相互独立事件
- 格式:ppt
- 大小:566.50 KB
- 文档页数:10
第3讲相互独立事件1.对于事件A ,B ,若A 的发生与B 的发生互不影响,则称A ,B 是相互独立事件.2.若A 与B 相互独立,则()()()()()()()||P B A P B P AB P B A P A P A P B ===,.3.若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立.4.若()()()P AB P A P B =,则A 与B 相互独立.【温馨提示】①A B ,中至少有一个发生的事件为A ∪B ;②A B ,都发生的事件为AB ;③A B ,都不发生的事件为AB ;④A B ,恰有一个发生的事件为AB AB ;⑤A B ,至多有一个发生的事件为AB AB AB .【套路修炼】考向一独立重复事件【例1】某小区停车场的收费标准为:每车每次停车的时间不超过2小时免费,超过2小时的部分每小时收费1元(不足1小时的部分按1小时计算).现有甲、乙两人独立来该停车场停车(各停车一次),且两人停车时间均不超过5小时.设甲、乙两人停车时间(小时)与取车概率如下表所示.(1)求甲、乙两人所付停车费相同的概率;(2)设甲、乙两人所付停车费之和为随机变量ξ,求ξ的概率分布与均值E (ξ).【答案】(1)29(2)见解析【解析】(1)由题意,得12+3x =1,所以x =16.16+13+y =1,所以y =12.记甲、乙两人所付停车费相同为事件A ,则P (A )=12×16+16×13+16×12=29.所以甲、乙两人所付停车费相同的概率为29.(2)ξ可能取的值为0,1,2,3,4,5,P (ξ=0)=112,P (ξ=1)=12×13+16×16=736,P (ξ=2)=16×16+16×13+12×12=13,P (ξ=3)=16×16+16×13+16×12=16,P (ξ=4)=16×12+16×13=536,P (ξ=5)=16×12=112.所以ξ的概率分布为ξ012345P1127361316536112所以E (ξ)=0×112+1×736+2×13+3×16+4×536+5×112=73.【套路总结】求相互独立事件同时发生的概率(1)首先判断几个事件的发生是否相互独立.(2)求相互独立事件同时发生的概率的方法【举一反三】1.为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时.(1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的概率分布与均值E (ξ),方差V (ξ).【答案】见解析【解析】(1)两人所付费用相同,相同的费用可能为0,40,80元,甲、乙两人2小时以上且不超过31-14-=14,1-16-=16.两人都付0元的概率为P 1=14×16=124,两人都付40元的概率为P 2=12×23=13,两人都付80元的概率为P 3=14×16=124,则两人所付费用相同的概率为P =P 1+P 2+P 3=124+13+124=512.(2)设甲、乙所付费用之和为ξ,ξ的可能取值为0,40,80,120,160,则P (ξ=0)=14×16=124,P (ξ=40)=14×23+12×16=14,P (ξ=80)=14×16+12×23+14×16=512,P (ξ=120)=12×16+14×23=14,P (ξ=160)=14×16=124.所以ξ的概率分布为ξ04080120160P1241451214124E (ξ)=0×124+40×14+80×512+120×14+160×124=80.V (ξ)=(0-80)2×124+(40-80)2×14+(80-80)2×512+(120-80)2×14+(160-80)2×124=40003.2.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的概率分布和均值;(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.【答案】见解析【解析】(1)随机变量X 的所有可能取值为0,1,2,3,P (X =14,P (X =1)=12××13××14=1124,P (X ×13×14+12××14+12×13×=14,P (X =3)=12×13×14=124.所以随机变量X 的概率分布为X 0123P14112414124E (X )=0×14+1×1124+2×14+3×124=1312.(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0)=P (Y =0)P (Z =1)+P (Y =1)P (Z =0)=14×1124+1124×14=1148.所以这2辆车共遇到1个红灯的概率为1148.考向二均值与方差在决策中的应用【例2】计划在某水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的入流量相互独立.(1)求未来4年中,至多有1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系:年入流量X 40<X <8080≤X ≤120X >120发电机最多可运行台数123若某台发电机运行,则该台发电机年利润为5000万元;若某台发电机未运行,则该台发电机年亏损800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?【答案】见解析【解析】(1)由题意,得p 1=P (40<X <80)=1050=0.2,p 2=P (80≤X ≤120)=3550=0.7,p 3=P (X >120)=550=0.1.由二项分布可知,在未来4年中,至多有1年的年入流量超过120的概率为p =C 04(1-p 3)4+C 14(1-p 3)3p 3×110=0.9477.(2)记水电站年总利润为Y (单位:万元).①安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y =5000,E (Y )=5000×1=5000.②安装2台发电机的情形.依题意,当40<X <80时,一台发电机运行,此时Y =5000-800=4200,因此P (Y =4200)=P (40<X <80)=p 1=0.2;当X ≥80时,两台发电机运行,此时Y =5000×2=10000,因此P (Y =10000)=P (X ≥80)=p 2+p 3=0.8.由此得Y 的概率分布为Y 420010000P0.20.8所以,E (Y )=4200×0.2+10000×0.8=8840.③安装3台发电机的情形.