2017年全国普通高等学校高考数学四模试卷
- 格式:docx
- 大小:329.73 KB
- 文档页数:19
2017年高考模拟试卷(4)参考答案一、填空题1.}1,0{ .∵A={x|-4<x<4}, B={-5,0,1}.∴{}0,1A B ⋂=.2.若b a ≤,则22b a ≤.3.23.因为()()12112131222i i i z i i +++===-+-,所以复数z 的虚部是32.4.8.5.7 .图中循环结构循环的结果依次是:(1)s=1+0=1,i=2; (2)s=1+1=2,i=3;(3)s=2+2=4,i=4;(4)s=4+3=7,i=5;(5)s=7+4=11,i=6;(6)s=11+5=16,i=7.所以若输出s 的值为16,那么输入的n 值等于7.6.23.总的基本事件是4个球中取2个球,共有6个基本事件,“恰有一个红球”则包含4个基本事件,所以结果为3264=.7.40.由题知10057=a ,7111392)12()8(33a d a d a a a =+-+=-. 8.4π.两函数可化为)]8(2sin[2)(π+=x x f 和)]8(2sin[2)(π-=x x g ,即可得.9.π322.设圆锥的底面半径为r ,圆锥的高为h ,则有11122=+hr ,而母线长22h r l +=, 则4)11)((22222≥++=h r h r l ,即可得母线最小值为2,此时2==h r ,则体积 为πππ322)2(313132==h r . 10.[9,9]-. 将直角三角形放入直角坐标系中,则(0,4),(2,0),(1,2),(1,0)A B E D ,设(,)P x y ,则(1,4)(1,2)47AD EP x y x y ⋅=---=-+u u u r u u rg ,令47z x y =-+,则1744z y x -=+,作直线14y x =, 平移直线14y x =,由图象可知当直线1744zy x -=+经过点A 时,直线的截距最大,但此时z 最小, 当直线 经过点B 时,直线的截距最小,此时z 最大.即z 的最小值为4479z =-⨯+=-,最大值为279z =+=,即99AD EP -≤⋅≤uuu r uu r.AD EP ⋅uuu r uu r 的取值范围是[9,9]-.11.3 .因为(4)()f x f x -=-,所以()()8f x f x +=,即函数的周期为8,因此函数是周期函数,又是奇函数,且在[0,2]上为增函数,综合条件得函数的示意图,由图看出, ①若2221<<<-x x 且021>+x x , 由奇偶性和单调性可得正确; ②若1204x x <<<且125x x +=,f x ()在(0,2]上是增函数,则11054x x -<<<,即1512x <<,由图可知:12()()f x f x >;故②正确;③当0m >时,四个交点中两个交点的横坐标之和为()2612⨯-=-,另两个交点的横坐标之和为224⨯=,所以12348x x x x +++=-.当m <0时,四个交点中两个交点的横坐标之和为2×(-2),另两个交点的横坐标之和为2×6,所以12348x x x x +++=.故③正确;④如图可得函数()f x 在[8,8]-内有5个零点,所以不正确 12.16ln 3e a <≤或0=a .当1[,1]3x ∈时,1[1,3]x∈,则11()2()2ln 2ln f x f x x x ===-.在坐标系内画出分段函数图象:由题意可知:6ln3OA a k ≤=.当直线与曲线()ln f x x =相切时,解得1ek =;所以a 的取值范围是16ln 3e a <≤.另外,0=a 显然成立.13.]21062,21062[+-.设P(x ,y),则Q(18-x ,-y),S(-y ,x).22222222222)9()9(281811818222363618)()18(||++-∙=+++-+∙=+++-+-++=--++-=∴x x y x y x xy y x xy y x y x x y y x SQ其中22)9()9(++-x x 可以看作是点P 到定点 B(9,-9)的距离,其最大值为|MB|+r=253+1,最小值为|MB|-r=253-1,则 |SQ|的最大值为22106+,|SQ|的最小值为22106-.CBC 1B 1A 1A14.}]2,1[,2|{2中的所有奇数为n n i i x x -=.第一次操作完成后,原来的坐标1、3变成2,原来的坐标2变成4;第二次操作后,原来的1,3变成4,而2变成0;第三次才做后,与4对应的点应有0与1的中点21,1与2的中点23,2与3的中点25,3与4的中点27;依次类推,第n 次操作后,与4对应的坐标应为中的所有奇数为]2,1[,22nn i i -二、解答题15.(1)∵2A B =,∴B B A 2sin 212cos cos -==. ∵3sin 3B =,∴313121cos =⨯-=A . 由题意可知,)2,0(π∈B .∴36sin 1cos 2=-=B B .∵22sin sin 22sin cos 3A B B B ===. ∴)sin()](sin[sin B A B A C +=+-=π53sin cos cos sin 9A B A B =+=. (2)∵sin sin b a B A =,2b =,∴232233a=,∴463a =. ∴1202sin 29ABC S ab C ∆==. 16.(1)连接1BC . 在正方形11ABB A 中,1AB BB ^.1BBAB ⊥ 因为平面11AA B B ⊥平面11BB C C ,平面11AA B B 平面111BB C C BB =,⊂AB 平面11ABB A , 所以 ⊥AB 平面11BB C C .因为 ⊂C B 1平面11BB C C ,所以 C B AB 1⊥ 在菱形11BB C C 中,.C B BC 11⊥因为 ⊂C B 1平面1ABC , ⊂AB 平面1ABC ,1BC AB B =, 所以 ⊥C B 1平面1ABC .因为 ⊂1AC 平面1ABC , 所以 1B C ⊥1AC .(2)EF ∥平面ABC ,理由如下:取BC 的中点G ,连接,GE GA .因为 E 是1BC 的中点,所以 GE ∥1BB ,且GE 112BB =.因为 F 是1AA 的中点,所以 AF 112AA =. 在正方形11ABB A 中,1AA ∥1BB ,1AA 1BB =. 所以 GE ∥AF ,且GE AF =. 所以 四边形GEFA 为平行四边形. 所以 EF ∥GA .因为 ⊄EF 平面ABC , ⊂GA 平面ABC , 所以 EF ∥平面ABC .17.(1)当9天购买一次时,该厂用于配料的保管费用P=70+)21(20003.0+⨯⨯=88(元) .(2)(1)当x ≤7时y=360x+10x+236=370x+236, (2)当 x>7时y=360x+236+70+6[(7-x )+(6-x )+……+2+1]=43232132++x x∴⎩⎨⎧>++≤+=7,43232137,2363702x x x x x y∴设该厂x 天购买一次配料平均每天支付的费用为f (x)元.⎪⎪⎩⎪⎪⎨⎧>++≤+=7,43232137236370)(2x x x x x x x x f , . 当x≤7时x x f 236370)(+= 当且仅当x=7时f(x)有最小值40472826≈(元) 当x >7时xx x x f 4323213)(2++==321)144(3++x x ≥393. 当且仅当x=12时取等号.∵393<404,∴当x=12时 f(x)有最小值393元·GFECB C 1B 1A 1A18.(1)设椭圆的半焦距为c ,由题意32c a =,且a=2, 得3c =,b=1, ∴所求椭圆方程为2214x y +=. (2)①当直线AB 的斜率不存在时,直线AB 的方程为255x =±,原点O 到直线AB 的距离为255, 当直线AB 的斜率存在时,设直线AB 的方程为y=kx+m ,A (x 1,y 1),B (x 2,y 2),则由2214x y y kx m ⎧+=⎪⎨⎪=+⎩,得:(1+4k 2)x 2+8kmx+4m 2-4=0,△=16(1+4k 2-m 2)>0,2121222844,1414km m x x x x k k-+=-=++, 由2212122544014m k OA OB x x y y k--∙=+==+ ,得()22415m k =+, ∴原点O 到直线AB 的距离()22241255511k m d k k+===++, 综上所述,原点O 到直线AB 的距离为255;即该定圆方程为5422=+y x ·②当直线AB 的斜率不存在时455AB =, 当直线AB 的斜率存在时,221242491116815k AB k x x k k =+-=+++, 当k≠0时,581169154||22≤+++=kk AB ,当12k =±时等号成立.当k=0时,455AB =.∴|AB|最大值为5 . 由①知,点0到直线AB 的距离为552, ∴AOB S ∆的最大值为1552521=⋅⋅.19.(1)直线方程为),(),(21111+++-+-=-n n n n n n y x A x x x y y 因为直线过点, 2)(2111)(2111111+=⇒-+-=-⇒-+-=-∴+++++n n n n n n n n n n n n n x x x x x x x x x x x y y .(2)设,3121+-=n n x a 由(1)得 n n nn n n a x x x x a 2)3121(231221312111-=+--=+-+=+-=++又}3121{,021+-≠-=n x a 故是等比数列; 31)2(12)2(--+=⇒-=n n n n x a .(3)由(2)得31)1(212)1()1(⋅--+⋅-=-∴n n nn nx当n 为偶数时,则11111112222912312222)1()1(-------⋅+<-⋅+⋅+=-+-n n n n n n n n n n nn n x x n n 21211+=-2312321111(1)(1)(1)...(1) (112222)n n n n x x x x ∴-+-+-++-<+++=-<; 当n 为奇数时,则23123(1)(1)(1)...(1)1(1)nnn n x x x x x -+-+-++-<+- 而11)1(1,031212<-=-+>+-=n n n n n x x x 所以1)1(...)1()1()1(33221<-++-+-+-∴n n x x x x综上所述,当*n ∈N 时,23123(1)(1)(1)(1)1n n x x x x -+-+-+-< 成立.20. 解:(1)()f x 的定义域为(0,).+∞ 当0a =时,11()1.x f x x x-'=-= ()0f x '<01x ⇔<<; ()0f x '> 1.x ⇔> 所以,函数()f x 的增区间为(1,)+∞,减区间为(0,1).(2)2()(1)ln g x a x x =---,则21221()2(1)ax ax g x a x x x-+'=---=-.令2()221(0)h x ax ax x =-+>,若函数()g x 有两个极值点,则方程()0h x =必有两个不等的正根,设两根为12,.x x 于是2121220480,10,10.2a a a x x x x a ≠⎧⎪∆=->⎪⎪⎨+=>⎪⎪=>⎪⎩解得2a >.当2a >时, ()0h x =有两个不相等的正实根,设为12,x x ,不妨设12x x <, 则122()()()()a x x x x h x g x x x--'=-=-. 当10x x <<时,()h x >0,()0g x '<,()g x 在1(0,)x 上为减函数; 当12x x x <<时,()h x <0,()0g x '>,()g x 在12(,)x x 上为增函数; 当2x x >时,()h x >0,()0g x '<,函数()g x 在2(,)x +∞上为减函数.由此,1x x =是函数()g x 的极小值点,2x x =是函数()g x 的极大值点.符合题意. 综上,所求实数a 的取值范围是(2,).+∞(3)22(21)1(1)(21)1()12(1)=ax a x x ax f x a x x x x -++--'=---=--① 当0a …时,210ax x-<. 当01x <<时,()0f x '<,()f x 在(0,1)上为减函数; 当1x >时,()0f x '>,()f x 在(1,)+∞上为增函数.所以,当(0,]x b ∈(12)b <<时,min ()(1)0()f x f f b ==<,()f x 的值域是[0,)+∞. 不符合题意.② 当0a >时,12(1)()2()a x x a f x x--'=-.(i )当112a<,即12a >时,当x 变化时,(),()f x f x '的变化情况如下:x1(0,)2a 12a1(,1)2a1(1,)+∞()f x'-0+0-()f x减函数极小值增函数极大值减函数若满足题意,只需满足1()(2)2f fa>,即21111(1)ln1ln2.222a aa a a---->--整理得1ln2ln210 4aa++->.令11()ln2ln21()42F a a aa=++-…,当12a>时,221141()044aF aa a a-'=-=>,所以()F a在1(,)2+∞上为增函数,所以,当12a>时,111()()ln2ln e0222F a F>=->-=.可见,当12a>时,1()(2)2f fa>恒成立,故当12a>,(0,]x b∈(12)b<<时,函数()f x的值域是[(),)f b+∞;所以12a>满足题意.(ⅱ)当112a=,即12a=时,2(1)()0xf xx-'=-…,当且仅当1x=时取等号.所以()f x在(0,)+∞上为减函数.从而()f x在(0,]b上为减函数.符合题意.………14分(ⅲ)当112a>,即12a<<时,当x变化时,(),()f x f x'的变化情况如下表:x(0,1)11(1,)2a12a1(,)2a+∞()f x'-0+0-()f x减函数极小值0增函数极大值减函数若满足题意,只需满足(2)(1)f f<,且122a<(若122a…,不符合题意),即1ln2a>-,且14 a>.又11ln24->,所以1ln2.a>-此时,11ln22a-<<.综上,1ln2a>-.所以实数a的取值范围是(1ln2,).-+∞第II卷(附加题,共40分)21.A.连接OD,∵DE是圆O的切线,∴OD⊥DE,又∵CE⊥DE于E,∴OD∥CE,∴∠ECD=∠ODC=∠OCD ,∵DE=3,CE=4,∴CD=5,∴tan ∠ECD=tan ∠ODC=tan ∠OCD=34,∴cos ∠OCD=45, 故BC=25cos 4CD OCD =∠,故AB=BC•tan ∠OCD=7516B .由题意得旋转变换矩阵cos90sin 900110sin 90cos90︒︒︒︒⎡⎤--⎡⎤==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦M , 设00(,)P x y 为曲线2y x =上任意一点,变换后变为另一点(,)x y ,则000110x x y y -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即00,,x y y x =-⎧⎨=⎩所以00,,y x x y =-⎧⎨=⎩又因为点P 在曲线2y x =上,所以200y x =,故2()x y -=,即2x y =为所求的曲线方程. C .(1)由已知得31sin cos 23022ρθρθ⋅-⋅+=,即3430x y --=. (2)由2C 得221x y +=,所以圆心为2(0,0)C ,半径为1. 