调查;④调查运动员兴奋剂的使用情况,适宜全面调查,适合采用抽样调查的是②.2.【答案】A【解析】因为要测量调查对象每分钟的心跳次数,由于2分钟远远大于10秒钟,所以甲同学建议测量的根据代表性,误差更小些;所以选甲同学的方案.3.【答案】D【解析】A.2016年我县九年级学生的数学成绩是总体,故此选项错误,不合题意;B.每一名九年级学生的数学成绩是个体,故此选项错误,不合题意;C.200名九年级学生的数学成绩是总体的一个样本,故此选项错误,不合题意;D.样本容量是200,故此选项正确,符合题意.4.【答案】A【解析】该保护区约有大鲵6÷=54(只).5.【答案】D【解析】A.我认为猫是一种很可爱的动物,这不是一个调查;B.难道你不认为科幻片比武打片更有意思?这也不是一个调查,这句话直接肯定了科幻片比武打片更有意思;C.你给我回答倒底喜不喜欢猫呢?这也不行;D.请问你家有哪些使用电池的电器?这是一个调查,可以设计调查问卷.6.【答案】C【解析】根据题意,甲的成绩有5次在85分(含85分)以上,即5次优秀,则其优秀率的50%,乙的成绩有4次在85分(含85分)以上,即4次优秀,则其优秀率的40%.7.【答案】B【解析】A.对重庆市辖区内长江流域水质情况的调查,应采用抽样调查;B.对乘坐飞机的旅客是否携带违禁物品的调查,应采用全面调查;C.对一个社区每天丢弃塑料袋数量的调查,应采用抽样调查;D.对重庆电视台“天天630”栏目收视率的调查,应采用抽样调查.8.【答案】D【解析】A.一批手机电池的使用寿命调查具有破坏性适合抽样调查,故A不符合题意;B.你所在学校的男、女同学的人数适合全面调查,故B符合题意;C.中国公民保护环境的意识调查范围广适合抽样调查,故C不符合题意;D.端午节期间泰兴市场上粽子的质量调查具有破坏性适合抽样调查,故D不符合题意.9.【答案】③【解析】①100位女性老人没有男性代表,没有代表性;②公园内的老人一般是比较健康的,也没有代表性;③在城市和乡镇选10个点,每个点任选10位老人比较有代表性.10.【答案】(2)(1)(3)【解析】(1)此调查只是抽取了一部分,是抽样调查;(2)是全面调查;(3)只是抽取了4天的客流量,是抽样调查.11.【答案】音乐【解析】从折线统计图中可以看出收听综艺类的人数的折线起伏较大,所以收听综艺类的节目的折线图不如收听音乐类的节目的折线图稳定.12.【答案】七年级同学每天的睡眠时间所抽取的50名学生每天的睡眠时间【解析】本题考查的对象是七年级学生每天的睡眠时间,故总体是七年级同学每天的睡眠时间;样本是所抽取的50名学生每天的睡眠时间.13.【答案】抽样调查【解析】了解市场上某品牌罐装牛奶的质量安全情况,调查过程带有破坏性,只能采取抽样调查,而不能将整批某品牌罐装牛奶全部用于实验,所以选择抽样调查.14.【答案】100台电视机的寿命【解析】样本是从总体中抽取的部分个体.本题的总体是一批电视机的寿命,故样本是100台电视机的寿命.15.【答案】每位学生的身高1000【解析】16.【答案】27【解析】如图所示,89.5~109.5段的学生人数有24人,109.5~129.5段的学生人数有3人,故成绩不低于90分的共有24+3=27人.17.【答案】(1)了解你所在班级的每个学生穿几号鞋适合全面调查;(2)了解节能灯的使用寿命适合抽样调查;.(3)了解我市八年级学生的视力情况适合抽样调查;(4)了解实验田里水稻的穗长适合抽样调查.【解析】由全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.18.【答案】解:(1)a=50-4-8-16-10=12;(2)(3)本次测试的优秀率是×100%=44%.【解析】(1)利用总数50减去其他各组的频数即可求得a的值;(2)根据(1)的结果即可把频数分布直方图补充完整;(3)根据百分比的意义即可求解.19.【答案】解:(1)总体是10×10×12=1 200套冬装的质量,个体是一套冬装的质量,样本可在100以下即可,答案不唯一.(2)学生总体为1 200名学生对冬装的满意程度,样本总量可设为100,个体是每名学生对冬装的满意程度,样本随机抽取20也可.【解析】(1)根据题意,又知道样本容量为100,冬装共有10包,每包有10打,每打有12套,可求出总体,个体.(2)先确定学生的总体,然后确定样本总量以及个体即可.20.