依题意,当40<X <80时,一台发电机运行,此时Y =5000-1600=3400,因此P (Y =3400)=P (40<X <80)=p 1=0.2;当80≤X ≤120时,两台发电机运行,此时Y =5000×2-800=9200,因此P (Y =9200)=P (80≤X ≤120)=p 2=0.7;当X >120时,三台发电机运行,此时Y =5000×3=15000,因此P (Y =15000)=P (X >120)=p 3=0.1,由此得Y 的概率分布为Y 3400920015000P0.20.70.1所以,E (Y )=3400×0.2+9200×0.7+15000×0.1=8620.综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.【套路总结】随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量稳定于均值的程度,它们从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要理论依据.一般先比较均值,若均值相同,再用方差来决定.【举一反三】1.某投资公司在2018年年初准备将1000万元投资到“低碳”项目上,现有两个项目供选择:项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为79和29;项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能损失30%,也可能不赔不赚,且这三种情况发生的概率分别为35,13和115.针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.【答案】见解析【解析】若按“项目一”投资,设获利为X 1万元,则X 1的概率分布为X 1300-150P7929∴E (X 1)=300×79+(-150)×29=200.若按“项目二”投资,设获利为X 2万元,则X 2的概率分布为X 2500-3000P3513115∴E (X 2)=500×35+(-300)×13+0×115=200.V (X 1)=(300-200)2×79+(-150-200)2×29=35000,V (X 2)=(500-200)2×35+(-300-200)2×13+(0-200)2×115=140000.∴E (X 1)=E (X 2),V (X 1)<V (X 2),这说明虽然项目一、项目二获利相等,但项目一更稳妥.综上所述,建议该投资公司选择项目一投资.2.为回馈顾客,某商场拟通过模拟兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的概率分布及均值;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.【答案】见解析【解析】(1)设顾客所获的奖励额为X .①由题意,得P (X =60)=C 11C 13C 24=12,即顾客所获的奖励额为60元的概率为12.②由题意,得X 的所有可能取值为20,60.P (X =60)=12,P (X =20)=C 23C 24=12,故X 的概率分布为X 2060P1212所以顾客所获的奖励额的均值为E (X )=20×12+60×12=40.(2)根据商场的预算,每个顾客的平均奖励额为60元,所以,先寻找均值为60的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以均值不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以均值也不可能为60元;因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析.对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X 1,则X 1的概率分布为X 12060100P162316X 1的均值为E (X 1)=20×16+60×23+100×16=60,X 1的方差为V (X 1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=16003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X 2,则X 2的概率分布为X 2406080P162316X 2的均值为E (X 2)=40×16+60×23+80×16=60,X 2的方差为V (X 2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的均值都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.【套路运用】1.现有甲、乙、丙三名学生参加某大学的自主招生考试,考试分两轮,第一轮笔试,第二轮面试,只有第一轮笔试通过才有资格进入第二轮面试,面试通过就可以在高考录取中获得该校的优惠加分,两轮考试相互独立.根据以往多次的模拟测试,甲、乙、丙三名学生能通过笔试的概率分别为0.4,0.8,0.5,能通过面试的概率分别为0.8,0.4,0.64.根据这些数据我们可以预测:(1)甲、乙、丙三名学生中至少有两名学生通过第一轮笔试的概率;(2)甲、乙、丙三名学生能获得该校优惠加分的人数的数学期望.【答案】(1)0.6(2)0.96【解析】(1)记事件:甲通过第一轮笔试,事件:乙通过第一轮笔试,事件:丙通过第一轮笔试,事件:至少有两名学生通过第一轮笔试,则,,.,,,所以至少有两名学生通过第一轮笔试的概率为。
相互独立事件的概念在概率论与统计学中,相互独立事件是指两个或多个事件之间没有相互影响的情况。
换句话说,一个事件的发生与其他事件的发生没有关联。
相互独立事件的概念对于计算概率和进行统计分析非常重要。
相互独立事件的定义可以通过以下方式表示:假设有两个事件A和B,如果事件A的发生与事件B的发生无关,即事件A的发生与B的发生概率之间没有关联性,那么事件A和B就是相互独立的。
这可以用数学表示为:P(A∩B) = P(A) *P(B)。
在相互独立事件的情况下,事件A的发生不会对事件B的发生产生任何影响,反之亦然。
这意味着知道事件A发生的概率并不能提供有关事件B发生的任何信息,以及知道事件B发生的概率不能提供有关事件A发生的任何信息。
相互独立事件可以被看作是完全独立的事件。
这个概念在实际生活中有很多应用。
例如,在投掷一枚硬币和一颗骰子的情况下,投掷硬币出现正面的事件A和骰子出现1点的事件B是相互独立的。
因为硬币的结果不会影响骰子的结果,反之亦然。
因此,投掷硬币出现正面和骰子出现1点的联合概率等于投掷硬币出现正面的概率乘以骰子出现1点的概率。
在统计学中,相互独立事件的概念对于计算组合概率和联合概率非常有用。
计算相互独立事件的概率可以简单地将事件的概率相乘。
例如,对于两个相互独立的事件A和B,它们的交集概率可以通过将事件A的概率乘以事件B的概率来计算。
这可以表示为P(A∩B) = P(A) * P(B)。