又圆心到直线1C 的距离为23d =, 所以PQ 的最大值为231-. D .(1)不等式()2>x f 可化为22122x x x >⎧⎨+-+>⎩或1222122x x x ⎧-≤≤⎪⎨⎪++->⎩或122122x x x ⎧<-⎪⎨⎪--+->⎩, 解得5x <-或x >1,所以所求不等式的解集为{}51x x x <->或.(2)因为()3,212123-1-x 221-x-3,2x x f x x x x x ⎧⎪+>⎪⎪=+--=≤≤⎨⎪⎪<-⎪⎩,,可得f(x)≥52-,若()t t x f R x 211,2-≥∈∀恒成立,则211522t t -≤-,解得1t 52≤≤.22.设A i 表示事件“一个试验组中,服用A 有效的小白鼠有i 只”,i =0,1,2;B i 表示事件“一个试验组中,服用B 有效的小白鼠有i 只”,i =0,1,2.依题意,有P(A 1)=2×13×23=49,P(A 2)=23×23=49,P(B 0)=12×12=14,P(B 1)=2×12×12=12.故所求的概率为P =P(B 0A 1)+P(B 0A 2)+P(B 1A 2)=14×49+14×49+12×49=49.(2)由题意知X 的可能值为0,1,2,3,故有 P(X =0)=⎝⎛⎭⎫593=125729, P(X =1)=C 13×49×⎝⎛⎭⎫592=100243,[来源:Z,xx,]P(X =2)=C 23×⎝⎛⎭⎫492×59=80243, P(X =3)=⎝⎛⎭⎫493=64729. 从而,X 的分布列为X 0 1 2 3 P1257291002438024364729数学期望EX =0×125729+1×100243+2×80243+3×64729=43.23. ①当2=n 时,22222462<=<⨯C 不等式成立. ②假设当k n =时,kk k k C 422<<成立,则当1+=k n 时 由!)!1()!12(2)!1()!1()1(2)!12()!1()!1()!22(122k k k k k k k k k k C k k ++=+++⨯+=+++=++121222222++=⋅>>=k k k k k k C C ,即12212+++<k k k C .12221212244442211222++++=⋅<=⋅<++⋅<=k k k k k k k k kk k k C C C k k C C , 因此1122142++++<<k k k k C 成立,即当1+=k n 时,不等式成立, 所以,对N n n ∈≥,2,不等式n n n n C 422<<恒成立.。
吉林市普通中学2016—2017学年度高中毕业班第四次调研测试数 学(理科)参考答案与评分标准一、选择题:12题解答:222[(2)][ln (1)]b a b a m m --+--≥-恒成立,左端为点(),ln P b b 与点(2,1)Q a a --距离平方,因为,P Q 分别在曲线:ln C y x =及直线:1l y x =+上,由 11y x '==得1x =,故与l 平行且与:ln C y x =相切的切点为(1,0)所以PQ 最小值d ==22m m -≤,解得12m -≤≤。
故选B . 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13:4 ; 14:3 ; 15. 54 ; 16. 19π三、解答题17解答:(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d ,因为3574,14a a a =+=,所以有112421014a d a d +=⎧⎨+=⎩,解得121a d =⎧⎨=⎩, ---------------------------------------------4分所以2n a n n =+-; ---------------------------------------------5分(1)22n n n S n -=+21(3)2n n =+。
---------------------------------------------6分(Ⅱ)由(1)知211111()1(2)22n n b a n n n n ===--++, ----------------------------------------------9分所以111111(1232435n T =-+-+-+ 1111...)112n n n n +-+--++ 1111(1)2212n n =+--++ ----------------------------------------------11分 34<----------------------------------------------12分18解答:(Ⅰ)由直方图,抽取的50名学生的数学平均成绩为:850.12950.161050.321150.201250.121350.08107.8⨯+⨯+⨯+⨯+⨯+⨯=,所以,该校理科毕业生的数学平均成绩约为:107.8-----------------------------3分(Ⅱ)由直方图知,后两组频率之和为0.2,后两组人数之和为500.210⨯=。
2017年吉林省长春市高考数学四模试卷(理科)一、选择题:本大题共12小题,每小题5分,共32分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.i为虚数单位,则i+i2+i3+i4=()A.0 B.i C.2i D.﹣i2.已知集合A={x|x2﹣x+4>x+12},B={x|2x﹣1<8},则A∩(∁R B)=()A.{x|x≥4} B.{x|x>4} C.{x|x≥﹣2} D.{x|x<﹣2或x≥4}3.已知函数f(x)=,则函数f(x)的值域为()A. B. C.(﹣∞,e)D.上的最大值;(Ⅲ)设函数g(x)=2e x﹣,求证:当a=1,对∀x∈(0,1),g(x)﹣xf(x)>2恒成立.22.在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ2(1+3sin2θ)=4,曲线C2:(θ为参数).(Ⅰ)求曲线C1的直角坐标方程和C2的普通方程;(Ⅱ)极坐标系中两点A(ρ1,θ0),B(ρ2,θ0+)都在曲线C1上,求+的值.23.(Ⅰ)已知函数f(x)=|x+1|+|x﹣a|(a>0),若不等式f(x)≥5的解集为{x|x≤﹣2或x≥3},求a的值;(Ⅱ)已知实数a,b,c∈R+,且a+b+c=m,求证: ++≥.2017年吉林省长春市高考数学四模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共32分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.i为虚数单位,则i+i2+i3+i4=()A.0 B.i C.2i D.﹣i【考点】A1:虚数单位i及其性质.【分析】直接利用虚数单位i的性质运算.【解答】解:由i2=﹣1可知,i+i2+i3+i4=i﹣1﹣i+1=0.故选:A.2.已知集合A={x|x2﹣x+4>x+12},B={x|2x﹣1<8},则A∩(∁R B)=()A.{x|x≥4} B.{x|x>4} C.{x|x≥﹣2} D.{x|x<﹣2或x≥4}【考点】1H:交、并、补集的混合运算.【分析】先化简集合A,B,再求A∩(∁R B).【解答】解:由A={x|x<﹣2或x>4},B={x|x<4},故A∩(∁R B)={x|x<﹣2或x>4}∩{x|x≥4}={x|x>4}.故选:B.3.已知函数f(x)=,则函数f(x)的值域为()A.=cos(2x+)=﹣sin2x的图象,故函数F(x)是奇函数,且它的最小值为﹣,故选:A.7.某几何体的三视图如图所示,则该几何体的表面积为()A. B.C. D.【考点】L!:由三视图求面积、体积.【分析】由图形补全法,将图形补全为长方体,进而获得该几何体的直观图,得到几何体的表面积.【解答】解:由图形补全法,将图形补全为长方体,进而获得该几何体的直观图P﹣ABC,再求得该几何体的表面积为:.故选D.8.二项式(﹣)10的展开式中,项的系数是()A.B.﹣ C.15 D.﹣15【考点】DC:二项式定理的应用.【分析】利用二项式展开式的通项公式,求得展开式中含项的系数.【解答】解:二项式(﹣)10的展开式的通项共公式为T r+1=••=(﹣1)r••22r﹣10•,令=,求得r=3,可得展开式中含项的系数是﹣•2﹣4=﹣,故选:B.9.据统计,某城市的火车站春运期间日接送旅客人数X(单位:万)服从正态分布X~N(6,0.82),则日接送人数在6万到6.8万之间的概率为()(P(|X﹣μ|<σ)=0.6826,P(|X﹣μ|<2σ)=0.9544,P(|X﹣μ|<3σ)=0.9974)A.0.6826 B.0.9544 C.0.9974 D.0.3413【考点】CP:正态分布曲线的特点及曲线所表示的意义.【分析】根据正态分布的对称性得出答案.【解答】解:∵随机变量X服从正态分布X~N(6,0.82),∴μ=6,σ=0.8,∴P(5.2<X<6.8)=0.6826,∴P(6<x<6.8)=P(5.2<X<6.8)=0.3413.故选D.10.球面上有A,B,C三点,球心O到平面ABC的距离是球半径的,且AB=2,AC ⊥BC,则球O的表面积是()A.81π B.9πC.D.【考点】LG:球的体积和表面积.【分析】求出截面圆的半径,根据已知中球心到平面ABC的距离,利用直角三角形求出球的半径,代入球的表面积公式,即可得到答案.【解答】解:由题可知AB为△ABC的直径,令球的半径为R,则,可得,则球的表面积为S=4πR2=9π.故选B.11.设F1、F2是双曲线C:﹣=1(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2最小内角的大小为30°,则双曲线C的渐近线方程是()A. x±y=0 B.x±y=0 C.x±2y=0 D.2x±y=0【考点】KC:双曲线的简单性质.【分析】不妨设P为右支上一点,由双曲线的定义,可得,|PF1|﹣|PF2|=2a,求出△PF1F2的三边,比较即可得到最小的角,再由余弦定理,即可得到c=a,再由a,b,c的关系,结合渐近线方程,即可得到所求.【解答】解:不妨设P为右支上一点,由双曲线的定义,可得,|PF1|﹣|PF2|=2a,又|PF1|+|PF2|=6a,解得,|PF1|=4a,|PF2|=2a,且|F1F2|=2c,由于2a最小,即有∠PF1F2=30°,由余弦定理,可得,cos30==.则有c2+3a2=2ac,即c=a,则b==a,则双曲线的渐近线方程为y=x,即为y=x,故选A.12.已知函数f(x)=﹣k(+lnx),若x=2是函数f(x)的唯一一个极值点,则实数k的取值范围为()A.(﹣∞,e] B. C.(﹣∞,e)D.,由题意两个向量的数量积的运算及其几何意义,求得cosθ的值.【解答】解:设向量与夹角为θ,θ∈,由题意||=2||=|+|,可得||2=4=||2+||2+2•,即2+||2=0,即2•2||•||cosθ=﹣|b|2,故,故答案为:﹣.15.已知在锐角△ABC中,角A,B,C的对边分别是a,b,c,2asinB=b,b=2,c=3,AD是角A的平分线,D在BC上,则BD= .【考点】HP:正弦定理.【分析】由已知及正弦定理可得,结合sinB≠0,可得sinA=,可求A的值,由余弦定理可得a,根据角分线定理可求BD的值.【解答】解:∵2asinB=b,∴由正弦定理可得,∵sinB≠0,可得sinA=,∴由A为锐角,可得,∵b=2,c=3,∴由余弦定理可得a2=b2+c2﹣2bcosA=4+9﹣2×=7,可得:a=,∴根据角分线定理可知,.故答案为:.16.有甲、乙二人去看望高中数学张老师,期间他们做了一个游戏,张老师的生日是m月n日,张老师把m告诉了甲,把n告诉了乙,然后张老师列出来如下10个日期供选择:2月5日,2月7日,2月9日,5月5日,5月8日,8月4日,8月7日,9月4日,9月6日,9月9日.看完日期后,甲说“我不知道,但你一定也不知道”,乙提听了甲的话后,说“本来我不知道,但现在我知道了”,甲接着说,“哦,现在我也知道了”.请问张老师的生日是8月4日..【考点】F4:进行简单的合情推理.【分析】甲说“我不知道,但你一定也不知道”,可排除五个日期,乙听了甲的话后,说“本来我不知道,但现在我知道了”,再排除2个日期,由此能求出结果.【解答】解:根据甲说“我不知道,但你一定也不知道”,可排除5月5日、5月6日、9月4日、9月6日、9月9日;乙听了甲的话后,说“本来我不知道,但现在我知道了”,可排除2月7日、8月7日;甲接着说“哦,现在我也知道了”,现在可以得知张老师生日为8月4日.故答案为:8月4日.三、解答题:本大题共5小题,共48分.解答写出文字说明、证明过程或演算过程.17.等差数列{a n}的前n项和为S n,数列{b n}是等比数列,满足a1=3,b1=1,b2+S2=10,a5﹣2b2=a3.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)令Cn=设数列{c n}的前n项和T n,求T2n.【考点】8E:数列的求和;84:等差数列的通项公式;88:等比数列的通项公式.【分析】(I)利用等差数列与等比数列的通项公式即可得出;(Ⅱ)由a1=3,a n=2n+1得S n=n(n+2).则n为奇数,c n==.“分组求和”,利用“裂项求和”、等比数列的前n项和公式即可得出.【解答】解:(Ⅰ)设数列{a n}的公差为d,数列{b n}的公比为q,由b2+S2=10,a5﹣2b2=a3.得,解得∴a n=3+2(n﹣1)=2n+1,.(Ⅱ)由a1=3,a n=2n+1得S n=n(n+2),则n为奇数,c n==,n为偶数,c n=2n﹣1.∴T2n=(c1+c3+…+c2n﹣1)+(c2+c4+…+c2n)===.18.某市对大学生毕业后自主创业人员给予小额贷款补贴,贷款期限分为6个月、12个月、18个月、24个月、36个月五种,对于这五种期限的贷款政府分别补贴200元、300元、300元、400元、400元,从2016年享受此项政策的自主创业人员中抽取了100人进行调查统计,选取贷款期限的频数如表:以上表中各种贷款期限的频数作为2017年自主创业人员选择各种贷款期限的概率.(Ⅰ)某大学2017年毕业生中共有3人准备申报此项贷款,计算其中恰有两人选择贷款期限为12个月的概率;(Ⅱ)设给某享受此项政策的自主创业人员补贴为X元,写出X的分布列;该市政府要做预算,若预计2017年全市有600人申报此项贷款,则估计2017年该市共要补贴多少万元.【考点】CH:离散型随机变量的期望与方差;5D:函数模型的选择与应用.【分析】(Ⅰ)求出每人选择贷款期限为12个月的概率,然后利用独立重复试验概率的乘法求解3人中恰有2人选择此贷款的概率.(Ⅱ)求出享受补贴200元的概率为,享受补贴300元的概率为,享受补贴400元的概率为,即随机变量X的分布列,然后求解期望即可.【解答】(本小题满分12分)解:(Ⅰ)由题意知,每人选择贷款期限为12个月的概率为,所以3人中恰有2人选择此贷款的概率为(Ⅱ)由题意知,享受补贴200元的概率为,享受补贴300元的概率为,享受补贴400元的概率为,即随机变量X的分布列为∴,w=600×300=180000元.所以,2017年政府需要补贴全市600人补贴款18万元.19.如图,四棱柱ABCD﹣A1B1C1D1中,底面ABCD为菱形,AA1⊥底面ABCD,E为B1D的中点.(Ⅰ)证明:平面ACE⊥平面ABCD;(Ⅱ)若二面角D﹣AE﹣C为60°,AA1=AB=1,求三棱锥C﹣AED的体积.【考点】LF:棱柱、棱锥、棱台的体积;LY:平面与平面垂直的判定.【分析】(Ⅰ)连接BD,设AC与BD的交点为F,连接EF,则EF∥BB1,从而EF⊥平面ABCD,由此能证明平面ACE⊥平面ABCD.