【答案】小军的数据较好地反映了该校八年级同学选修历史的意向.理由如下:小红仅调查了一个班的同学,样本不具有随机性;小亮只调查了8位历史课代表,样本容量过少,不具有代表性;小军的调查样本容量适中,且能够代表全年级的同学的选择意向.根据小军的调查结果,有意向选择历史的比例约为=;故据此估计全年级选修历史的人数为241×=60.25≈60(人).【解析】根据抽样调查的代表性可知小军的结果较好地反映了该校八年级同学选修历史的意向,再用样本中选择历史的人数所占比例乘以总人数可得答案.21.【答案】同学B能获得比较全面的民意.理由:同学A放在网上,调查的人不够全面,同学C调查的人群不具有代表性,只有同学B的调查能比较准确地反映出民意.因为小区里包括了各年龄层次的人.【解析】在抽取样本时,所抽取的样本必须能够代表所有的调查对象,必须是随机抽样,据此即可判断.最新七年级下册数学期末考试题及答案一、选择题(本大题共8小题,每题3分,共24 分)1.如图,是一个“七”字形,与∠1 是内错角的是()A.∠2 B.∠3C.∠4 D.∠52.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与腰垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是()A.110°B.125°C.140°D.160°3.点P(-2,3)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.某班共有学生49 人,一天该班某男生因事请假,当天的男生人数恰为女生人数的一半.若该班男生人数为x,女生人数为y,则下列方程组中,能正确求出x、y 的是()A.492(1)x yy x-=⎧⎨=+⎩B.492(1)x yy x+=⎧⎨=+⎩C.492(1)x yy x-=⎧⎨=-⎩D.492(1)x yy x+=⎧⎨=-⎩5.在正整数范围内,方程3x+y=10 的解有()A .0 组B .1 组C .2 组D .3 组 6.已知 a <b ,则下列不等式中正确的是() A .a +3>b +3 B .3a >3b C .-3a >-3b D .33a b > 7.不等式-3x ≤6 的解集在数轴上正确表示为( )8.下面各调查中,最适合使用全面调查方式收集数据的是( )A .了解一批节能灯的使用寿命B .了解某班全体同学的身高情况C .了解动物园全年的游客人数D .了解央视“新闻联播”的收视率二、填空题(本大题共 8 小题,每小题 3 分,共 24 分)9.如图,把长方形 ABCD 沿 E F 对折后,使两部分重合,若∠1=52°,则∠AEF = 度.10.在平面直角坐标系中,若点 Q (m ,-2m +4)在第一象限 则 m 的取值范围是 .11.在△ABC 中,已知两条边 a =3,b =4,则第三边 c 的取值 范围是 .12.方程 3x -5y =15,用含 x 的代数式表示 y ,则 y =. 13.已知57x y =⎧⎨=⎩是二元一次方程 k x -2y -1=0 的一组解,则 k =. 14.某种药品的说明书上,贴有如右表所示的标签,一次服用这种药品的剂量 xmg (毫克)的范围是 .15.如图,是小恺同学 6 次数学测验的成绩统计表,则该同学 6 次成绩中的最低分是 .16.本学期实验中学组织开展课外兴趣活 动,各活动小班根据实际情况确定了计 划组班人数,并发动学生自愿报名,报 名人数与计划人数的前 5 位情况如下:若用同一小班的计划人数与报名人数的比值大小来衡量进入该班的难易程度,学生中对于进入各活动小班的难易有以下预测:①篮球和航模都能进;②舞蹈比写作容易;③写作比奥数容易;④舞蹈比奥数容易.则预测正确的有(填序号即可).三、解下列方程组、不等式(组)(本大题共4小题,每小题6分,共24 分)17.43624x yx y+=⎧⎨+=⎩18.15(2)3224x x yx y⎧-+=⎪⎨⎪+=⎩19.2151132x x-+-<20.936325xx-≥⎧⎨-≤⎩四、应用题(本大题共2小题,每小题8分,共16 分)21.某风景点的团体购买门票票价如下:今有甲、乙两个旅行团,已知甲团人数少于50 人,乙团人数不超过100 人.若分别购票,两团共计应付门票费1950 元,若合在一起作为一个团体购票,总计应付门票费1545 元.