此外,相互独立事件还有一个重要的性质,即它们的互补事件也是相互独立的。
互补事件是指某事件不发生的情况。
如果事件A和B是相互独立的,那么它们的互补事件A'和B'也是相互独立的。
这个性质可以通过概率的定义和相互独立事件的定义推导得出。
总结起来,相互独立事件是指两个或多个事件之间没有相互影响的情况。
在相互独立事件中,一个事件的发生与其他事件的发生无关。
相互独立事件的概率可以简单地通过将事件的概率相乘来计算。
高二数学相互独立事件同时发生的概率知识精讲 人教版【基础知识精讲】1.相互独立事件与事件的积事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件.设A 、B 是两个事件,那么A ·B 表示这样一个事件,它的发生表示A 与B 同时发生,它可以推广到有限多个事件的积.2.相互独立事件发生的概率两个相互独立事件同时发生的概率,等于每个事件发生的概率的积. P(A ·B)=P(A)·P(B) (1)证明:设甲试验共有N 1种等可能的不同结果,其中属于A 发生的结果有m 1种,乙试验共有N 2种等可能的不同结果,其中属于B 发生的结果有m 2种,由于事件A 与B 相互独立,N 1,m 1与N 2,m 2之间是相互没有影响的,那么,甲、乙两试验的结果搭配在一起,总共有N 1·N 2种不同的搭配,显然这些搭配都是具有等可能性的.另外,考察属于事件AB 的试验结果,显然,凡属于A 的任何一种试验的结果同属于B 的任何一种乙试验的结果的搭配,都表示A 与B 同时发生,即属于事件AB ,这种结果总共有m 1·m 2种.因此得:P(AB)=2121N N m m ⋅⋅=11N m ·22N m∴ P(AB)=P(A)P(B)这个公式进一步推广:P(A 1A 2……A n )=P(A 1)P(A 2)…P(A n )即:如果事件A 1,A 2,…,A n 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积.值得注意的是:①事件A 与B(不一定互斥)中至少有一个发生的概率可按下式计算: P(A+B)=P(A)+P(B)-P(AB)特别地,当事件A 与B 互斥时,P(AB)=0,于是上式变为 P(A+B)=P(A)+P(B)②事件间的“互斥”与“相互独立”是两个不同的概念,两事件互斥是指两个事件不可能同时发生,两事件相互独立是指一个事件的发生与否对另一事件发生的概率没有影响.3.独立重复试验.独立重复试验,又叫贝努里试验,是在同样的条件下重复地,各次之间相互独立地进行的一种试验.在这种试验中,每一次试验只有两种结果,即某种事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的.一般地,如果在一次试验中某件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生K 次的概率P n (k)=k P k (1-P)n-kP n (k)=k P k (1-p)n-k 可以看成二项式[(1-p)+p ]n展开式中的第k+1项.【重点难点解析】本节的重点是相互独立事件的概念乘法公式,理解并掌握n 次独立重复试验中事件A发生k次的概率公式.难点是n次独立重复试验中事件A发生k次的概率的求法.例1甲、乙两人独立地解同一个问题,甲解决这个问题的概率为P1,乙解决这个问题的概率为P2,那么两人都没能解决这个问题的概率是( )A.2-P1-P2B.1-P1P2C.1-P1-P2+P1P2D.1-(1-P1)(1-P2)E⋃,而解法一:记甲解决成功为E,乙解决成功为F,则两个均未成功为事件FE⋃)=1-P(E∪F)=1-[P(E)+P(F)-P(EF)],由于E、F独立,故P(EF)=P(E)P(F),P(FE⋃)=1-P1-P2+P1P2.故选C.这样,P(F解法二:记号同解法一,所求事件为EF,由于E与F独立,故P(EF)=P(E)·P(F)=(1-P1)(1-P2)=1-P1+P2+P1P2.解法三:可采用极端原则:设P1=1,P2=0,则所求概率为0,而四个选项中只有C此时值为0.故选C.例2甲、乙、丙各进行一次射击,如果甲、乙2人击中目标的概率是0.8,丙击中目标的概率是0.6,计算:(1)3人都击中目标的概率;(2)至少有2人击中目标的概率;(3)其中恰有1人击中目标的概率.解 (1)记“甲、乙、丙各射击一次,击中目标”分别为事件A、B、C彼此独立,三人都击中目标就是事件A·B·C发生,根据相互独立事件的概率乘法公式得:P(A·B·C)=P(A)·P(B)·P(C)=0.8×0.8×0.6=0.384(2)至少有2人击中目标包括两种情况:一种是恰有2人击中,另一种是3人都击中,其中恰有2人击中,又有3种情形,即事件A·B·C,A·B·C,A·B·C分别发生,而这3种事件又互斥,故所求的概率是P(A·B·C)+P(A·B·C)+P(A·B·C)+P(A·B·C)=P(A)P(B)·P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=0.8×0.8×0.4+0.8×0.2×0.6+0.2×0.8×0.6+0.8×0.8×0.6=0.832(3)恰有1人击中目标有3种情况,即事件A·B·C,A·B·C,A·B·C,且事件分别互斥,故所求的概率是P(A·B·C)+P(A·B·C)+P(A·B·C)=P(A)·P(B)·P(C)+P(A)·P(B)+P(C)+P(A)·P(B)·P(C)=0.8×0.2×0.4+0.2×0.8×0.4+0.2×0.2×0.6=0.152.答:3人都击中目标的概率是0.384;至少2人击中目标的概率是0.832;恰有1人击中目标的概念是0.152.说明题(3)还可用逆向思考,先求出3人都未击中的概率是0.016,再用1-0.832-0.016可得.例3甲、乙两人各投篮3次,每次投中得分的概率分别为0.6和0.7,求(1)甲、乙得分相同的概率;(2)甲得分比乙多的概率.解 (1)分别令3次投篮中甲投中0次、1次、2次、3次为事件A 0,A 1,A 2,A 3;乙恰投中0次,1次,2次,3次为事件B 0,B 1,B 2,B 3,当且仅当他们投中次数相同时得分才相同,设得分相同为事件D.那么D =A 0B 0+A 1B 1+A 2B 2+A 3B 3所以P(D)=P(A 0B 0)+P(A 1B 1)+P(A 2B 2)+P(A 3B 3)=(1-0.6)3(1-0.7)3+C 31×0.6×(1-0.6)2×C 31×0.7×(1-0.7)2+C 32×0.62×(1-0.6)C 32×0.72×(1-0.7)+0.63×0.73=0.321(2)设“甲得分比乙多”为事件E ,当且仅当甲投中次数比乙多,事件E 发生,所以E =A 1B 0+A 2B 0+A 3B 0+A 2B 1+A 3B 1+A 3B 2利用公式可求得P(E)=0.243例4 工人看管3台机床,在1小时内,3台机床正常工作(不需要照顾)的概率分别是0.9,0.8,0.85,求在任一小时内.