(Ⅱ)以F为坐标原点,以FC,FD,FE为x,y,z轴,建立空间直角坐标系,利用向量法能求出三棱锥C﹣ADE的体积.【解答】证明:(Ⅰ)连接BD,设AC与BD的交点为F,连接EF,因为E为B1D中点,F为BD中点,所以EF∥BB1,因为BB1⊥平面ABCD,所以EF⊥平面ABCD,又因为EF在平面ACE内,所以平面ACE⊥平面ABCD.解:(Ⅱ)由于四边形ABCD是菱形,所以以F为坐标原点,分别以FC,FD,FE为x,y,z轴,建立空间直角坐标系,设FA=a,FD=b,有a2+b2=1,A(﹣a,0,0),C(a,0,0),D(0,b,0),,,,设平面ADE的法向量为,平面ACE的法向量为,由题意知,解得.所以菱形ABCD为正方形,所以三棱锥C﹣ADE的体积.20.如图,在矩形ABCD中,|AB|=4,|AD|=2,O为AB中点,P,Q分别是AD和CD上的点,且满足①=,②直线AQ 与BP 的交点在椭圆E : +=1(a>b >0)上.(Ⅰ)求椭圆E 的方程;(Ⅱ)设R 为椭圆E 的右顶点,M 为椭圆E 第一象限部分上一点,作MN 垂直于y 轴,垂足为N ,求梯形ORMN 面积的最大值.【考点】KL :直线与椭圆的位置关系. 【分析】(Ⅰ)由题可知,,整理即可求得椭圆E 的方程;(Ⅱ)由,则梯形面积=,t=2+x 0,2<t <4,,根据函数的单调性即可求得梯形ORMN 面积的最大值.【解答】解:(Ⅰ)设AQ 于BP 交点C 为(x ,y ),P (﹣2,y 1),Q (x 1,2), 由题可知,,从而有,整理得,即为椭圆方程,椭圆E 的方程;(Ⅱ)R (2,0),设M (x 0,y 0),有, 从而所求梯形面积=,令t=2+x0,2<t<4,,令u=4t3﹣t4,u'=12t2﹣4t3=4t2(3﹣t),当t∈(2,3)时,u=4t3﹣t4单调递增,当t∈(3,4)时,u=4t3﹣t4单调递减,则当t=3时S取最大值,梯形ORMN面积的最大值.21.已知函数f(x)=x2e ax.(Ⅰ)当a<0时,讨论函数f(x)的单调性;(Ⅱ)在(1)条件下,求函数f(x)在区间上的最大值;(Ⅲ)设函数g(x)=2e x﹣,求证:当a=1,对∀x∈(0,1),g(x)﹣xf(x)>2恒成立.【考点】6E:利用导数求闭区间上函数的最值;6B:利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,根据a的符号,求出函数的单调区间即可;(Ⅱ)通过讨论a的范围,得到函数的单调区间,求出函数的最值即可;(Ⅲ)问题转化为证明,令h(x)=(2﹣x3)e x,求出函数的导数,根据函数的单调性证明即可.【解答】解:(Ⅰ)f'(x)=e ax(ax2+2x),令f'(x)=0可得,x=0或.又a<0,则可知f(x)在(﹣∞,0)和上单调递减;在上单调递增.(Ⅱ)在(Ⅰ)条件下,当,即﹣2≤a<0时,f(x)在上单调递增,则f(x)最大值为f(1)=e a;当,即a<﹣2时,f(x)在单调递增,在上单调递减,则f(x)的最大值为.(Ⅲ)要证g(x)﹣xf(x)>2,即证,令h(x)=(2﹣x3)e x,则h'(x)=(﹣x3﹣3x2+2)e x=﹣e x(x+1)(x2+2x﹣2),又x∈(0,1),可知在x∈(0,1)内存在极大值点,又h(0)=2,h(1)=e,则h(x)在x∈(0,1)上恒大于2,而在x∈(0,1)上恒小于2,因此g(x)﹣xf(x)>2在x∈(0,1)上恒成立.22.在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ2(1+3sin2θ)=4,曲线C2:(θ为参数).(Ⅰ)求曲线C1的直角坐标方程和C2的普通方程;(Ⅱ)极坐标系中两点A(ρ1,θ0),B(ρ2,θ0+)都在曲线C1上,求+的值.【考点】Q4:简单曲线的极坐标方程.【分析】(Ⅰ)由曲线C1的极坐标方程能求出曲线C1的直角坐标方程;曲线C2的参数方程消去参数,能求出C2的普通方程.(Ⅱ)由已知得,,由此能求出+的值.【解答】(本小题满分10分)解:(Ⅰ)∵曲线C1的极坐标方程为ρ2(1+3sin2θ)=4,∴ρ2+3ρ2sin2θ=4,∴曲线C1的直角坐标方程,∵曲线C2:(θ为参数).∴C2的普通方程.(Ⅱ)∵A(ρ1,θ0),B(ρ2,θ0+)都在曲线C1上,∴,,,,∴.23.(Ⅰ)已知函数f(x)=|x+1|+|x﹣a|(a>0),若不等式f(x)≥5的解集为{x|x≤﹣2或x≥3},求a的值;(Ⅱ)已知实数a,b,c∈R+,且a+b+c=m,求证: ++≥.【考点】R6:不等式的证明;R4:绝对值三角不等式.【分析】(Ⅰ)化简函数f(x)=|x+1|+|x﹣a|(a>0)为分段函数,然后通过不等式f(x)≥5的解集为{x|x≤﹣2或x≥3},求a的值;(Ⅱ)利用“1”的代换,利用基本不等式转化证明即可.【解答】(本小题满分10分)解:(Ⅰ)因为a>0,所以,又因为不等式f(x)≥5的解集为{x|x≤﹣2或x≥3},就是x=﹣2或x=3时,f(x)=5,解得a=2.(Ⅱ)证明:==2017年6月29日。
2017高考仿真卷·理科数学(四)(考试时刻:120分钟试卷总分值:150分)第Ⅰ卷选择题(共60分)一、选择题(本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的)1.设P={x|2x<16},Q={x|x2<4},那么()⊆Q⊆P⊆∁R Q⊆∁R P2.以下命题中,真命题的个数是()①通过直线外一点有且只有一条直线与已知直线平行;②通过直线外一点有且只有一条直线与已知直线垂直;③通过平面外一点有且只有一个平面与已知平面平行;④通过平面外一点有且只有一个平面与已知平面垂直..23.执行如下图的程序框图,假设输入x=9,那么输出的y的值为()B.1C.4.已知f(x)=2sin,假设将它的图象向右平移个单位,取得函数g(x)的图象,那么函数g(x)的图象的一个对称中心为()A.(0,0)B.C.D.5.从5名男教师和3名女教师当选出3名教师,派往郊区3所学校支教,每校1人.要求这3名教师中男、女教师都要有,那么不同的选派方案共有()种种种种6.已知直线x+y=a与圆O:x2+y2=8交于A,B两点,且=0,那么实数a的值为().2 或-2 或-47.已知数列{a n}是公差为的等差数列,S n为{a n}的前n项和,假设S8=4S4,那么a8=()B. D.8.已知实数x,y知足的最大值为()A. B. C. D.9.(x+1)2的展开式中常数项为().1910.已知抛物线y2=8x上的点P到双曲线y2-4x2=4b2的上核心的距离与到直线x=-2的距离之和的最小值为3,那么该双曲线的方程为()A.=1 =1 =1 D.=111.三棱锥S-ABC及其三视图的正视图和侧视图如下图,那么该三棱锥的外接球的表面积是()A.πB.πππ12.设函数f(x)=x ln x-(k-3)x+k-2,当x>1时,f(x)>0,那么整数k的最大值是().4第Ⅱ卷非选择题(共90分)二、填空题(本大题共4小题,每题5分,共20分)13.复数等于.14.已知向量a,b,|a|=6,|b|=4,a与b的夹角为60°,那么(a+2b)·(a-3b)=.15.已知函数f(x)=假设方程f(x)=kx+1有三个不同的实数根,那么实数k的取值范围是.16.已知双曲线C:=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线别离交于A,B两点,O为坐标原点,假设双曲线C的离心率为2,且△AOB的面积为,那么△AOB的内切圆的半径为.三、解答题(本大题共6小题,总分值70分,解答须写出文字说明、证明进程或演算步骤)17.(本小题总分值12分)在△ABC中,角A,B,C的对边别离为a,b,c,知足b2-(a-c)2=(2-)ac.(1)求角B的大小;(2)假设BC边上的中线AD的长为3,cos∠ADC=-,求a的值.18.(本小题总分值12分)如图,在三棱锥P-ABC中,平面P AC⊥平面ABC,△P AC是等边三角形,已知BC=2AC=4,AB=2.(1)求证:平面P AC⊥平面CBP;(2)求二面角A-PB-C的余弦值.19.(本小题总分值12分)某公司生产一种产品,有一项质量指标为“长度”(单位:cm),该质量指标X服从正态散布N,.该公司已生产了10万件产品,为查验这批产品的质量,先从中随机抽取50件,:(1)估量该公司已生产的10万件产品中在[182,187]的件数;(2)从检测的产品在[177,187]中任意取2件,这2件产品在所有已生产的10万件产品“长度”排列中(从长到短),排列在前135的件数记为ξ.求ξ的散布列和均值.参考数据:假设X~N(μ,σ2),那么P(μ-σ<X≤μ+σ)= 7,P(μ-2σ<X≤μ+2σ)= 5,P(μ-3σ<X≤μ+3σ)= 3.20.(本小题总分值12分)已知椭圆C:=1(a>b>0)的离心率为,且椭圆上的点到右核心F的最大距离为3.(1)求椭圆C的方程;(2)设过点F的直线l交椭圆C于A,B两点,定点G(4,0),求△ABG面积的最大值.21.(本小题总分值12分)函数f(x)=(x2-a)e1-x,a∈R,(1)讨论函数f(x)的单调性;(2)当f(x)有两个极值点x1,x2(x1<x2)时,总有x2f(x1)≤λ[f'(x1)-a(+1)](其中f'(x)为f(x)的导函数),求实数λ的值.请考生在第22、23两题中任选一题做答,若是多做,那么按所做的第一题评分.22.(本小题总分值10分)选修4—4:坐标系与参数方程在直角坐标系xOy中,曲线C1的参数方程为(t为参数),以原点为极点,以x轴的非负半轴为极轴,成立极坐标系,曲线C2的极坐标方程为ρ=,(1)求曲线C1的一般方程和曲线C2的直角坐标方程;(2)设点M(0,2),曲线C1与曲线C2交于A,B两点,求|MA|·|MB|的值.23.(本小题总分值10分)选修4—5:不等式选讲已知函数f(x)=|x-3|+|x+4|,(1)求f(x)≥11的解集;(2)设函数g(x)=k(x-3),假设f(x)>g(x)对任意的x∈R都成立,求实数k的取值范围.参考答案2017高考仿真卷·理科数学(四)解析∵P={x|2x<16}={x|x<4},Q={x|x2<4}={x|-2<x<2},∴Q⊆P.应选B.解析在①中,由平行公理,得通过直线外一点有且只有一条直线与已知直线平行,故①是真命题;在②中,通过直线外一点有无数条直线与已知直线垂直,故②是假命题;在③中,由面面平行的判定定理得通过平面外一点有且只有一个平面与已知平面平行,故③是真命题;在④中,通过平面外一点有无数个平面与已知平面垂直,故④是假命题.应选B.解析第一次执行循环体后,y=1,不知足退出循环的条件,x=1;第二次执行循环体后,y=-,不知足退出循环的条件,x=-;第三次执行循环体后,y=-,知足退出循环的条件,故输出的y值为-,应选A.解析将函数f(x)=2sin的图象向右平移个单位,取得函数y=2sin=2sin的图象,即g(x)=2sin,令2x-=kπ,k∈Z,解得x=,k∈Z,当k=0时,函数g(x)的图象的对称中心坐标为,应选C.解析(方式一)“这3名教师中男、女教师都要有”,分为两类,有1名女教师,有2名女教师.有1名女教师的选法种数为=30,有2名女教师的选法种数为=15,共有30+15=45种不同的选法,再分派到三个学校,故有45=270种.(方式二)从5名男教师和3名女教师当选出3名教师的不同选法有=56,3名教师满是男教师的选法有=10种,3名教师满是女教师的选法有=1种,因此“这3名教师中男、女教师都要有”,不同的选派方案有56-10-1=45种,再分派到三个学校,故有45=270种,应选C.解析由=0,得,则△OAB为等腰直角三角形,因此圆心到直线的距离d=2.因此由点到直线距离公式,得=2,即a=±2应选C.解析∵数列{a n}是公差为的等差数列,S n为{a n}的前n项和,S8=4S4,∴8a1+d=4又d=,∴a1=∴a8=a1+7d=+7应选D.解析由题意作出其平面区域如图中阴影部份所示,由题意可得,A,B(1,3),则3,则2,由f(t)=t+的单调性可得,故的最大值为,应选A.解析∵(x+1)2=(x2+2x+1),依照二项式定理可知,展开式的通项为(-1)r·x r-5,∴(x+1)2的展开式中常数项由三部份组成,别离是(x2+2x+1)与展开式中各项相乘取得,令r=3,则(-1)3·x-2·x2=1×(-)=-10;令r=4,则(-1)4·x-1·2x=2=10;令r=5,则(-1)5·x0·1=1×(-1)=-1;因此原式展开式中常数项为-10+10-1=-1.应选D.解析抛物线y2=8x的核心F(2,0),∵点P到双曲线=1的上核心F1(0,c)的距离与到直线x=-2的距离之和的最小值为3, ∴FF1=3,∴c2+4=9,c=∵4b2+b2=c2,∴b2=1.∴双曲线的方程为-x2=1.应选C.解析由题意,可得SC⊥平面ABC,且底面△ABC为等腰三角形.如图,取AC中点F,连接BF,则在Rt△BCF中,BF=2,CF=2,BC=4.在Rt△BCS中,CS=4,因此BS=4设球心到平面ABC的距离为d,则因为△ABC的外接圆的半径为,设三棱锥S-ABC的外接球半径为R,因此由勾股定理可得R2=d2+=(4-d)2+,因此d=2,该三棱锥外接球的半径R=,因此三棱锥外接球的表面积是4πR2=,应选A.解析由已知得,x ln x>(k-3)x-k+2在x>1时恒成立,即k<,令F(x)=,则F'(x)=,令m(x)=x-ln x-2,则m'(x)=1->0在x>1时恒成立.因此m(x)在(1,+∞)上单调递增,且m(3)=1-ln 3<0,m(4)=2-ln 4>0,因此在(1,+∞)上存在唯一实数x0∈(3,4)使m(x)=0,因此F(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增.故F(x)min=F(x0)==x0+2∈(5,6).故k<x0+2(k∈Z),因此k的最大值为5.应选C.+i解析=i(1-i)=1+i.解析由题意,得a2=36,b2=16,a·b=12;∴(a+2b)·(a-3b)=a2-a·b-6b2=36-12-96=-72.15解析作出f(x)与y=kx+1的图象如下,由题意,可知点A(7,0),点B(4,3),点C(0,1);故k AC==-,k BC=,结合图象可知,方程f(x)=kx+1有三个不同的实数根时,实数k的取值范围是解析由e==2,得,即双曲线渐近线为y=±x.联立x=-,解得不妨令点A,点B,因此S△AOB=p,解得p=2,因此A(-1,),B(-1,-),因此△AOB三边长为2, 2,2,设△AOB内切圆半径为r,由(2+2+2)r=,解得r=2-3.17.解(1)在△ABC中,∵b2-(a-c)2=(2-)ac,∴a2+c2-b2=ac,由余弦定理得cos B=,又B为△ABC的内角,∴B=(2)∵cos∠ADC=-,∴sin∠ADC=∴sin∠BAD=sin△ABD中,由正弦定理,得,即,解得BD=,故a=18.(1)证明在△ABC中,由于BC=4,AC=2,AB=2,∴AC2+BC2=AB2,故AC⊥BC.又平面P AC⊥平面ABC,平面P AC∩平面ABC=AC,BC⊂平面PBC,∴BC⊥平面P AC.∵BC⊂平面PBC,∴平面P AC⊥平面CBP.(2)解(方式一)由(1)知BC⊥平面P AC,因此平面PBC⊥平面P AC,过点A作AE⊥PC交PC于点E,则AE⊥平面PBC,再过点E作EF⊥PB交PB于点F,连接AF,则∠AFE确实是二面角A-PB-C的平面角.由题设得AE=,EF=,由勾股定理得AF=,∴cos∠AFE=∴二面角A-PB-C的余弦值为(方式二)以AC的中点O为原点,以OA所在直线为x轴,以过点O与BC平行的直线为y 轴,以OP所在直线为z轴,成立空间直角坐标系O-xyz,如下图.