(1)请你判断乙团的人数是否也少于50 人;(2)求甲、乙两旅行团各有多少人?(3)甲旅行团单独购票,有无更省钱的方案?说明理由.22.“你记得父母的生日吗?”这是某中学在七年级学生中开展主题为“感恩”教育时设置的一个问题,有以下四个选项:A.父母生日都记得;B.只记得母亲生日;C.只记得父亲生日;D.父母生日都不记得.在随机调查了(1)班和(2)班各50 名学生后,根据相关数据绘出如图所示的统计图.(1)补全频数分布直方图;(2)已知该校七年级共900 名学生,据此推算,该校七年级学生中,“父母生日都不记得”的学生共多少名?(3)若两个班中“只记得母亲生日”的学生占22%,则(2)班“只记得母亲生日”的学生所占百分比是多少?五、综合题(本题12 分)23.江西二套“谁是赢家”二七王比赛中,节目要统计4位选手的短信支持率,第一次公布4位选手的短信支持率情况如图1,一段时间后,第二次公布4 位选手的短信支持率,情况如图2,第二次公布短信支持率时,每位选手的短信支持条数均有增加,且每位选手增加的短信支持条数相同.图1图2(1)比较图1,图2的变化情况,写出2条结论;(2)设第一次4位短信支持总条数为a与第二次4位短信支持总条数b,写出a、b之间的等式关系,并证明这个等式关系.(3)若第三次公布4 位选手的短信支持率情况时,1、2、3 号选手没有增加短信支持,而4号选手增加短信支持30 条,因此高于1号的短信支持率但仍低于3号的短信支持率,求第一次4位选手短信支持总条数a的取值范围.参考答案1. A.2. B.3. B.4. D.5. D.6. C.7. D.8. B.9. 116;10.0<m<2;11.c>7;12.0.6x-3;13最新七年级下册数学期末考试试题【含答案】一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下列图中不具有稳定性的是( )2.若m >n ,则下列不等式正确的是( )A .m -2<n -2 B. 3m <3n C .m 4>n 4 D .-5m >-5n3.一个多边形的每个内角都等于144°,那么这个多边形的内角和为( )A .1980° B.1800° C. 1620° D.1440°4.某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是()A .第一天B .第二天C .第三天D .第四天5.若关于x 的一元一次不等式组213(2),x x x m +>-⎧⎨<⎩的解是x <7,则m 的取值范围是( )A .m ≤7B .m <7C .m ≥7D .m >76.对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.4]=1.若x 253+⎡⎤=⎢⎥⎣⎦,则x 的取值范围是( )A .x ≥13B .x ≤16C .13≤x <16D .13<x ≤16二、填空题(本大题共6小题,每小题3分,共18分)7.如图,把一副三角板如图所示拼在一起,那么图中∠ABF 的度数是 °.8.如图,正方形MNOK 和正六边形ABCDEF 的边长相等,边OK 与边AB 重合.将正方形在正六边形内绕点B 顺时针旋转,使边KM 与边BC 重合,则KM 旋转的度数是 °.9.如图,在△ABC 中,已知D ,E ,F 分别为边BC ,AD ,CE 的中点,且S △ABC =8cm2,则阴影部分的面积为 cm 2.10.某商家花费855元购进某种水果90千克,销售中有5%的水果损耗,为确保不亏本,售价至少应定为 元/千克.11.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,则m 的取值范围是 .12.我们规定:满足(1)各边互不相等且均为整数;(2)最短边上的高与最长边上的高的比值为整数k,这样的三角形称为“比高三角形”,其中k 叫做“比高系数”.那么周长为13的三角形的“比高系数”k= .三.(本大题共5小题,每小题6分,共30分)13.解不等式(组),并将它的解集在数轴上表示出来.(1)354173x x -+-<; (2) 3(2)4,211.52x x x x -->⎧⎪-+⎨⎪⎩≤14.如图是小明根据全班同学喜爱四类电视节目的人数而绘制的两幅不完整的统计图.请根据图中的信息,求出喜爱“体育”节目的人数.第8题图第7题图第4题图。