(1)3台机床都不需要照顾的概率.(2)3台机床中至少有一台不需要工人照顾的概率. 解 (1)可以认为机床的工作是相互独立的.设A 1,A 2,A 3分别表示第1、2、3台机床不需要工人照顾,则P(A 1A 2A 3)=P(A 1)P(A 2)P(A 3)=0.9×0.8×0.85=0.612.即3台机床都不需要工人照顾的概率为0.612.(2)“3台机床中至少有一名不需要照顾”与“3台都需要工人照顾”是对立事件,即A 1+A 2+A 3与1A 、2A 、3A 是对立事件,所以P(A 1+A 2+A 3)=1-P(321A A A ++) =1-P(321A A A ) =1-P(1A )P(2A )P(3A )=1-(1-0.9)(1-0.8)(1-0.85) =0.997即3名机床中至少有一台不需要照顾的概率为0.997.【难题巧解点拨】例1 有10台同样的机器,每台机器的故障率为0.03,各台机器独立工作,今配有2名维修工人,一般情况下,一台机器故障1个人维修即可,问机器故障无人修的概率是多少?解 A 表示机器故障无人修的事件,A 表示机器故障多不超过2,则P(A )=C 100(0.97)10+C 101(0.97)9(0.03)+C 103(0.97)8(0.03)2=0.9972P(A)=1-P(A )=0.0028.说明 出现故障的机器数大于2时即为机器故障无人修的情况,因为正向思考需考虑8种情况,所以应用逆向思考的方法.例2 设在一袋子内装有5只白球和5只黑球,从袋子内任取5次,每次取一只,每次取出的球又立即放回袋中,求这5次取球中(结果保留两个有效数字)①取得白球3次的概率②至少有一次取得白球的概率解 本题考查事件在n 次独立重复实验中恰好发生k 次的概率.设取得一次白球的事件为A ,A 在一次试验中发生的概率P =0.5,所以取得白球3次的概率即A 在5次独立实验中恰好发生3次的概率.C 530.53(1-0.5)5.3=0.3125≈0.31至少有一次取得的白球的概率为1-C 500.50(1-0.5)5=0.96875≈0.97例3 每周甲去某地的概率是41,乙去某地的概率是51,假定两人的行动之间没有影响,分别求下列事件发生的概率:(1)一周内甲、乙同去某地的概率;(2)一月内(以四周计)甲去某地的概率.解 (1)P =P(AB)=P(A)·P(B)=41×51=201 (2)P =1-C 40(1-41)4(41)0=1-(43)4=256175评析:(1)为相互独立事件同时发生;(2)为n 次独立重复实验恰好发生k 次的事件,也可由P =C 41(41)1(43)3+C 42(41)2(43)2+C 43(41)3(43)+C 44(41)4(43)0求解.【课本难题解答】有甲、乙、丙三批罐头,每100个,共中各1个是不合格的,从三批罐头中各抽出1个,计算:(1)3个中恰有一个不合格的概率; (2)3个中至少有1个不合格的概率.解 (1)P 1=P(A ·B ·C)+P(A ·B ·C)+P(A ·B ·C )=P(A )·P(B)·P(C)+P(A)·P(B )·P(C)+P(A)·P(B)·P(C )=3×(0.01×0.992)≈0.03或者P 1=C 31×0.01×(1-0.01)2=3×0.01×0.992≈0.03(2)1-0.993≈0.03【命题趋势分析】本节主要了解互斥事件与相互独立事件的意义:会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率;了解独立重复试验,会计算事件在n 次独立重复试验中恰好发生k 次的概率.【典型热点考题】例1 将一枚硬币连掷4次,出现“2个正面,2个反面”的概率是( )A.21 B.83 C.52D.1解 掷一枚硬币一次看作一次试验,出现上面事件为A ,则P(A)=21,而连掷4次可看作4次独立重复实验,所求问题即为4次独立重复试验中事件A 恰好发生2次的概率是多少,根据n 次独立重复试验中事件A 发生k 次的概率公式P n (k)=k P k (1-P)n-k得到:P 4(2)=C 42·(21)2·(21)2=83∴应选B.例2 生产某种产品出现次品的概率为2%,生产这种产品4件,至多一件次品的概率为( )A.1-(98%)4B.(98%)4+(98%)3·2%C.(98%)4D.(98%)4+C 41(98%)3·2%解 生产一件产品看作一次试验,产品为次品,记作事件A ,则所求问题就是4次独立重复试验中事件A 发生一次或不发生的概率.由公式 P n (k)=k P k (1-p)n-k.得:P =C 40(2%)·(1-2%)4+C 41(2%)(1-2%)3=(98%)4+C 41(98%)3·2% ∴应选D.本周强化练习: 【同步达纲练习】一、选择题1.若事件P 与Q 独立,则P 与Q ;P 与Q ;P 与Q 相互独立的对数是( ) A.0 B.1 C.2 D.32.下列正确的说法是( ) A.互斥事件是独立事件 B.独立事件是互斥事件C.两个非不可能事件不能同时互斥与独立D.若事件A 与事件B 互斥,则A 与B 独立.3.一个均匀的正四体,第一面是红色,第二面是白色,第三面是黑色,而第四面同时有红、白、黑三种颜色,P 、Q 、R 表示投掷一次四面体接触桌面为红、白、黑颜色事件.则下列结论正确的是( )A.P 、Q 、R 不相互独立B.P 、Q 、R 两两独立C.P 、Q 、R 不会同时发生D.P 、Q 、R 的概率是314.一个口袋中装有3个白球和3个黑球,独立事件是( ) A.第一次摸出是白球与第一次摸出是黑球B.摸出后不放回.第一次摸的是白球,第二次摸的是黑球C.摸出后放回,第一次摸的是白球,第二次摸的是黑球D.一次摸两个球,第一次摸出颜色相同的球与第一次摸出颜色不同的球5.某产品合格率为0.9,下列事件可看作独立重复试验( ) A.一次抽3件,都是合格品 B.一次抽3件,只有2件合格品 C.抽后放回,连续抽三次都是次品D.抽出后,合格品就不放回,是次品就放回,连续抽三次,三次都是合格品6.一批产品100件,其中5件是次品,从中任取三件,恰有一件是次品的概率是( ) A.C 31·0.05·(1-0.05)2B.51C.1005×3D.310025.915C C C7.推毁敌人一个工事,要命中三发炮弹才行,我炮兵射击的命中率是0.8.为了95%的把握摧毁工事,需要发射炮弹的个数是( )A.6B.5C.4D.38.甲、乙两人独立答题,甲能解出的概率为P ,乙不能解出的概率为q ,那么两人都能解出此题的概率是( )A.pqB.p(1-q)C.(1-p)(1-q)D.1-(1-p)(1-q)9.一批产品共有100个,次品率3%,从中任取3个恰有1个次品的概率是( )A.C 310.03(1-0.03)2B.C 31(0.03)2(1-0.03)C.C 31(0.03)3D.310019713C C C10.10颗骰子同时掷出,共掷5次,则至少有一次全部出现一个点的概率是( )A.