由题意可得P(0,0,),B(-1,4,0),A(1,0,0),C(-1,0,0),则=(1,0,-),=(-1,4,-),=(-1,0,-).设平面P AB的法向量n1=(x1,y1,z1),那么令x1=3,可得y1=,z1=,因此n1=同理可得平面PBC的法向量n2=(-,0,1).因此cos<n1,n2>==-因此二面角A-PB-C的余弦值为19.解(1)由题意100 000=10 000.因此估量该公司已生产的10万件产品中在[182,187]的有1万件.(2)由题意可知P(X≥182)== 35,而35×100 000=135,因此,已生产的前135件的产品长度在182 cm以上,这50件中182 cm以上的有5件.随机变量ξ可取0,1,2,于是P(ξ=0)=,P(ξ=1)=,P(ξ=2)=因此ξ的散布列如下:ξ 0 1 2P因此E(ξ)=0+1+220.解(1)∵椭圆C:=1(a>b>0)的离心率为,且椭圆上的点到右核心F的最大距离为3,∴由题意得解得c=1,a=2,b=∴椭圆的方程为=1.(2)设直线l的方程为x=my+1,A(x1,y1),B(x2,y2),联立得(3m2+4)y2+6my-9=0,∴y1+y2=,y1y2=S△ABG=3|y2-y1|==18令μ=m2+1(μ≥1),则∵9μ+在[1,+∞)上是增函数,∴9μ+的最小值为10.∴S△ABG∴△ABG面积的最大值为21.解(1)f'(x)=(-x2+2x+a)e1-x,令h(x)=-x2+2x+a,则Δ=4+4a,当Δ=4+4a≤0,即a≤-1时,-x2+2x+a≤0恒成立,即函数f(x)是R上的减函数.当Δ=4+4a>0,即a>-1时,那么方程-x2+2x+a=0的两根为x1=1-,x2=1+, 可得函数f(x)是(-∞,1-),(1+,+∞)上的减函数,是(1-,1+)上的增函数.(2)依照题意,方程-x2+2x+a=0有两个不同的实根x1,x2(x1<x2),∴Δ=4+4a>0,即a>-1,且x1+x2=2,∵x1<x2,∴x1<1,由x2f(x1)≤λ[f'(x1)-a(+1)],得(2-x1)(-a)[(2x1--a],其中-+2x1+a=0,∴上式化为(2-x1)(2x1)[(2x1-+(2x1-)],整理得x1(2-x1)[2-λ(+1)]≤0,其中2-x1>1,即不等式x1[2-λ(+1)]≤0对任意的x1∈(-∞,1]恒成立.①当x1=0时,不等式x1[2-λ(+1)]≤0恒成立,λ∈R;②当x1∈(0,1)时,2-λ(+1)≤0恒成立,即,令函数g(x)==2-,显然,函数g(x)是R上的减函数,∴当x∈(0,1)时,g(x)<g(0)=,即;③当x1∈(-∞,0)时,2-λ(+1)≥0恒成立,即,由②可知,当x∈(-∞,0)时,g(x)>g(0)=,即综上所述,λ=22.解(1)曲线C1的参数方程为(t为参数),由代入法消去参数t,可得曲线C1的一般方程为y=-x+2;曲线C2的极坐标方程为ρ=,得ρ2=,即为ρ2+3ρ2sin2θ=4,整理可得曲线C2的直角坐标方程为+y2=1;(2)将(t为参数),代入曲线C2的直角坐标方程+y2=1,得13t2+32t+48=0,利用根与系数的关系,可得t1·t2=,因此|MA|·|MB|=23.解(1)∵f(x)=|x-3|+|x+4|=∴f(x)≥11可化为解得{x|x≤-6}或⌀或{x|x≥5}.∴f(x)≥11的解集为{x|x≤-6或x≥5}.(2)作出f(x)=的图象,而g(x)=k(x-3)图象为恒过定点P(3,0)的一条直线.如图,由题意,可得点A(-4,7),k P A==-1,k PB=2.∴实数k的取值范围应该为(-1,2].。
北海市高中毕业班第四次质量检测理科数学(必修+选修Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
考试时间120分钟,满分150分,考生应首先阅读答题卷上的文字信息,然后在答题卷上作答,在试题卷上作答无效。
第Ⅰ卷(选择题 共60分)参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ∙=∙球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn n P k C P P k n -=-= ,,, 一、选择题:(本题共12小题,每小题5分,共60分。
在每小题所给出的四个选项中,只有一个选项正确。
)1. 已知集合2{20},{},M x x x N x x a =-<=<若M N ⊆,则实数a 的取值范围是( )A. [2,)+∞B. (2,)+∞C. (,0]-∞D.(,0]-∞2. 设复数2()1z i i=+为虚数单位,则z =( )A.B. 12C. 13. 把函数sin ()y x x R =∈的图像上所有的点向左平移6π个单位,再把所得的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到图像的函数表达式为( )A. sin(2),3y x x R π=-∈ B.sin(2),3y x x R π=+∈C. 1sin(),26y x x R π=+∈ D.1sin(),26y x x R π=-∈4. 平面向量a 与b 的夹角为60,若(1,0)a = ,||2b = ,则|2|a b -=( )A.B. .C. 4D. 25. 椭圆2249144x y +=内的一点(3,2)P ,则以P 为中点的弦所在的直线方程为( )A. 32130x y +-=B. 23120x y +-=C. 49300x y +-=D. 94360x y +-= 6.数列{}n a 的前n 项和为n S ,若*111,3(1,)n n a a S n n N +==≥∈,则6a 的值为( )A. 434⨯B. 4341⨯+C. 54D. 541+7. 已知点12(,0),(,0)F c F c -分别为双曲线22122:1(0,0)x y C a b a b-=>>的两个焦点,双曲线1C 和圆2222:C x y c +=的一个交点为P , 且12212PF F PF F ∠=∠,则双曲线1C 的离心率为C. 218.对于函数()y f x =,部分x 与y 的对应关系如下表:数列{}n x 满足:11x =,且对于任意*n N ∈,点1(,)n n x x +都在函数()y f x =的图像上,则124420132014...x x x x x x ++++++的值为( )A.7539B. 7545C.7549D. 75539. 设实数,x y 满足26002x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,若z mx y =-+的最大值为210m -+,最小值为22m --,则实数m 的取值范围是( )A. [1,2]-B. [2,1]-C. [2,3]D.[1,3]-10. 在星期一至星期五的5天内安排语、数、英三科测试,每天最多进行一门考试,且语文和数学不能连续两天考试,那么不同的考试安排方案种数共有( )A .18B .36C .12D .4811.已知定义为R 的奇函数()f x ,当0x >时,121,02()1(2),22x x f x f x x -⎧-<≤⎪=⎨->⎪⎩,则关于x 的方程26[()]()10f x f x --=的实数根个数为( )A. 6B. 7C. 8D. 912.在半径为R 的球内放入大小相等的4个小球,则小球半径r 的最大值为( )A. 2)RB. 1)RC. 14R D.13R第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分。
绝密 ★ 启用前江西省2017年普通高等学校招生全国统一考试仿真卷理科数学(四)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★ 第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}2|60A x x x =--≤,1|1B x x ⎧⎫=⎨⎬⎩⎭≤,则A B =( ) A .[]1,3B .[)[]2,01,3- C .[)2,0-D .[)[]3,01,2-【答案】B【解析】{}2|60=[2,3]A x x x =---≤,1|1=(,0)[1,+)B x x ⎧⎫=-∞∞⎨⎬⎩⎭≤,所以[)[]2,01,3A B =-,选B .2.若复数3i12i a ++(i a ∈R ,为虚数单位)是纯虚数,则实数a 的值为( )A .-6B .-2C .4D .6【答案】A【解析】设3ii12i a b +=+,3i i(12i)2i a b b b +=+=-+,即23a b b =-⎧⎨=⎩,解得6a =-,故选A .3.下列说法正确的是( )A .“1x <”是“2log (1)1x +<”的充分不必要条件B .命题“0x ∀>,21x >”的否定是“00x ∃≤,021x≤”C .命题“若a b ≤,则22ac bc ≤”的逆命题为真命题D .命题“若5a b +≠,则2a ≠或3b ≠”为真命题 【答案】D 【解析】选项A :2log (1)101211x x x +<⇔<+<⇔-<<,所以“1x <”是其必要不充分条件;选项B :命题“0x ∀>,21x >”的否定是“00x ∃>,021x ≤”;选项C :命题“若a b ≤,则22ac bc ≤”的逆命题是“若22ac bc ≤,则a b ≤”,当0c =时,不成立;选项D :其逆否命题为“若2a =且3b =,则5a b +=”为真命题,故原命题为真,故选D .4.函数π()sin()(0)6f x x ωω=+>的图象与x 轴正半轴交点的横坐标构成一个公差为2π的等差数列,若要得到函数()sin g x x ω=的图象,只要将()f x 的图象( )个单位A .向左平移6πB .向右平移6πC .向左平移π12D .向右平移π12【答案】C【解析】由题意,知函数()f x 的最小正周期22T π=⨯=π,所以22T ωπ==,所以π()sin(2)6f x x =+=πsin[2()]12x +,所以要得到函数()sin g x x ω=的图象,只要将()f x 的图象向左平移π12,故选C .5.中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s ( )A .7B .12C .17D .34【答案】C【解析】第一次循环,得2,2,1a s k ===;第二次循环,得2,6,2a s k ===;第三次循环,得5,17,32a s k ===>,此时不满足循环条件,退出循环,输出17s =,故选C .6.三棱柱111ABC A B C -的侧棱垂直于底面,且AB BC ⊥,12AB BC AA ===,若该三棱柱的所有顶点都在同一球面上,则该球的表面积为( )A .48πB .32πC .12πD .8π【答案】C【解析】如图,由题可知矩形11AAC C 的中心O 为该三棱柱外接球的球心,OC ==∴该球的表面积为24π12π=.选C .7.正方体1111ABCD A B C D -中E 为棱1BB 的中点(如图),用过点A ,E ,1C 的平面截去该正方体的上半部分,则剩余几何体的左视图为( )【答案】C【解析】由已知可得剩余几何体的左视图应是选项C .8.已知实数x y ,满足2244x y +≤,则|24||3|x y x y +-+--的最大值为( )A .6B .12C .13D .14【答案】B【解析】实数x y ,满足的区域为椭圆2214x y +=及其内部,椭圆的参数方程为2cos sin x y θθ=⎧⎨=⎩(θ为参数),记目标函数|24||3|z x y x y =+-+--,易知240x y +-≤,30x y --≥,故423723z x y x y x y =--+--=--.设椭圆上的点(2cos sin )P θθ,,则74cos 3sin 75sin()z θθθϕ=--=-+,其中4tan 3ϕ=,所以z 的最大值为12,故选B .9.函数22ππ1()sin()cos()cos log ||442f x x x x x =+++--的零点个数为( ) A .1 B .2C .3D .4【答案】B【解析】由已知得2211cos 21()cos 2log ||cos 2log ||222x f x x x x x +=+--=-,令()0f x =,即2c o s2l o g ||x x =,在同一坐标系中画出函数cos 2y x =和2log ||y x =的图象,如图所示,两函数图象有两个不同的交点,故函数()f x 的零点个数为2,故选B .10. P 为双曲线19422=-y x 右支上一点,1,F F ,21,F F 分别为双曲线的左、右焦点,且021=⋅PF ,直线2PF交y 轴于点A ,则1AF P △的内切圆半径为( ) A .2 B .3 C .23 D .213【答案】A【解析】 如图所示,记1AF ,2AF 与1AF P △的内切圆相切于点N ,M ,则AN AM=,PM PQ=,11NF QF =,12AF AF =,则112N F A F A N A F A M M F =-=-=,则12QF MF =,则1212()()P FPF Q FP QMFP M -=+--=+-+22P QPM P Q a +===,所以2PQ =,因为021=⋅PF 即12PF PF ⊥,所以2r PQ ==,故选A .11.]如图,三个边长为2的等边三角形有一条边在同一直线上,边33B C 上有10个不同的点12P P ,,···,10P ,记2(1210)ii m AB AP i =⋅=⋅⋅⋅,,,,则1210m m m ++⋅⋅⋅+的值为( )A.B .45 C. D .180【答案】D 【解析】因为2AB 与33B C 垂直,设垂足为C ,所以i AP 在2AB 投影为AC ,2i im AB AP =⋅2||||18AB AC =⨯==,从而121m m m +++的值181⨯180=,为选D .12.设函数()f x 是定义在(0)-∞,上的可导函数,其导函数为()f x ',且有2()3()xf x x f x '>+,则不等式38(2014)(2014)(2)0f x x f +++->的解集为( )A .(2016)-∞-,B .(20182016)--,C .(20180)-,D .(2018)-∞-,【答案】A【解析】函数()f x 是定义在(0)-∞,上的函数,所以有20140x +<, 不等式38(2014)(2014)(2)0f x x f +++->可变形为:33(2014)(2)(2014)(2)f x f x +-<+-,构造函数3()()f x g x x =,2442()3()1()0xf x f x x g x x x x '-'=>=>,所以()g x 在(0)-∞,上单增,由(2014)(2)g x g +<-,可得20140201620142x x x +<⎧⇒<-⎨+<-⎩,故选A .第Ⅱ卷本卷包括必考题和选考题两部分。