[1-(65)10]5B.[1-(65)5]10C.1-[1-(61)10]5D.1-[1-(65)5]10二、填空题1.两雷达独立工作,它们发现飞行目标的概率分别是0.9和0.8,则有且仅有1名雷达发现飞行物的概率为.2.一个工人看管10部机器,在某段时间里一部机器需要人照看的概率为31,则在这段时间内,有四部机器需要照看的概率是.3.100个大小一样的球,其中红球90个,白球10个,现从中任取10个球.(1)若取后放回去,连续10个都是红球的概率=;(2)若取后不放回,连续取10个都是红球的概率=.4.每次射击打中目标的概率为0.2,如果射击6次,则至少打中两次的概率=.5.某工人出废品的概率是0.2,则4天中仅有1天出废品的概率=.6.一批棉花中任抽一纤维,长度小于45厘米的概率是0.75,则任抽3根纤维,两根小于45厘米,一根不小于45厘米的概率是.7.盒中有7个白球和3个黑球,从中连续取两次,两次都是白球.(1)如第一个取出后不放回,再取第二个,此时概率为;(2)如第一个球取出后放回,然后再取第二个,此时概率为.8.某气象局预报天气情况的准确率为0.9,那么一周内有五天准确的概率为.三、解答题1.两位乒乓球运动员水平相当,甲四次中胜乙三次的概率与甲八次中胜乙五次的概率哪种大?2.三位同龄工人参加人寿保险,在一年中,每人的死亡率都是0.01,年初交10元保险金,如一年内死亡,则发给家属100元.(1)一年中,保险公司亏本的概率?(2)保险公司一年中要付出200元的概率是多少?3.两个抽屉,各存放五个零件,使用时从任一抽屉中取一个,问过一段时间后第一个抽屉已用完,第二个抽屉还剩2个的概率?【素质优化训练】1.某厂正常用水(一天内用水在额定量之内)的概率为43,求在六天内至少四天用水正常的概率.2.一盒中装有20个弹子球,其中10个红球,6个白球,4个黄球,一小孩随手拿出4个,求至少有3个红球的概率.3.甲、乙两人进行五打三胜制的象棋赛,若甲每盘胜率为53,乙每盘胜率为52(和棋不算),求:(1)比赛以甲比乙为3比0胜出的概率? (2)比赛以甲比乙为3比2胜出的概率?(3)比赛以乙比甲为3比1胜出的概率?4.现有一题面向全班50名同学征求解答,假定每人独立解出此题的概率为0.1,问此题能否在该班独立被解答的概率达95%?5.某人在车站上等车,可坐任何车回家,已知半小时内电车到站的概率为21,公交车到站的概率为41,计算此人十分钟内能乘回家的概率.【生活实际运用】船队要对下月是否出海作出决策,若出海后是好天,可得收益5000元;若出海后天气变坏,将要损失2000元;若不出海,无论天气好坏都要承担1000元的损失费.据预测下月好天气的概率是0.6,坏天气的概率是0.4,问应如何作出决策?解 因为天气好坏是不确定因素,因此作决策时存在一定的风险,我们不能保证所作的决策一定会取得最好的效益,但必须使效益的期望值是最高的.要作出是否出海的决策,其主要依据是效益的高低,根据题意,不出海的效益是-1000元,而出海的效益要视天气而定,有60%的概率获5000元的收益,有40%的概率获-2000元的收益,故可求得出海效益的期望值.E =5000×60%+(-2000)×40% =2200(元).显然高于不出海的收益-1000元.故选择出海.【知识验证实验】证明“五局三胜”制(即比赛五局,先胜三局者为优胜者)是公平的比赛制度,即如果比赛双方赢得每局是等可能的,各局比赛是独立进行的,则双方获胜的概率相同.证 将每一局比赛看作一次试验,考察一方,如甲方胜或负(即乙方负或胜),问题归结为n =5的贝努里试验.设A 表示一局比赛中“甲获胜”事件,由题意,P(A)=21,记B k 为“五局比赛中甲胜k 局”事件,k =0、1、2、3、4、5.则P(“甲获胜”)=P(B 3∪B 4∪B 5).则利用概率的加法公式,注意到C 5k =C 55-k即得 P(“甲获胜”)=P(B 3)+P(B 4)+P(B 5)=C 53(21)5+C 54(21)5+C 55(21)5=21. 而P(“乙获胜”)=P(“甲获胜”)=1-21=21.【知识探究学习】从某鱼池中捕得1200条鱼,做了红色记号之后再放回池中,经过适当的时间后,再从池中捕1000条鱼,计算其中有红色记号的鱼的数目,共有100条,试估计鱼池中共有多少条鱼.解 依次捕鱼的情况有r 个结果,因是有放回地捕鱼,所以每次捕得都有n 种可能,共有n r 个结果,其中有记号的鱼出现k 次的基本事件数目为C r k n 1r (n-n 1)r-k,那么概率为P k (n)=r(n n 1)k (1-nn 1)r-k. 为了求P k (n)的最大值时的n ,我们设x =nn 1,考察函数f(x)=x k (1-x)r-k,x ∈(0,1). 而f(x)=kk r k r k )(1--[(r-k)x ]k [k(1-x)]r-k≤kk r k r k )(1--{[∑=-k i k r 1)(x+∑-=-kr i x k 1)1(]/k+(r-k)}k+(r-k)=k k-r(r-k)-k[rx k k r x k r k )1()()(--+-]k+r-k=rk r k rk r k --)(. 当且仅当(r-k)x =k(1-x),即x =r k 时,上式等号成立,即rk=x 时,f(x)达到最大.于是^n =[k r n 1]时,P k (n)达到最大值,这样我们把[k rn 1]作为鱼池中鱼数n 的估计量.在题中^n =10010001200⨯=12000(条).[参考答案]【同步达纲练习】一、1.D 2.C 3.A 4.C 5.C 6.D 7.A 8.B 9.D 10.C二、1.P(A ·B)+P(A ·B )=0.26 2.0.227 3.0.349,0.330 4.0.34 5.0.410 6.0.422 7.(1)157 (2)0.49 8.C 75·0.95·0.12三、1.C 43·(21)3·21=41.C 85(21)5(21)3=327,前者概率大于后者2.(1)1-(1-0.01)3=0.0297 (2)C 32·(0.01)2·0.99=0.0002973.C 85·0.55(1-0.5)3=327 【素质优化训练】 1.C 64(43)4(41)2+C 65(43)5·(41)+C 66(43)6=0.83 2.P =420410110310C C C C =32322 3.(1)P =(53)3=12527 (2)P =C 53(53)3(52)2=625216 (3)P =C 43(52)3(53)1=62596 4.P =1-0.950=0.995>0.95. 故能够. 5.P =21×41+21×(1-41)+(1-21)×41=85或者P =21+41-21×41=85.。
事件的相互独立性高中数学 1.在具体情境中,了解两个事件相互独立的概念.2.能利用相互独立事件同时发生的概率公式解决一些简单的实际问题.导语 我们知道,积事件AB 就是事件A 与事件B 同时发生.因此,积事件AB 发生的概率一定与事件A ,B 发生的概率有关.那么,这种关系会是怎样的呢?一、相互独立事件的概念问题1 分别抛掷两枚质地均匀的硬币,A =“第一枚硬币正面朝上”,B =“第二枚硬币反面朝上”.计算P (A ),P (B ),P (AB ),你有什么发现?提示 用1表示硬币“正面朝上”,用0表示硬币“反面朝上”,则样本空间为Ω={(1,1),(1,0),(0,1),(0,0)},包含4个等可能的样本点.而A ={(1,1),(1,0)},B ={(1,0),(0,0)},所以AB ={(1,0)}.由古典概型概率公式,得P (A )=P (B )=,P (AB )=.1214于是P (AB )=P (A )P (B ).知识梳理 如果P (AB )=P (A )P (B )成立,则称事件A 与事件B 相互独立.例1 判断下列事件是否为相互独立事件.(1)甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”.(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”.解 (1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件是否发生没有影响,所以它们是相互独立事件.(2)“从8个球中任意取出1个,取出的是白球”的概率为,若这一事件发生了,则“从剩58下的7个球中任意取出1个,取出的仍是白球”的概率为;若前一事件没有发生,则后一47事件发生的概率为,可见,前一事件是否发生,对后一事件发生的概率有影响,所以二者57不是相互独立事件.反思感悟 两个事件是否相互独立的判断(1)直接法:由事件本身的性质直接判定两个事件发生是否相互影响.(2)公式法:若P(AB)=P(A)·P(B),则事件A,B为相互独立事件.跟踪训练1 分别抛掷两枚质地均匀的硬币,设事件A是“第一枚为正面”,事件B是“第二枚为正面”,事件C是“两枚结果相同”,则下列事件具有相互独立性的是________.(填序号)①A,B;②A,C;③B,C.答案 ①②③解析 根据事件相互独立性的定义判断,只要P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C)成立即可.利用古典概型概率公式计算可得P(A)=0.5,P(B)=0.5,P(C)=0.5,P(AB)=0.25,P(AC)=0.25,P(BC)=0.25.可以验证P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C).所以根据事件相互独立的定义,事件A与B相互独立,事件B与C相互独立,事件A与C 相互独立.二、相互独立事件的性质问题2 互为对立的两个事件是非常特殊的一种事件关系.如果事件A与事件B相互独立,B A那么它们的对立事件是否也相互独立?以有放回摸球试验为例,分别验证A与,与B,A B与是否独立,你有什么发现?B B B B提示 对于A与,因为A=AB∪A,而且AB与A互斥,所以P(A)=P(AB∪A)=P(AB)B B B B+P(A)=P(A)P(B)+P(A),所以P(A)=P(A)-P(A)P(B)=P(A)[1-P(B)]=P(A)P().由事B A A B件的独立性定义,知A与相互独立.类似地,可以证明事件与B,与相互独立.知识梳理 B A A B1.如果事件A与事件B相互独立,那么A与,与B,与也都相互独立.2.一般地,如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的乘积.例2 一袋中装有5只白球,3只黄球,在有放回地摸球中,用A1表示第一次摸得白球,A2A表示第二次摸得白球,则事件A1与2是( )A.相互独立事件B.不相互独立事件C.互斥事件D.对立事件答案 AA A解析 由题意可得2表示“第二次摸到的不是白球”,即2表示“第二次摸到的是黄球”,A由于采用有放回地摸球,故每次是否摸到黄球或白球互不影响,故事件A1与2是相互独立事件.反思感悟 互斥事件与相互独立事件都描述了两个事件间的关系,但互斥事件强调不可能同时发生,相互独立事件则强调一个事件的发生与否对另一个事件发生的概率没有影响;互斥的两个事件可以相互独立,相互独立的两个事件也可以互斥.跟踪训练2 若P (AB )=,P ()=,P (B )=,则事件A 与B 的关系是( )19A 2313A .事件A 与B 互斥B .事件A 与B 对立C .事件A 与B 相互独立D .事件A 与B 既互斥又相互独立答案 C解析 因为P ()=,所以P (A )=,又P (B )=,P (AB )=,所以有P (AB )=P (A )P (B ),所A 23131319以事件A 与B 相互独立但不一定互斥.三、相互独立事件概率的计算例3 根据资料统计,某地车主购买甲种保险的概率为0.5,购买乙种保险的概率为0.6,购买甲、乙保险相互独立,各车主间相互独立.(1)求一位车主同时购买甲、乙两种保险的概率;(2)求一位车主购买乙种保险但不购买甲种保险的概率.解 记A 表示事件“购买甲种保险”,B 表示事件“购买乙种保险”,则由题意得A 与B ,A 与,与B ,与都是相互独立事件,且P (A )=0.5,P (B )=0.6.B A B A (1)记C 表示事件“同时购买甲、乙两种保险”,则C =AB ,所以P (C )=P (AB )=P (A )·P (B )=0.5×0.6=0.3.(2)记D 表示事件“购买乙种保险但不购买甲种保险”,则D =B ,所以P (D )=P (B )=P ()·P (B )=(1-0.5)×0.6=0.3.A A A 延伸探究 本例中车主至少购买甲、乙两种保险中的一种的概率是多少?解 记E 表示事件“至少购买甲、乙两种保险中的一种”,方法一 则事件E 包括B ,A ,AB ,且它们彼此为互斥事件.A B 所以P (E )=P (B +A +AB )=P (B )+P (A )+P (AB )=0.5×0.6+0.5×0.4+0.5×0.6=0.8.A B A B 方法二 事件“至少购买甲、乙两种保险中的一种”与事件“甲、乙两种保险都不购买”为对立事件.所以P (E )=1-P ( )=1-(1-0.5)×(1-0.6)=0.8.A B 反思感悟 (1)求相互独立事件同时发生的概率的步骤①首先确定各事件之间是相互独立的.②求出每个事件的概率,再求积.(2)使用相互独立事件同时发生的概率计算公式时,要掌握公式的适用条件,即各个事件是相互独立的.跟踪训练3 甲、乙两人破译一密码,他们能破译的概率分别为和,两人能否破译密码相1314互独立,求两人破译时,以下事件发生的概率:(1)两人都能破译的概率;(2)恰有一人能破译的概率;(3)至多有一人能破译的概率.解 记事件A 为“甲独立地破译出密码”,事件B 为“乙独立地破译出密码”.