绝密 ★ 启用前2017年普通高等学校招生全国统一考试仿真卷理科数学(四)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2017皖南八校]已知集合{}2|60A x x x =--≤,1|1B x x ⎧⎫=⎨⎬⎩⎭≤,则A B =I ( ) A .[]1,3 B .[)[]2,01,3-UC .[)2,0-D .[)[]3,01,2-U【答案】B【解析】{}2|60=[2,3]A x x x =---≤,1|1=(,0)[1,+)B x x ⎧⎫=-∞∞⎨⎬⎩⎭U ≤, 所以[)[]2,01,3A B =-I U ,选B .2.[2017南固一中]若复数3i12ia ++(i a ∈R ,为虚数单位)是纯虚数,则实数a 的值为( )A .-6B .-2C .4D .6【答案】A【解析】设3i i 12i a b +=+,3i i(12i)2i a b b b +=+=-+,即23a bb =-⎧⎨=⎩,解得6a =-,故选A . 3.[2017云师附中]下列说法正确的是( )A .“1x <”是“2log (1)1x +<”的充分不必要条件B .命题“0x ∀>,21x >”的否定是“00x ∃≤,021x≤”C .命题“若a b ≤,则22ac bc ≤”的逆命题为真命题D .命题“若5a b +≠,则2a ≠或3b ≠”为真命题 【答案】D【解析】选项A :2log (1)101211x x x +<⇔<+<⇔-<<,所以“1x <”是其必要不充分条件;选项B :命题“0x ∀>,21x >”的否定是“00x ∃>,021x≤”;选项C :命题“若a b ≤,则22ac bc ≤”的逆命题是“若22ac bc ≤,则a b ≤”,当0c =时,不成立;选项D :其逆否命题为“若2a =且3b =,则5a b +=”为真命题,故原命题为真,故选D . 4.[2017广东联考]函数π()sin()(0)6f x x ωω=+>的图象与x 轴正半轴交点的横坐标构成一个公差为2π的等差数列,若要得到函数()sin g x x ω=的图象,只要将()f x 的图象( )个单位 A .向左平移6π B .向右平移6π C .向左平移π12D .向右平移π12【答案】C【解析】由题意,知函数()f x 的最小正周期22T π=⨯=π,所以22Tωπ==,所以π()sin(2)6f x x =+=πsin[2()]12x +,所以要得到函数()sin g x x ω=的图象,只要将()f x 的图象向左平移π12,故选C . 5.[2017汕头联考]中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s ( )班级 姓名 准考证号 考场号 座位号此卷只装订不密封A .7B .12C .17D .34【答案】C【解析】第一次循环,得2,2,1a s k ===;第二次循环,得2,6,2a s k ===;第三次循环,得5,17,32a s k ===>,此时不满足循环条件,退出循环,输出17s =,故选C .6.[2017淮北一中]三棱柱111ABC A B C -的侧棱垂直于底面,且AB BC ⊥,12AB BC AA ===,若该三棱柱的所有顶点都在同一球面上,则该球的表面积为( ) A .48π B .32π C .12π D .8π【答案】C【解析】如图,由题可知矩形11AAC C 的中心O 为该三棱柱外接球的球心,OC ==∴该球的表面积为24π12π=.选C .7.[2017天水一中]正方体1111ABCD A B C D -中E 为棱1BB 的中点(如图),用过点A ,E ,1C 的平面截去该正方体的上半部分,则剩余几何体的左视图为( )【答案】C【解析】由已知可得剩余几何体的左视图应是选项C .8.[2017云师附中]已知实数x y ,满足2244x y +≤,则|24||3|x y x y +-+--的最大值为( ) A .6 B .12C .13D .14【答案】B【解析】实数x y ,满足的区域为椭圆2214x y +=及其内部,椭圆的参数方程为2cos sin x y θθ=⎧⎨=⎩(θ为参数),记目标函数|24||3|z x y x y =+-+--,易知240x y +-≤,30x y --≥,故423723z x y x y x y =--+--=--.设椭圆上的点(2cos sin )P θθ,,则74cos 3sin 75sin()z θθθϕ=--=-+,其中4tan 3ϕ=,所以z 的最大值为12,故选B . 9.[2017正定中学]函数22ππ1()sin()cos()cos log ||442f x x x x x =+++--的零点个数为( ) A .1 B .2C .3D .4【答案】B【解析】由已知得2211cos 21()cos 2log ||cos 2log ||222x f x x x x x +=+--=-,令()0f x =,即2cos 2log ||x x =,在同一坐标系中画出函数cos 2y x =和2log ||yx=的图象,如图所示,两函数图象有两个不同的交点,故函数()f x 的零点个数为2,故选B .10.[2017雅礼中学]P 为双曲线19422=-y x 右支上一点,1,F F ,21,F F 分别为双曲线的左、右焦点,且021=⋅PF ,直线2PF 交y 轴于点A ,则1AF P △的内切圆半径为( ) A .2 B .3C .23D .213 【答案】A【解析】 如图所示,记1AF ,2AF 与1AF P △的内切圆相切于点N ,M ,则AN AM =,PM PQ =,11NF QF =,12AF AF =,则1122NF AF AN AF AM MF =-=-=,则12QF MF =,则121212()()PF PF QF PQ MF PM QF PQ MF PM -=+--=+-+=224PQ PM PQ a +===,所以2PQ =,因为021=⋅PF 即12PF PF ⊥,所以2r PQ ==,故选A .11.[2017湖北七校]如图,三个边长为2的等边三角形有一条边在同一直线上,边33B C 上有10个不同的点12P P ,,···,10P ,记2(1210)i i m AB AP i =⋅=⋅⋅⋅u u u u r u u u r,,,,则1210m m m ++⋅⋅⋅+的值为( )A.B .45C.D .180【答案】D【解析】因为2AB 与33B C 垂直,设垂足为C ,所以i AP u u u r 在2AB u u u u r 投影为AC ,2i i m AB AP =⋅u u u u r u u ur2||||18AB AC =⨯==,从而1210m m m +++L 的值1810⨯180=,为选D .12.[2017湖南十三校]设函数()f x 是定义在(0)-∞,上的可导函数,其导函数为()f x ',且有2()3()xf x x f x '>+,则不等式38(2014)(2014)(2)0f x x f +++->的解集为( )A .(2016)-∞-,B .(20182016)--,C .(20180)-,D .(2018)-∞-,【答案】A【解析】函数()f x 是定义在(0)-∞,上的函数,所以有20140x +<, 不等式38(2014)(2014)(2)0f x x f +++->可变形为:33(2014)(2)(2014)(2)f x f x +-<+-, 构造函数3()()f xg x x=,2442()3()1()0xf x f x x g x x x x '-'=>=>,所以()g x 在(0)-∞,上单增,由(2014)(2)g x g +<-,可得20140201620142x x x +<⎧⇒<-⎨+<-⎩,故选A . 第Ⅱ卷本卷包括必考题和选考题两部分。
2017年湖北省新联考高考数学四模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合A={x|y=},B={x|x2﹣x>0},则A∩B=()A.{x|x≥0}B.{x|0<x<1}C.{x|x>1}D.{x|x<0或x>1}2.设复数z满足z(1+i)=i(i为虚数单位),则|z|=()A.B.C.1 D.3.在[﹣1,2]内任取一个数a,则点(1,a)位于x轴下方的概率为()A.B.C.D.4.若x>2m2﹣3是﹣1<x<4的必要不充分条件,则实数m的取值范围是()A.[﹣3,3]B.(﹣∞,﹣3]∪[3,+∞)C.(﹣∞,﹣1]∪[1,+∞)D.[﹣1,1]5.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.B.C.D.6.已知直线l过双曲线Γ:=1(a>0,b>0)的一个焦点且与Γ的一条渐近线平行,若l在y轴上的截距为a,则双曲线的离心率为()A.B.2 C.D.27.已知定义[x]表示不超过的最大整数,如[2]=2,[2,2]=2,执行如图所示的程序框图,则输出S=()A.1991 B.2000 C.2007 D.20088.若tanα=,则sin4α﹣cos4α+6sin cos cosα=()A.1 B.C.D.9.如图所示,单位位圆上的两个向量相互垂直,若向量满足()()=0,则||的取值范围是()A.[0,1]B.[0,]C.[1,]D.[1,2]10.直线y=kx﹣4,k>0与抛物线y2=2x交于A,B两点,与抛物线的准线交于点C,若AB=2BC,则k=()A.B.C.2D.11.已知函数f(x)=cos(2x+φ),且f(x)dx=0,则下列说法正确的是()A.f(x)的一条对称轴为x=B.存在φ使得f(x)在区间[﹣,]上单调递减C.f(x)的一个对称中心为(,0)D.存在φ使得f(x)在区间[,]上单调递增12.设定义在R上的可导函数f(x)的导函数为f′(x),若f(3)=1,且3f(x)+xf′(x)>ln(x+1),则不等式(x﹣2017)3f(x﹣2017)﹣27>0的解集为()A.(2014,+∞)B.(0,2014)C.(0,2020)D.(2020,+∞)二、填空题:本大题共4小题,每小题5分,共20分.13.(1+x)2017的展开式中,x2017的系数为.(用数字作答)14.已知点(x,y)满足约束条件,则的取值范围为.15.已知函数f(x)=,若f(a)=f(b)(0<a<b),则当取得最小值时,f(a+b)=.16.在△ABC中,角A,B,C的对边分别为a,b,c,且=,则cosC﹣2sinB的最小值为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知等差数列{a n}满足a n>1,其前n项和S n满足6S n=a n2+3a n+2(1)求数列{a n}的通项公式及前n项和S n;(2)设数列{b n}满足b n=,且其前n项和为T n,证明:≤T n<.18.如图1,四边形ABCD中,AB∥CD,AD⊥AB,AB=2CD=4,AD=2,过点C作CO⊥AB,垂足为O,将△OBC沿CO折起,如图2使得平面CBO与平面AOCD所成的二面角的大小为θ(0<θ<π),E,F分别为BC,AO的中点(1)求证:EF∥平面ABD(2)若θ=,求二面角F﹣BD﹣O的余弦值.19.随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.(1)若从10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率;(2)若从这10名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求X的分布列和数学期望.20.已知椭圆C:=1(a>b>0)过点A(0,3),与双曲线=1有相同的焦点(1)求椭圆C的方程;(2)过A点作两条相互垂直的直线,分别交椭圆C于P,Q两点,则PQ是否过定点?若是,求出定点的坐标,若不是,请说明理由.21.已知函数f(x)=8a2lnx+x2+6ax+b(a,b∈R)(1)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x,求a,b的值;(2)若a≥1,证明:∀x1,x2∈(0,+∞),且x1≠x2,都有>14成立.[选修4-4:参数方程与极坐标系]22.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ2﹣2ρcosθ﹣4=0(1)若直线l与曲线C没有公共点,求m的取值范围;(2)若m=0,求直线l被曲线C截得的弦长.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣2a|+|x+|(1)当a=1时,求不等式f(x)>4的解集;(2)若不等式f(x)≥m2﹣m+2对任意实数x及a恒成立,求实数m的取值范围.2017年湖北省新联考高考数学四模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合A={x|y=},B={x|x2﹣x>0},则A∩B=()A.{x|x≥0}B.{x|0<x<1}C.{x|x>1}D.{x|x<0或x>1}【考点】交集及其运算.【分析】求函数定义域得集合A,解不等式得集合B,根据交集的定义写出A∩B.【解答】解:集合A={x|y=}={x|x≥0},B={x|x2﹣x>0}={x|x<0或x>1},则A∩B={x|x>1}.故选:C.【点评】本题考查了求函数定义域和解不等式的应用问题,也考查了交集的运算问题,是基础题.2.设复数z满足z(1+i)=i(i为虚数单位),则|z|=()A.B.C.1 D.【考点】复数求模.【分析】先求出复数z,然后利用求模公式可得答案.【解答】解:由z(1+i)=i得z===+i,则则|z|==,故选:B【点评】本题考查复数代数形式的运算、复数求模,属基础题.3.在[﹣1,2]内任取一个数a,则点(1,a)位于x轴下方的概率为()A.B.C.D.【考点】几何概型.【分析】根据几何概型的概率公式即可得到结论.【解答】解:在[﹣1,2]内任取一个数a,则点(1,a)位于x轴下方的概率为=,故选:C.【点评】本题主要考查概率的计算,根据几何概型的概率公式是解决本题的关键.4.若x>2m2﹣3是﹣1<x<4的必要不充分条件,则实数m的取值范围是()A.[﹣3,3]B.(﹣∞,﹣3]∪[3,+∞)C.(﹣∞,﹣1]∪[1,+∞)D.[﹣1,1]【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义结合不等式之间的关系进行求解即可.【解答】解:x>2m2﹣3是﹣1<x<4的必要不充分条件,∴(﹣1,4)⊆(2m2﹣3,+∞),∴2m2﹣3≤﹣1,解得﹣1≤m≤1,故选:D.【点评】本题主要考查充分条件和必要条件的应用,根据不等式的关系是解决本题的关键.5.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.B.C.D.【考点】由三视图求面积、体积.【分析】由题意,该几何体是由一个半圆柱与一个半球组成的组合体,其中半圆柱的底面半径为1,高为4,半球的半径为1,即可求出几何体的体积.【解答】解:由题意,该几何体是由一个半圆柱与一个半球组成的组合体,其中半圆柱的底面半径为1,高为4,半球的半径为1,几何体的体积为=π,故选C.【点评】本题考查三视图,考查几何体体积的计算,考查学生的计算能力,属于中档题.6.已知直线l过双曲线Γ:=1(a>0,b>0)的一个焦点且与Γ的一条渐近线平行,若l在y轴上的截距为a,则双曲线的离心率为()A.B.2 C.D.2【考点】双曲线的简单性质.【分析】利用已知条件,求出直线方程,代入焦点坐标,转化求解双曲线的离心率即可.【解答】解:不妨设直线l过双曲线的左焦点(﹣c,0),要使l在y轴上的截距为:为a,直线l方程:y=,直线经过(﹣c,0),可得,可得,e,平方化简解得e=.故选:A.【点评】本题考查双曲线的简单性质的应用,考查转化思想以及计算能力.7.已知定义[x]表示不超过的最大整数,如[2]=2,[2,2]=2,执行如图所示的程序框图,则输出S=()A.1991 B.2000 C.2007 D.2008【考点】程序框图.【分析】根据题意,模拟程序框图的运行过程,依次写出每次循环得到的i,S的值,当i=10时,退出循环,输出的S的值为2000.【解答】解:i=1,s=2017,i=2;s=2016,i=3;s=2016,i=3;s=2016,i=4,s=2016,i=5;s=2015,i=6;s=2010,i=7;s=2009,i=8;s=2008,i=9;s=2007,i=10;s=2000,跳出循环,输出s=2000,故选:B.【点评】本题考查程序框图和算法,考查学生的运算能力.8.若tanα=,则sin4α﹣cos4α+6sin cos cosα=()A.1 B.C.D.【考点】三角函数的化简求值.【分析】利用同角三角函数的基本关系,二倍角公式求得要求式子的值.【解答】解:∵tanα=,则sin4α﹣cos4α+6sin cos cosα=sin2α﹣cos2α+3sinαcosα===,故选:D.【点评】本题主要考查同角三角函数的基本关系,二倍角公式,属于基础题.9.如图所示,单位位圆上的两个向量相互垂直,若向量满足()()=0,则||的取值范围是()A.[0,1]B.[0,]C.[1,]D.[1,2]【考点】平面向量数量积的运算.【分析】先由条件可得出,||=,这样便可由得出,从而得出的取值范围.【解答】解:由条件,,;∵;∴;∴;∴;∴的取值范围为.故选B.【点评】考查向量垂直的充要条件,单位向量的概念,向量数量积的运算及计算公式.10.直线y=kx﹣4,k>0与抛物线y2=2x交于A,B两点,与抛物线的准线交于点C,若AB=2BC,则k=()A.B.C.2D.【考点】直线与抛物线的位置关系.【分析】将直线方程代入抛物线方程,利用韦达定理及相似三角形的性质,即可求得x1,x2,由x1x2=,代入计算即可求得k的值.【解答】解:如图,过AB两点作抛物线的准线抛物线的准线的垂线,设A(x1,y1),B(x2,y2),则,整理得:k2x2﹣(8k+2)x+16=0,则x1+x2=,x1x2=,显然△CB′B∽△CA′A,则==,由抛物线的定义得:==,∴=,整理得:4x2=(x1+x2)﹣,∴x2=﹣,则x1=+,由x1x2=,则(+)(﹣)=,由k>,0解得:k=,或将选项一一代入验证,只有A成立,故选:A.【点评】本题考查直线与抛物线的位置关系,考查韦达定理,相似三角形的性质,计算量大,计算过程复杂,考查数形结合思想,属于中档题.11.已知函数f(x)=cos(2x+φ),且f(x)dx=0,则下列说法正确的是()A.f(x)的一条对称轴为x=B.存在φ使得f(x)在区间[﹣,]上单调递减C.f(x)的一个对称中心为(,0)D.存在φ使得f(x)在区间[,]上单调递增【考点】余弦函数的图象.【分析】利用f(x)=cos(2x+φ),f(x)dx,求出φ值,然后找出分析选项,即可得出结论.【解答】解:f(x)=cos(2x+φ),f(x)dx=sin(2x+φ)=sin(+φ)+sinφ=0,∴tanφ=﹣,解得φ=﹣+kπ,k∈Z.令2x﹣+kπ=nπ,n∈Z,可得x=(n﹣k)π+,令(n﹣k)π+=π,=,矛盾;令2mπ≤2x﹣+kπ≤π+2mπ,k为奇数,单调减区间为[+mπ, +mπ],不符合题意,k为偶数,单调减区间为[+mπ, +mπ],不符合题意;令2x﹣+kπ=π+mπ,x=+(m﹣k)=,∴=,矛盾;令π+2mπ≤2x﹣+kπ≤2π+2mπ,k为奇数,单调减区间为[+mπ, +mπ],符合题意.故选D.【点评】本题主要考查定积分,余弦函数的图象的性质,属于中档题.12.设定义在R上的可导函数f(x)的导函数为f′(x),若f(3)=1,且3f(x)+xf′(x)>ln(x+1),则不等式(x﹣2017)3f(x﹣2017)﹣27>0的解集为()A.(2014,+∞)B.(0,2014)C.(0,2020)D.(2020,+∞)【考点】利用导数研究函数的单调性;函数恒成立问题;导数的运算.【分析】利用函数的可导性,构造函数g(x)=x3f(x),利用函数的单调性以及不等式,转化求解不等式的解集即可.【解答】解:定义在R上的可导函数f(x)的导函数为f′(x),3f(x)+xf′(x)>ln(x+1),所以3x2f(x)+x3f′(x)>x2ln(x+1)>0(x>0),可得[x3f(x)]′>0,所以函数g(x)=x3f(x)在(0,+∞)是增函数,因为(x﹣2017)3f(x﹣2017)﹣27>0,且f(3)=1,所以(x﹣2017)3f(x﹣2017)>33f(3),即g(x﹣2017)>g(3),所以x﹣2017>3,解得x>2020.则不等式(x﹣2017)3f(x﹣2017)﹣27>0的解集为:(2020,+∞).故选:D.【点评】本题考查函数的导数,不等式的解集,不等式恒成立问题存在性问题,考查转化思想以及计算能力.二、填空题:本大题共4小题,每小题5分,共20分.13.(2016﹣x)(1+x)2017的展开式中,x2017的系数为﹣1.(用数字作答)【考点】二项式定理的应用.【分析】利用二项展开式的通项公式,求得(1+x)2017的展开式的通项公式,可得(2016﹣x)(1+x)2017的展开式中,x2017的系数.【解答】解:由于(1+x)2017的展开式的通项公式为T r+1=x r,分别令r=2017,r=2016,可得(2016﹣x)(1+x)2017的展开式中x2017的系数为2016﹣=2016﹣2017=﹣1,故答案为:﹣1.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题14.已知点(x,y)满足约束条件,则的取值范围为[﹣,] .【考点】简单线性规划.【分析】画出满足条件的平面区域,求出角点的坐标,结合z=的几何意义求出其范围即可.【解答】解:不等式组表示的可行域如图:z=的几何意义是可行域内的点与(﹣3,0)连线的斜率:结合图形可知在A处取得最大值,在B处取得最小值,由:解得A(2,4),z=的最大值为:;由解得B(﹣1,﹣3),z=的最小值为:﹣.则的取值范围为[﹣,].故答案为:[﹣,].【点评】本题考查了简单的线性规划问题,考查数形结合思想,判断目标函数的几何意义是解题的关键,是一道中档题.15.已知函数f(x)=,若f(a)=f(b)(0<a<b),则当取得最小值时,f(a+b)=1﹣2lg2.【考点】基本不等式.【分析】根据函数的性质可得ab=1,再根据基本不等式得到当取得最小值,a,b的值,再代值计算即可【解答】解:由f(a)=f(b)可得lgb=﹣lga,即lgab=0,即ab=1,则==4a+b≥2=4,当且仅当b=4a时,取得最小值,由,可得a=,b=2,∴f(a+b)=f()=lg=1﹣2lg2,故答案为:1﹣2lg2.【点评】本题主要考查函数的性质以及基本不等式的应用,意在考查学生的逻辑推理能力.16.在△ABC中,角A,B,C的对边分别为a,b,c,且=,则cosC﹣2sinB 的最小值为﹣1.【考点】余弦定理;正弦定理.【分析】利用余弦定理化简已知等式可求b2+c2﹣a2=bc,进而利用余弦定理可求cosA=,可得A=,C=﹣B,利用三角函数恒等变换的应用化简可得cosC﹣2sinB=﹣sin(B+),进而利用正弦函数的图象和性质可求最小值.【解答】解:在△ABC中,∵=,∴=,整理可得:b2+c2﹣a2=bc,∴cosA==,∴A=,C=﹣B,∴cosC﹣2sinB=cos(﹣B)﹣2sinB=﹣sinB﹣cosB=﹣sin(B+)≥﹣1,当B+=时等号成立,即当B=,C=时,cosC﹣2sinB的最小值为﹣1.故答案为:﹣1.【点评】本题主要考查了三角函数恒等变换的应用,余弦定理在解三角形中的综合应用,考查了学生的运算求解能力和转化思想,属于基础题.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知等差数列{a n}满足a n>1,其前n项和S n满足6S n=a n2+3a n+2(1)求数列{a n}的通项公式及前n项和S n;(2)设数列{b n}满足b n=,且其前n项和为T n,证明:≤T n<.【考点】数列的求和;数列递推式.【分析】(1)当n=1、2时,解得a1.a2,利用公差d=a2﹣a1=3.可得a n=a1+(n﹣1)d=3n﹣1.(2)由(1)可得a n=3n﹣1.利用“裂项求和”即可得出数列{b n}的前n项和T n.【解答】解:(1)∵6S n=a n2+3a n+2,∴6a1=a12+3a1+2,解得a1=1或a1=2.∵a n>1,∴a1=2.当n=2时,6S2=a22+3a2+2,即6(2+a2)=a22+3a2+2,解得a2=5或a2=﹣2(舍).∴等差数列{a n}的公差d=a2﹣a1=3.∴a n=a1+(n﹣1)d=3n﹣1.前n项和S n=.(2),前n项和为T n=b1+b2+b3+…+b n==∵b n>0,∴,∴≤T n<.【点评】本题考查了递推式的应用、等差数列的定义与通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.18.如图1,四边形ABCD中,AB∥CD,AD⊥AB,AB=2CD=4,AD=2,过点C作CO⊥AB,垂足为O,将△OBC沿CO折起,如图2使得平面CBO与平面AOCD所成的二面角的大小为θ(0<θ<π),E,F分别为BC,AO的中点(1)求证:EF∥平面ABD(2)若θ=,求二面角F﹣BD﹣O的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(1)过点E作EH∥BD,交CD于点H,连结HF,推导出平面EHF∥平面ABD,由此能证明EF∥平面ABD.(2)由题得平面CBO与平面AOCD所成二面角的平面角为∠BOA=θ,连结BF,以点F为坐标原点,以FO,FH,FB分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角F﹣BD﹣O的余弦值.【解答】证明:(1)过点E作EH∥BD,交CD于点H,连结HF,则H为CD中点,∴HF∥AD∵AD⊂平面ABD,HF⊄平面ABD,∴HF∥平面ABD,同理,EH∥平面ABD,∵EH∩HF=H,∴平面EHF∥平面ABD,∵EF⊂平面EHF,∴EF∥平面ABD.解:(2)由题得平面CBO与平面AOCD所成二面角的平面角为∠BOA=θ,连结BF,∵θ=,OB=2,OF=1,∴BF⊥AO,以点F为坐标原点,以FO,FH,FB分别为x,y,z轴,建立空间直角坐标系,则F(0,0,0),B(0,0,),D(﹣1,2,0),O(1,0,0),设平面FBD的法向量=(x,y,z),则,取x=2,解得=(2,﹣1,0)同理得平面BDO的一个法向量=(,1),设二面角F﹣BD﹣O的平面角为α,cosα===,∴二面角F﹣BD﹣O的余弦值为.【点评】本题考查空间直线与增面的位置关系、空间角、数学建模,考查推理论证能力、运算求解能力、空间思维能力,考查转化化归思想、数形结合思想,是中档题.19.随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.(1)若从10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率;(2)若从这10名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求X的分布列和数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(1)设“至少1名倾向于选择实体店”为事件A,则表示事件“随机抽取2名,(其中男、女各一名)都选择网购”,则P(A)=1﹣P.(2)X的取值为0,1,2,3.P(X=k)=,即可得出.【解答】解:(1)设“至少1名倾向于选择实体店”为事件A,则表示事件“随机抽取2名,(其中男、女各一名)都选择网购”,则P(A)=1﹣P=1﹣=.(2)X的取值为0,1,2,3.P(X=k)=,P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=.E(X)=0×+1×+2×+3×=.【点评】本题考查了对立与互相独立事件概率计算公式、超几何分布列与数学期望、组合计算公式,考查了推理能力与计算能力,属于中档题.20.已知椭圆C:=1(a>b>0)过点A(0,3),与双曲线=1有相同的焦点(1)求椭圆C的方程;(2)过A点作两条相互垂直的直线,分别交椭圆C于P,Q两点,则PQ是否过定点?若是,求出定点的坐标,若不是,请说明理由.【考点】直线与椭圆的位置关系;椭圆的标准方程.【分析】(1)求得双曲线的焦点坐标,可得椭圆的c,由A点,可得b,求得a,即可得到椭圆方程;(2)设P(x1,y1),Q(x2,y2),直线AP的斜率为k,直线AQ的斜率为﹣,直线AP的方程为y=kx+3,代入椭圆方程,求得P的坐标,k换为﹣,可得Q的坐标,求出直线PQ的斜率,以及方程,整理可得恒过定点.【解答】解:(1)双曲线=1的焦点坐标为(3,0),(﹣3,0),可得椭圆中的c=3,由椭圆过点A(0,3),可得b=3,则a==6,则椭圆的方程为+=1;(2)设P(x1,y1),Q(x2,y2),直线AP的斜率为k,直线AQ的斜率为﹣,直线AP的方程为y=kx+3,代入椭圆x2+4y2﹣36=0,可得(1+4k2)x2+24kx=0,解得x1=﹣,y1=kx1+3=,即有P(﹣,),将上式中的k换为﹣,可得Q(,),则直线PQ的斜率为k PQ==,直线PQ的方程为y﹣=(x+),可化为x(k2﹣1)﹣(5y+9)k=0,可令x=0,5y+9=0,即x=0,y=﹣.则PQ过定点(0,﹣).【点评】本题考查椭圆方程的求法,注意运用双曲线的焦点坐标,考查直线恒过定点的求法,注意运用联立直线方程和椭圆方程,考查化简整理的运算能力,属于中档题.21.已知函数f(x)=8a2lnx+x2+6ax+b(a,b∈R)(1)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x,求a,b的值;(2)若a≥1,证明:∀x1,x2∈(0,+∞),且x1≠x2,都有>14成立.【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【分析】(1)求导,由题意可知,即可求得a,b的值;(2)利用分析法,构造辅助函数,求导,根据函数的单调性即可求得结论.【解答】解:(1)函数f(x)的定义域为(0,+∞),求导f′(x)=+2x+6a,由曲线y=f(x)在点(1,f(1))处的切线方程为y=2x,则,解得:或,则a,b的值0,1或﹣,;(2)证明:①当x1<x2时,则x2﹣x1>0,欲证:∀x1,x2∈(0,+∞),都有>14成立,只需证∀x1,x2∈(0,+∞),都有f(x2)﹣f(x1)>14(x2﹣x1)成立,只需证∀x1,x2∈(0,+∞),都有f(x2)﹣14x2>f(x1)﹣14x1成立,构造函数h(x)=f(x)﹣14x,则h′(x)=2x++6a﹣14,由a≥1,则h′(x)=2x++6a﹣14≥8a+6a﹣14≥0,∴h(x)在(0,+∞)内单调递增,则h(x2)>h(x1)成立,∴f(x2)﹣14x2>f(x1)﹣14x1成立,则>14成立;②当x1>x2时,则x2﹣x2<0,欲证:∀x1,x2∈(0,+∞),都有>14成立,只需证∀x1,x2∈(0,+∞),都有f(x2)﹣f(x1)>14(x2﹣x1)成立,只需证∀x1,x2∈(0,+∞),都有f(x2)﹣14x2>f(x1)﹣14x1成立,构造函数H(x)=f(x)﹣14x,则H′(x)=2x++6a﹣14,由a≥1,则H′(x)=2x++6a﹣14≥8a+6a﹣14≥0,∴H(x)在(0,+∞)内单调递增,则H(x2)<H(x1)成立,∴>14成立,综上可知:∀x1,x2∈(0,+∞),且x1≠x2,都有>14成立.【点评】本题考查导数的综合应用,导数的几何意义,利用导数求函数的单调性及最值,考查分析法证明不等式,考查转化思想,属于中档题.[选修4-4:参数方程与极坐标系]22.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ2﹣2ρcosθ﹣4=0(1)若直线l与曲线C没有公共点,求m的取值范围;(2)若m=0,求直线l被曲线C截得的弦长.