(1)两个人都破译出密码的概率为P (AB )=P (A )P (B )=×=.1314112(2)恰有一人破译出密码分为两类:甲破译出乙破译不出,乙破译出甲破译不出,即A +B ,B A ∴P (A +B )=P (A )+P (B )B A B A =P (A )P ()+P ()P (B )B A =×+×=.13(1-14)(1-13)14512(3)至多有一人破译出密码的对立事件是两人都破译出密码,∴其概率为1-P (AB )=1-=.11211121.知识清单:(1)相互独立事件的判断.(2)相互独立事件概率的计算.2.方法归纳:用列举法、定义法求相互独立事件的概率.3.常见误区:对事件是否相互独立判断错误.1.坛子里放有3个白球,2个黑球,从中不放回地摸球,用A 1表示第1次摸到白球,A 2表示第2次摸到白球,则A 1与A 2( )A .是互斥事件 B .是相互独立事件C .是对立事件 D .不是相互独立事件答案 D解析 互斥事件和对立事件是同一次试验的两个不同时发生的事件,故选项A ,C 错.而事件A 1的发生对事件A 2发生的概率有影响,故两者不是相互独立事件.2.一个电路上装有甲、乙两根保险丝,甲熔断的概率为0.85,乙熔断的概率为0.74,甲、乙两根保险丝熔断与否相互独立,则两根保险丝都熔断的概率为( )A .1 B .0.629C .0 D .0.74或0.85答案 B解析 设“甲保险丝熔断”为事件A ,“乙保险丝熔断”为事件B ,则P (A )=0.85,P (B )=0.74,由事件A 与B 相互独立,得“两根保险丝都熔断”为事件AB ,∴P (AB )=P (A )·P (B )=0.85×0.74=0.629.3.已知甲、乙、丙3名运动员击中目标的概率分别为0.7,0.8,0.85,且3人是否击中目标相互独立.若他们3人向目标各发1枪,则目标没有被击中的概率为________.答案 0.009解析 3人向目标各发1枪,由相互独立事件的概率计算公式,得目标没有被击中的概率P =(1-0.7)×(1-0.8)×(1-0.85)=0.3×0.2×0.15=0.009.4.加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为,,,且各170169168道工序互不影响,则加工出来的零件的次品率为________.答案 370解析 加工出来的零件的正品率是××=,因此加工出来的零件的(1-170)(1-169)(1-168)6770次品率为1-=.6770370课时对点练1.掷一枚骰子一次,设事件A :“掷出偶数点”,事件B :“掷出3点或6点”,则事件A ,B 的关系是( )A .互斥但不相互独立B .相互独立但不互斥C .互斥且相互独立D .既不相互独立也不互斥答案 B解析 事件A ={2,4,6},事件B ={3,6},事件AB ={6},样本空间Ω={1,2,3,4,5,6},所以P (A )==,P (B )==,P (AB )==×,即P (AB )=P (A )P (B ),因此事件A 与B 相互独36122613161213立.当“掷出6点”时,事件A ,B 同时发生,所以A ,B 不是互斥事件.2.(多选)下列各对事件中,不是相互独立事件的有( )A .运动员甲射击一次,“射中9环”与“射中8环”B .甲、乙两运动员各射击一次,“甲射中10环”与“乙射中9环”C .甲、乙两运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标”D .甲、乙两运动员各射击一次,“至少有1人射中目标”与“甲射中目标但乙未射中目标”答案 ACD解析 在A 中,甲射击一次,“射中9环”与“射中8环”两个事件不可能同时发生,二者是互斥事件,不独立;在B 中,甲、乙各射击一次,“甲射中10环”发生与否对“乙射中9环”的概率没有影响,二者是相互独立事件;在C 中,甲、乙各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标”不可能同时发生,二者是互斥事件,不独立;在D 中,设“至少有1人射中目标”为事件A ,“甲射中目标但乙未射中目标”为事件B ,则AB =B ,因此当P (A )≠1时,P (AB )≠P (A )·P (B ),故A ,B 不独立.故选ACD.3.某射击运动员每次射击命中目标的概率都为0.9,则他连续射击两次都命中的概率是( )A .0.64 B .0.56 C .0.81 D .0.99答案 C解析 A i 表示“第i 次击中目标”,i =1,2,则P (A 1A 2)=P (A 1)P (A 2)=0.9×0.9=0.81.4.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为( )A .0.12 B .0.42 C .0.46 D .0.88答案 D解析 设“甲被录取”记为事件A ,“乙被录取”记为事件B ,则两人至少有一人被录取的概率P =1-P ()=1-[1-P (A )][1-P (B )]=1-0.4×0.3=0.88.AB 5.从甲袋中摸出1个红球的概率是,从乙袋中摸出1个红球的概率是,从两袋中各摸出13121个球,则可能是( )23A .2个球不都是红球的概率B .2个球都是红球的概率C .至少有1个红球的概率D .2个球中恰有1个红球的概率答案 C解析 记4个选项中的事件分别为A ,B ,C ,D ,则:P (A )=1-×=,131256P (B )=×=,131216P (C )=1-×=,(1-12)(1-13)23P (D )=×+×=.13(1-12)(1-13)12126.(多选)下列各对事件中,M ,N 是相互独立事件的有( )A .掷1枚质地均匀的骰子一次,事件M =“出现的点数为奇数”,事件N =“出现的点数为偶数”B .袋中有5个白球,5个黄球,除颜色外完全相同,依次不放回地摸两次,事件M =“第1次摸到白球”,事件N =“第2次摸到白球”C .分别抛掷2枚相同的硬币,事件M =“第1枚为正面”,事件N =“两枚结果相同”D .一枚硬币掷两次,事件M =“第一次为正面”,事件N =“第二次为反面”答案 CD解析 在A 中,M ,N 是互斥事件,不相互独立;在B 中,M ,N 不是相互独立事件;在C 中,P (M )=,P (N )=,P (MN )=,P (MN )=P (M )P (N ),因此M ,N 是相互独立事件;121214在D 中,第一次为正面对第二次的结果不影响,因此M ,N 是相互独立事件.7.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为,1625则该队员每次罚球的命中率为________.答案 35解析 设此队员每次罚球的命中率为P ,则1-P 2=,所以P =.1625358.两人打靶,甲中靶的概率为0.8,乙中靶的概率为0.7,若两人同时射击一目标,则它们都中靶的概率是________,它们都不中靶的概率为________.