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)曲线C的极坐标方程化为直角坐标方程,直线l的参数方程为,代入并整理可得t2+(m﹣1)t+m2﹣4=0,利用直线l与曲线C没有公共点,即可求m的取值范围;(2)若m=0,若m=0,直线l的极坐标方程为θ=,代入C的极坐标方程并整理可得ρ2﹣ρ﹣4=0,利用极径的意义求直线l被曲线C截得的弦长.【解答】解:(1)曲线C的极坐标方程对应的直角坐标方程为x2+y2﹣2x﹣4=0,即(x﹣1)2+y2=5直线l的参数方程为,代入并整理可得t2+(m﹣1)t+m2﹣4=0∵直线l与曲线C没有公共点,∴△=(m﹣1)2﹣4(m2﹣4)<0,∴m<﹣﹣2或m>﹣+2;(2)若m=0,直线l的极坐标方程为θ=,代入C的极坐标方程并整理可得ρ2﹣ρ﹣4=0.直线l被曲线C截得的弦的端点的极径分别为ρ1,ρ2,则ρ1+ρ2=1,ρ1ρ2=﹣4,∴直线l被曲线C截得的弦长=|ρ1﹣ρ2|==.【点评】本题考查三种方程的转化,考查极径的意义,属于中档题.[选修4-5:不等式选讲]23.(2017湖北四模)已知函数f(x)=|x﹣2a|+|x+|(1)当a=1时,求不等式f(x)>4的解集;(2)若不等式f(x)≥m2﹣m+2对任意实数x及a恒成立,求实数m的取值范围.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(1)当a=1时,分类讨论,求不等式f(x)>4的解集;(2)f(x)=|x﹣2a|+|x+|≥|2a+|=|2a|+||,利用不等式f(x)≥m2﹣m+2对任意实数x及a恒成立,求实数m的取值范围.21 【解答】解:(1)当a=1时,不等式f (x )>4为|x ﹣2|+|x +1|>4.x <﹣1时,不等式可化为﹣(x ﹣2)﹣(x +1)>4,解得x<﹣,∴x<﹣;﹣1≤x ≤2时,不等式可化为﹣(x ﹣2)+(x +1)>4,不成立;x >2时,不等式可化为(x ﹣2)+(x +1)>4,解得x>,∴x>;综上所述,不等式的解集为{x |x<﹣或x>};(2)f (x )=|x ﹣2a |+|x+|≥|2a+|=|2a|+||, 不等式f (x )≥m 2﹣m +2对任意实数x 及a 恒成立,∴2m 2﹣m +2,∴0≤m ≤1. 【点评】本题主要考查绝对值的意义,带由绝对值的函数,函数的恒成立问题,体现了转化、数形结合的数学思想,属于中档题.。
2017年湖北省高三四月调考理科数学第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.若复数1,z i z =+为z 的共轭复数,则z z ⋅= 2 D.2i2.设集合(){}(){},|1,,|1A x y y x B x y x y ==+=+=,则A B I中的元素个数为A.0个B. 1个C. 2个D.无数个3.设等差数列{}n a 的前n 项和为n S ,若12464,30a a a a =++=,则6S = A. 54 B. 44 C. 34 D. 244.已知点()()1,0,1,0A B -为双曲线()222210,0x y a b a b-=>>的左右顶点,点M 在双曲线上,ABM ∆为等腰三角形,且顶角为120o ,则该双曲线的标准方程为A. 2214y x -=B. 2212y x -=C.221x y -= D.2212y x -= 5.621x x ⎛⎫- ⎪⎝⎭的展开式,6x 的系数为A. 15B. 6C. -6D. -156.已知随机变量η满足()()15,15E D ηη-=-=,则下列说法正确的是 A. ()()5,5E D ηη=-= B. ()()4,4E D ηη=-=- C. ()()5,5E D ηη=-=- D. ()()4,5E D ηη=-=7.设,,a b c r r r 均为非零向量,已知命题:p a c =r r是a c b c ⋅=⋅r r r r的必要不充分条件,命题:1q x >是1x >成立的充分不必要条件,则下列命题是真命题的是 A. p q ∧ B. p q ∨ C. ()()p q ⌝∧⌝ D.()p q ∨⌝ 8.已知函数()()cos 0,,2xx f x a R a e ωϕπωϕ+⎛⎫=><∈ ⎪⋅⎝⎭在区间[]3,3-上的图象如图所示,则a ω可取A. 4πB. 2πC.πD.2π9.执行如图所示的程序框图,若输出的值为5y =,则满足条件的实数x 的个数为A. 4B. 3C. 2D. 110.网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为 A. 2 B. 4 C.223D. 213+11.已知实数,x y 满足()2221x y +-=223x y+的取值范围是A.3,2⎤⎦ B. []1,2 C. (]0,2 D. 3⎤⎥⎝⎦12.过圆2225x y +=内一点)15,0P 作倾斜角互补的直线AC 和BD ,分别交圆于A,C,和B,D ,则四边形ABCD 的面积的最大值为 A. 403803 C. 2802第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知正六棱锥S ABCDEF -的底面边长和高均为1,则异面直线SC 与DE 所成角的大小为为 .14.已知数列{}n a 为等差数列,{}n b 为等比数列,且0,0n n a b >>,记数列{}n n a b ⋅的前n 项和为n S ,若()()111,131n n a b S n n N *===-⋅+∈,则数列25n n a b ⎧⎫-⎨⎬⎩⎭的最大项为第 项.15. 某单位植树节计划种杨树x 棵,柳树y 棵,若实数,x y 满足约束条件2527x y x y x ->⎧⎪-<⎨⎪<⎩,则该单位集合栽种这两种树的棵树最多为 . 16.函数()sin sin 3f x x x π⎛⎫=++⎪⎝⎭的值域为 . 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.(本题满分12分)在ABC ∆中,角A,B,C 的对边分别为,,a b c ,且cos .a C b=(1)求B ;(2)设CM 是角C 的平分线,且1,6CM b ==,求cos BCM ∠.18.(本题满分12分) 如图,长方体1111ABCD A B C D -中,点M 在棱1BB 上,两条直线,MA MC 与平面ABCD 所成角均为θ,AC 与BD 交于点O.(1)求证:AC OM ⊥;(2)当M 为1BB 的中点,且4πθ=时,求二面角11A D M B --的余弦值.19.(本题满分12分)在某小学体育素质达标运动会上,对10名男生和10名女生在一分钟跳绳的次数进行统计,得到如下所示茎叶图:(1)已知男生组中数据的中位数为125,女生组数据的平均数为124,求,x y 的值;(2)现从这20名学生中任意抽取一名男生和一名女生对他们进行训练,记一分钟内跳绳次数不低于115且不超过125的学生被选上的人数为X ,求X 的分布列和数学期望E (X ).20.(本题满分12分)已知平面内动点P 与点()3,0A -和点()3,0B 的连线的斜率之积为8.9- (1)求动点P 的轨迹方程;(2)设点P 的轨迹且曲线C ,过点()1,0的直线与曲线C 交于M,N 两点,记AMB ∆的面积为1S ,ANB ∆的面积为2S ,当12S S -取得最大值时,求12S S 的值.21.(本题满分12分)已知函数()()ln ,.xx f x x x g x e ==(1)证明方程()()f x g x =在区间()1,2内有且仅有唯一实根;(2)记{}max ,a b 表示,a b 两个数中的较大者,方程()()f x g x =在区间()1,2内的实数根为()()(){}0,max ,x m x f x g x =,若()()m x n n R =∈在()1,+∞内有两个不等的实根()1212,x x x x <,判断12x x +与02x 的大小,并说明理由.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。
2017年全国普通高等学校高考数学四模试卷(文科)(衡水金卷)一.选择题(本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,只有一项符合题目要求)1.已知集合A={x∈N|x(2﹣x)≥0},B={x|﹣1≤x≤1},则A∩B=()A.{x|0≤x≤2}B.{x|0<x<2}C.{0,1,2}D.{0,1}2.已知复数z=(a∈R,i为虚数单位)是纯虚数,则a的值为()A.1 B.2 C.﹣1 D.03.已知=2,则tanα=()A.B.﹣ C.D.﹣54.A,B,C三位抗战老兵应邀参加了在北京举行的“纪念抗战胜利70周年”大阅兵的老兵方队,现安排这三位老兵分别坐在某辆检阅车的前三排(每两人均不坐同一排),则事件“A 或B坐第一排”的概率为()A.B.C.D.5.已知圆O的方程为x2+y2=1,直线l的方程为y=k(x﹣1)+3,则“k=“是”直线l与圆O相切”的.A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.椭圆C: +=1(a>b>0)的两焦点为F1,F2,P为椭圆C上一点,且PF2⊥x轴,若△PF1F2的内切圆半径r=,则椭圆C的离心率为()A.B.C.D.7.已知某几何体的三视图如图所示,则几何体的体积为()A. + B. +C. +D. +8.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布,记该女子一月中的第n天所织布的尺数为a n,则a14+a15+a16+a17的值为()A.55 B.52 C.39 D.269.将函数f(x)=2sin(2x+)的图象向左平移个单位,再把所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=g(x)的图象,则下面对函数y=g(x)的叙述正确的是()A.函数g(x)=2sin(x+)B.函数g(x)的周期为πC.函数g(x)的一个对称中心为点(﹣,0)D.函数g(x)在区间[,]上单调递增10.执行如图所示的程序框图,其中输入的a i(i=1,2,…10)依次是:﹣3,﹣4,5,3,4,﹣5,6,8,0,2,则输出的V值为()A.16 B.C.D.11.设关于x,y的不等式组,表示的平面区域内存在点M(x0,y0),满足x0+2y0=5,则实数t的取值范围是()A.(﹣∞,﹣1]B.[1,+∞)C.(﹣∞,1]D.以上都不正确12.定义在R上的函数f(x)满足:①f(﹣x)=﹣f(x);②f(x+2)=f(x);③x∈[0,1]时,f(x)=log(x2﹣x+1),则函数y=f(x)﹣log3|x|的零点个数为()A.8 B.6 C.4 D.2二、填空题(共4小题,每小题5分,满分20分)13.已知递增等差数列{a n}中,a1=1,a=a1a5,则a10=.14.在▱ABCD中,•=8,•=﹣12,则||=.15.若曲线f(x)=f′(2)lnx﹣f(1)x+2x2在点(,f())处的切线为l,则切线l的斜率为.16.已知函数f(x)=2x2+3,g(x)=a,若对于任意的x∈R,不等式f(x)>g(x)恒成立,则实数a的取值范围是.三.解答题(本大题共5小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.在△ABC中,角A,B,C所对的边分别为a,b,c,且b=c,sinA﹣sinB=(﹣1)sinC.(1)求B的大小;(2)若△ABC的面积为4,求a,b,c的值.18.到2016年,北京市高考英语总分将由150分降低到100分,语文分值将相应增加.某校高三学生率先尝试100分制英语考试,从中随机抽出50人的英语成绩作为样本并进行统计,将测试结果按如下方式分成五组:第一组[50,60],第二组[60,70],…第五组[90,100],如图是按上述分组方法得到的频率分布直方图.(1)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计这次参加英语考试的高三学生的英语平均成绩;(2)从这五组中抽取14人进行座谈,若抽取的这14人中,恰好有2人成绩为50分,7人成绩为70分,2人成绩为75分,3人成绩为80分,求这14人英语成绩的方差;(3)从50人的样本中,随机抽取测试成绩在[50,60]∪[90,100]内的两名学生,设其测试成绩分别为m,n(i)求事件“|m﹣n|>30”的概率;(ii)求事件“mn≤3600”的概率.19.如图,△ADM是等腰直角三角形,AD⊥DM,四边形ABCM是直角梯形,AB⊥BC,MC⊥BC,且AB=2BC=2CM=2,平面ADM⊥平面ABCM.(1)求证:AD⊥BD;(2)若点E是线段DB上的一动点,问点E在何位置时,三棱锥M﹣ADE的体积为?20.已知圆C的圆心与双曲线M:y2﹣x2=的上焦点重合,直线3x+4y+1=0与圆C相交于A,B两点,且|AB|=4.(1)求圆C的标准方程;(2)O为坐标原点,D(﹣2,0),E(2,0)为x轴上的两点,若圆C内的动点P使得|PD|,|PO|,|PE|成等比数列,求•的取值范围.21.已知函数f(x)=lnx+(a>1).(1)若函数f(x)的图象在x=1处的切线斜率为﹣1,求该切线与两坐标轴围成的三角形的面积;(2)若函数f(x)在区间[1,e]上的最小值是2,求a的值.请考生在22.23.题中任选一题作答,如果多做,则按所做的第一题记分)[选修4-4:坐标系与参数方程]22.设点A是曲线C:,(θ为参数)上的动点,点B是直线l:,(t为参数)上的动点(1)求曲线C与直线l的普通方程;(2)求A,B两点的最小距离.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣2|﹣|x﹣4|.(1)求不等式f(x)<0的解集;(2)若函数g(x)=的定义域为R,求实数m的取值范围.2017年全国普通高等学校高考数学四模试卷(文科)(衡水金卷)参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,只有一项符合题目要求)1.已知集合A={x∈N|x(2﹣x)≥0},B={x|﹣1≤x≤1},则A∩B=()A.{x|0≤x≤2}B.{x|0<x<2}C.{0,1,2}D.{0,1}【考点】交集及其运算.【分析】求出两个集合,然后求解交集即可.【解答】解:集合A={x∈N|x(2﹣x)≥0}═{x∈N|0≤x≤2}={0,1,2},B={x|﹣1≤x≤1},则集合A∩B={0,1}.故选:D.2.已知复数z=(a∈R,i为虚数单位)是纯虚数,则a的值为()A.1 B.2 C.﹣1 D.0【考点】复数代数形式的乘除运算.【分析】由复数的除法运算化复数为a+bi(a,b∈R)的形式,由实部等于0且虚部不等于0列方程求出实数a的值.【解答】解:根据复数z===+i是纯虚数,得,解得a=2;所以使复数是纯虚数的实数a的值为2.故选:B.3.已知=2,则tanα=()A.B.﹣ C.D.﹣5【考点】三角函数的化简求值.【分析】利用诱导公式,同角三角函数基本关系式化简已知等式即可得解.【解答】解:∵===2,∴解得:tanα=﹣5.故选:D.4.A,B,C三位抗战老兵应邀参加了在北京举行的“纪念抗战胜利70周年”大阅兵的老兵方队,现安排这三位老兵分别坐在某辆检阅车的前三排(每两人均不坐同一排),则事件“A 或B坐第一排”的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】安排这3位老兵分别坐在某辆检阅车的前3排(每两人均不坐同一排),先求出基本事件总数,再求出A或B坐第一排的种数,根据概率公式计算即可.