答案 0.56 0.06解析 设A=“甲中靶”,B=“乙中靶”,A与B相互独立,利用P(AB)=P(A)P(B)得P(AB)AB A B=0.8×0.7=0.56,P()=P()P()=(1-0.8)(1-0.7)=0.06.9.设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.求:(1)进入商场的1位顾客,甲、乙两种商品都购买的概率;(2)进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(3)进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率.解 记A表示事件“进入商场的1位顾客购买甲种商品”,则P(A)=0.5;记B表示事件“进入商场的1位顾客购买乙种商品”,则P(B)=0.6;记C表示事件“进入商场的1位顾客甲、乙两种商品都购买”;记D表示事件“进入商场的1位顾客购买甲、乙两种商品中的一种”;记E表示事件“进入商场的1位顾客至少购买甲、乙两种商品中的一种”.(1)易知C=AB,则P(C)=P(AB)=P(A)P(B)=0.5×0.6=0.3.B A B A B A(2)易知D=(A)∪(B),则P(D)=P(A)+P(B)=P(A)P()+P()P(B)=0.5×0.4+0.5×0.6=0.5.E AB E AB A B E(3)易知=,则P()=P()=P()P()=0.5×0.4=0.2.故P(E)=1-P()=0.8.10.为刺激消费,逐渐形成以国内大循环为主体,国内、国际双循环相互促进的新发展格局,某市给市民发放面额为100元的旅游消费券,由抽样调查预计老、中、青三类市民持有这种消费券到某旅游景点的消费额及其概率如下表:200元300元400元500元老年0.40.30.20.1中年0.30.40.20.1青年0.30.30.20.2某天恰好有持有这种消费券的老年人、中年人、青年人各一人到该旅游景点.(1)求这三人恰有两人的消费额不少于300元的概率;(2)求这三人的消费总额大于或等于1 300元的概率.解 (1)设三人中恰有两人的消费额不少于300元的概率为P1,则P1=(0.7)2×0.4+2×0.3×0.7×0.6=0.448.(2)消费总额为1 500元的概率是0.1×0.1×0.2=0.002,消费总额为1 400元的概率是(0.1)2×0.2+2×(0.2)2×0.1=0.010,消费总额为1 300元的概率是(0.1)2×0.3+0.3×0.1×0.2+0.1×0.4×0.2+0.23+2×0.22×0.1=0.033,所以消费总额大于或等于1 300元的概率是0.045.11.同时转动如图所示的两个质地均匀的转盘,记转盘甲得到的数为x ,转盘乙得到的数为y (若指针停在边界上则重新转),x ,y 构成数对(x ,y ),则所有数对(x ,y )中,满足xy =4的概率为( )A. B. C. D.1161831614答案 C解析 满足xy =4的所有可能如下:x =1,y =4;x =2,y =2;x =4,y =1.∴所求事件的概率为P =P (x =1,y =4)+P (x =2,y =2)+P (x =4,y =1)=×+×+×=.14141414141431612.设两个相互独立事件A 和B 都不发生的概率为,A 发生且B 不发生的概率与B 发生且19A 不发生的概率相同,则事件A 发生的概率P (A )等于( )A. B. C. D.291181323答案 D解析 由题意知,P ()·P ()=,A B 19P ()·P (B )=P (A )·P ().A B 设P (A )=x ,P (B )=y ,则Error!即Error!∴x 2-2x +1=,∴x -1=-,或x -1=(舍去),191313∴x =.2313.如图,已知电路中4个开关每个闭合的概率都是,且是相互独立的,则灯亮的概率为( )12A. B. C. D.31634131614答案 C解析 灯不亮包括四个开关都断开,或下边的2个都断开且上边的2个中有一个断开,这两种情况是互斥的,每一种情况中的事件是相互独立的,∴灯不亮的概率为×××+×××+×××=.121212121212121212121212316∵灯亮与不亮是对立事件,∴灯亮的概率是1-=.316131614.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出2个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为________.答案 0.128解析 由已知条件知,第2个问题答错,第3,4个问题答对,记“问题回答正确”事件为A ,则P (A )=0.8,故P =P [(A +)AA ]=[1-P (A )]·P (A )·P (A )=0.128.A A15.(多选)如图所示的电路中,5只箱子表示保险匣,设5个盒子分别被断开为事件A ,B ,C ,D ,E .箱中所示数值表示通电时保险丝被切断的概率,下列结论正确的是( )A .A ,B 两个盒子串联后畅通的概率为13B .D ,E 两个盒子并联后畅通的概率为130C .A ,B ,C 三个盒子混联后畅通的概率为56D .当开关合上时,整个电路畅通的概率为2936答案 ACD解析 由题意知,P (A )=,P (B )=,P (C )=,P (D )=,P (E )=,所以A ,B 两个盒子畅1213141516通的概率为×=,因此A 正确;D ,E 两个盒子并联后畅通的概率为1-×=1-=1223131516130,因此B 错误;A ,B ,C 三个盒子混联后畅通的概率为1-×=1-=,因此C 正确;293023141656当开关合上时,电路畅通的概率为×=,因此D 正确.293056293616.本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足一小时的部分按一小时计算).有甲、乙两人分别来该租车点租车骑游(各租一车一次),设甲、乙不超过两小时还车的概率分别为,;两小时以上且不超过三小时还车的概率分别为,;两人租14121214车时间互不影响且都不会超过四小时.(1)求甲、乙两人所付的租车费用相同的概率;(2)求甲、乙两人所付的租车费用之和为4元的概率.解 甲、乙两人租车时间超过三小时不超过四小时的概率分别为1--=,1--=.141214121414(1)租车费用相同可分为租车费用都为0元、2元、4元三种情况.都付0元的概率为P 1=×=;141218都付2元的概率为P 2=×=;121418都付4元的概率为P 3=×=.1414116所以甲、乙两人所付租车费用相同的概率为P =P 1+P 2+P 3=.516(2)设甲、乙两人所付的租车费用之和为ξ,则ξ=4表示两人的租车费用之和为4元,其可能的情况是甲、乙的租车费用分别为①0元,4元;②2元,2元;③4元,0元.所以可得P (ξ=4)=×+×+×=,141412141412516即甲、乙两人所付的租车费用之和为4元的概率为.516。