【解答】解:安排这3位老兵分别坐在某辆检阅车的前3排(每两人均不坐同一排),基本事件总数A33=6,A或B坐第一排有C21A22=4种,故“A或B坐第一排”的概率为=,故选:A.5.已知圆O的方程为x2+y2=1,直线l的方程为y=k(x﹣1)+3,则“k=“是”直线l与圆O相切”的.A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据利用点到直线的距离公式求得圆心到直线的距离,求出k的值,再根据充分必要条件的定义判断即可.【解答】解:O的方程为x2+y2=1,表示以(0,0)为圆心、半径r=1的圆.求出圆心到直线l的方程为y=k(x﹣1)+3的距离为d==1,解得k=,故“k=“是”直线l与圆O相切”充要条件,故选:C.6.椭圆C: +=1(a>b>0)的两焦点为F1,F2,P为椭圆C上一点,且PF2⊥x轴,若△PF1F2的内切圆半径r=,则椭圆C的离心率为()A.B.C.D.【考点】椭圆的简单性质.【分析】设出椭圆的焦点坐标,令x=c,求得|PF2|=,由椭圆的定义可得,|PF1|=2a﹣,在直角△PF1F2中,运用面积相等,可得内切圆的半径r,由条件化简整理,结合离心率公式,计算即可得到所求值.【解答】解:由椭圆C: +=1(a>b>0)的两焦点为F1(﹣c,0),F2(c,0),P为椭圆C上一点,且PF2⊥x轴,可得|F1F2|=2c,由x=c,可得y=±b=±,即有|PF2|=,由椭圆的定义可得,|PF1|=2a﹣,在直角△PF1F2中, |PF2|•|F1F2|=r(|F1F2|+|PF1|+|PF2|),可得△PF1F2的内切圆半径r==c,即有2b2=2(a2﹣c2)=a(a+c),整理,得a=2c,椭圆C的离心率为e==.故选:B.7.已知某几何体的三视图如图所示,则几何体的体积为()A. + B. +C. +D. +【考点】由三视图求面积、体积.【分析】由三视图知该几何体是一个组合体:上面是三棱锥、下面是半球,由三视图求出几何元素的长度,由球体、锥体的体积公式求出该几何体的体积.【解答】解:根据三视图可知几何体是一个组合体:上面是三棱锥、下面是半球,且三棱锥的底面是等腰直角三角形、直角边为1,高为1,由圆的直径所对的圆周角是直角得球的半径是,∴几何体的体积V==,故选D.8.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布,记该女子一月中的第n天所织布的尺数为a n,则a14+a15+a16+a17的值为()A.55 B.52 C.39 D.26【考点】等差数列的前n项和.【分析】设从第2天开始,每天比前一天多织d尺布,由等差数列前n项和公式求出d=,由此利用等差数列通项公式能求出a14+a15+a16+a17.【解答】解:设从第2天开始,每天比前一天多织d尺布,则=390,解得d=,∴a14+a15+a16+a17=a1+13d+a1+14d+a1+15d+a1+16d=4a1+58d=4×5+58×=52.故选:B.9.将函数f(x)=2sin(2x+)的图象向左平移个单位,再把所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=g(x)的图象,则下面对函数y=g(x)的叙述正确的是()A.函数g(x)=2sin(x+)B.函数g(x)的周期为πC.函数g(x)的一个对称中心为点(﹣,0)D.函数g(x)在区间[,]上单调递增【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用正弦函数的周期性、单调性以及它的图象的对称性,得出结论.【解答】解:将函数f(x)=2sin(2x+)的图象向左平移个单位,可得函数y=2sin[2(x+)+]=2sin(2x+)的图象;再把所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=g(x)=2sin(4x+)的图象,故g(x)的周期为=,排除A、B.令x=﹣,求得f(x)=0,可得g(x)的一个对称中心为点(﹣,0),故C满足条件.在区间[,]上,4x+∈[π,],函数g(x)没有单调性,故排除D,故选:C.10.执行如图所示的程序框图,其中输入的a i(i=1,2,…10)依次是:﹣3,﹣4,5,3,4,﹣5,6,8,0,2,则输出的V值为()A.16 B.C.D.【考点】程序框图.【分析】模拟程序的运行,可得程序框图的功能是计算并输出V=的值,由题意计算S,T的值即可得解.【解答】解:根据题意,本程序框图中循环体为“直到型”循环结构,模拟程序的运行,可得程序框图的功能是计算并输出V=的值.由题意可得:S=3+4+5+6+8+2,T=(﹣3)+(﹣4)+(﹣5)+0,所以:V===.故选:B.11.设关于x,y的不等式组,表示的平面区域内存在点M(x0,y0),满足x0+2y0=5,则实数t的取值范围是()A.(﹣∞,﹣1]B.[1,+∞)C.(﹣∞,1]D.以上都不正确【考点】简单线性规划.【分析】作出可行域,根据可行域满足的条件判断可行域边界x﹣2y=t的位置,列出不等式解出.【解答】解:作出可行域如图:∵平面区域内存在点M(x0,y0),满足x0+2y0=5,∴直线x+2y=5与可行域有交点,解方程组得A(2,).∴点A在直线x﹣2y=t上或在直线x﹣2y=t下方.由x﹣2y=t得y=.∴,解得t≤﹣1.故选:A.12.定义在R上的函数f(x)满足:①f(﹣x)=﹣f(x);②f(x+2)=f(x);③x∈[0,1]时,f(x)=log(x2﹣x+1),则函数y=f(x)﹣log3|x|的零点个数为()A.8 B.6 C.4 D.2【考点】函数零点的判定定理.【分析】由已知画出两个函数f(x)=log(x2﹣x+1)与y=log3|x|的简图,数形结合得答案.【解答】解:由①②可知,f(x)是周期为2的奇函数,又x∈[0,1]时,f(x)=log(x2﹣x+1),可得函数f(x)在R上的图象如图,由图可知,函数y=f(x)﹣log3|x|的零点个数为6个,故选:B.二、填空题(共4小题,每小题5分,满分20分)13.已知递增等差数列{a n}中,a1=1,a=a1a5,则a10=19.【考点】等差数列的通项公式.【分析】设递增等差数列{a n}的公差为d>0,由a1=1,a=a1a5,可得(1+d)2=1×(1+4d),解得d即可得出.【解答】解:设递增等差数列{a n}的公差为d>0,∵a1=1,a=a1a5,∴(1+d)2=1×(1+4d),解得d=2.则a10=1+2×(10﹣1)=19.故答案为:19.14.在▱ABCD中,•=8,•=﹣12,则||=2.【考点】平面向量数量积的运算.【分析】根据向量的加减的集合意义以及向量的数量积的运算即可求出.【解答】解:∵•=8,•=﹣12,∴•(+)=8,∴||2+•=8∴||2=8+12=20,∴||=2,故答案为:2.15.若曲线f(x)=f′(2)lnx﹣f(1)x+2x2在点(,f())处的切线为l,则切线l的斜率为29.【考点】利用导数研究曲线上某点切线方程.【分析】令x=1,可得f(1),求出导数,再令x=2,求出f′(2)=14,及切线的斜率,从而得到f(x),即可得到切线l的斜率.【解答】解:x=1,f(1)=﹣f(1)+2,∴f(1)=1f(x)=f′(2)lnx﹣f(1)x+2x2,则f′(x)=•f′(2)﹣f(1)+4x,则f′(2)=•f′(2)﹣f(1)+8,即f′(2)=﹣2f(1)+16=14,∴f(x)=14lnx﹣x+2x2,∴f′(x)=﹣1+4x,∴切线l的斜率为f′()=29.16.已知函数f(x)=2x2+3,g(x)=a,若对于任意的x∈R,不等式f(x)>g(x)恒成立,则实数a的取值范围是(﹣∞,3).【考点】函数恒成立问题.【分析】不等式f(x)>g(x)恒成立,即2x2+3>a恒成立,分离参数可得a<恒成立,换元求最值,即可确定实数a的取值范围.【解答】解:不等式f(x)>g(x)恒成立,即2x2+3>a恒成立.∴a<恒成立.设t=(t≥1),则y=2t+在[1,+∞)上单调递增,∴t=1,y min=3,∴a<3.故答案为:(﹣∞,3)三.解答题(本大题共5小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.在△ABC中,角A,B,C所对的边分别为a,b,c,且b=c,sinA﹣sinB=(﹣1)sinC.(1)求B的大小;(2)若△ABC的面积为4,求a,b,c的值.【考点】余弦定理;正弦定理.【分析】(1)利用正弦定理化简已知可得a﹣b=()c,结合b=c,可得a=,由余弦定理可求cosB,结合范围B∈(0,π),即可得解B的值.(2)利用已知及三角形面积公式可求c的值,结合(1)即可求得b,a的值.【解答】解:(1)∵sinA﹣sinB=(﹣1)sinC.∴由正弦定理可得:a﹣b=()c,又∵b=c,可得a=.∴cosB===,又∵B∈(0,π),∴B=(2)∵△ABC的面积为4,∴=4,解得:c=4,∴由(1)可得:b=4,a=418.到2016年,北京市高考英语总分将由150分降低到100分,语文分值将相应增加.某校高三学生率先尝试100分制英语考试,从中随机抽出50人的英语成绩作为样本并进行统计,将测试结果按如下方式分成五组:第一组[50,60],第二组[60,70],…第五组[90,100],如图是按上述分组方法得到的频率分布直方图.(1)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计这次参加英语考试的高三学生的英语平均成绩;(2)从这五组中抽取14人进行座谈,若抽取的这14人中,恰好有2人成绩为50分,7人成绩为70分,2人成绩为75分,3人成绩为80分,求这14人英语成绩的方差;(3)从50人的样本中,随机抽取测试成绩在[50,60]∪[90,100]内的两名学生,设其测试成绩分别为m,n(i)求事件“|m﹣n|>30”的概率;(ii)求事件“mn≤3600”的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(1)由频率分布直方图能估计高三学生的英语平均成绩.(2)先求出这14人英语成绩的平均分,由此能求出这14人英语成绩的方差.(3)(i)由直方图知成绩在[50,60]内的人数为2,设其成绩分别为a,b,c,利用列举法能求出事件“|m﹣n|>30”的概率.(ii)由事件mn≤3600的基本事件只有(x,y)这一种,能求出事件“mn≤3600”的概率.【解答】解:(1)估计高三学生的英语平均成绩为:55×0.004×10+65×0.018×10+75×0.040×10+85×0.032×10+95×0.006×10=76.8.(2)这14人英语成绩的平均分为:==70,∴这14人英语成绩的方差:S2= [2(50﹣70)2+7(70﹣70)2+2(75﹣70)2+3(80﹣70)2]=.(3)(i)由直方图知成绩在[50,60]内的人数为:50×10×0.004=2,设其成绩分别为a,b,c,若m,n∈[50,60)时,只有(x,y)一种情况,若m,n∈[90,100]时,有(a,b),(b,c),(a,c)三种情况,若m,n分别在[50,60)和[90,100]内时,有:a b cx (x,a)(x,b)(x,c)y (y,a)(y,b)(y,c)共6种情况,∴基本事件总数为10种,事件“|m﹣n|>30”所包含的基本事件有6种,∴P(|m﹣n|>30)=.(ii)事件mn≤3600的基本事件只有(x,y)这一种,∴P(mn≤3600)=.19.如图,△ADM是等腰直角三角形,AD⊥DM,四边形ABCM是直角梯形,AB⊥BC,MC⊥BC,且AB=2BC=2CM=2,平面ADM⊥平面ABCM.(1)求证:AD⊥BD;(2)若点E是线段DB上的一动点,问点E在何位置时,三棱锥M﹣ADE的体积为?【考点】棱柱、棱锥、棱台的体积;空间中直线与直线之间的位置关系.【分析】(1)根据平面几何知识可证明AM⊥BM,故而BM⊥平面ADM,于是BM⊥AD,结合AD⊥DM可得AD⊥平面BDM,于是AD⊥BD;(2)令,则E到平面ADM的距离d=λ•BM=,代入棱锥的体积公式即可得出λ,从而确定E的位置.【解答】证明:(1)∵四边形ABCM是直角梯形,AB⊥BC,MC⊥BC,AB=2BC=2MC=2,∴BM=AM=,∴BM2+AM2=AB2,即AM⊥BM.∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM⊂平面ABCM,∴BM⊥平面DAM,又DA⊂平面DAM,∴BM⊥AD,又AD⊥DM,DM⊂平面BDM,BM⊂平面BDM,DM∩BM=M,∴AD⊥平面BDM,∵BD⊂平面BDM,∴AD⊥BD.(2)由(1)可知BM⊥平面ADM,BM=,设,则E到平面ADM的距离d=.∵△ADM是等腰直角三角形,AD⊥DM,AM=,∴AD=DM=1,∴V M﹣ADE =V E﹣ADM==.即=.∴.∴E为BD的中点.20.已知圆C的圆心与双曲线M:y2﹣x2=的上焦点重合,直线3x+4y+1=0与圆C相交于A,B两点,且|AB|=4.(1)求圆C的标准方程;(2)O为坐标原点,D(﹣2,0),E(2,0)为x轴上的两点,若圆C内的动点P使得|PD|,|PO|,|PE|成等比数列,求•的取值范围.【考点】双曲线的简单性质.【分析】(1)求出双曲线的标准方程求出焦点坐标,利用直线和圆相交的弦长公式进行求解即可.(2)根据|PD|,|PO|,|PE|成等比数列,建立方程关系,结合向量数量积的坐标进行化简求解即可.【解答】解:(1)双曲线的标准方程为=1,则c==1,即双曲线的焦点C(0,1),圆心C到直线3x+4y+1=0的距离d=,则半径r=.故圆C的标准方程为x2+(y﹣1)2=5.(2)设P(x,y),∵|PD|,|PO|,|PE|成等比数列,∴•=x2+y2,整理得x2﹣y2=2,故•=(﹣2﹣x,﹣y)•(2﹣x,﹣y)=x2﹣4+y2=2(y2﹣1),由于P在圆C内,则,得y2﹣y﹣1<0,得<y<,则0≤y2<()2=,∴2(y2﹣1)∈[﹣2,1+),则•的取值范围是[﹣2,1+).21.已知函数f(x)=lnx+(a>1).(1)若函数f(x)的图象在x=1处的切线斜率为﹣1,求该切线与两坐标轴围成的三角形的面积;(2)若函数f(x)在区间[1,e]上的最小值是2,求a的值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,根据f′(1)=﹣1,求出a的值,从而求出切线方程即可;(2)求出函数的导数,通过讨论a的范围,单调函数的单调区间,求出函数的最小值,从而求出a的值即可.【解答】解:(1)由f(x)=lnx+,得:f′(x)=,则f′(1)=1﹣a,由切线斜率为﹣1,得1﹣a=﹣1,解得:a=2,则f(1)=2,∴函数f(x)在x=1处的切线方程是y﹣2=﹣(x﹣1),即x+y﹣3=0,故与两坐标轴围成的三角形的面积为:×3×3=;(2)由(1)知,f′(x)=,x∈[1,e],①1<a<e时,在区间[1,a]上有f′(x)<0,函数f(x)在区间[1,a]上单调递减,在区间(a,e]上有f′(x)>0,函数f(x)在区间(a,e]上单调递增,∴f(x)的最小值是f(a)=lna+1,由lna+1=2得:a=e与1<a<e矛盾,②a=e时,f′(x)≤0,f(x)在[1,e]上递减,∴f(x)的最小值是f(e)=2,符合题意;③a>e时,显然f(x)在区间[1,e]上递减,最小值是f(e)=1+>2,与最小值是2矛盾;综上,a=e.请考生在22.23.题中任选一题作答,如果多做,则按所做的第一题记分)[选修4-1:几何证明选讲][选修4-4:坐标系与参数方程]22.设点A是曲线C:,(θ为参数)上的动点,点B是直线l:,(t为参数)上的动点(1)求曲线C与直线l的普通方程;(2)求A,B两点的最小距离.【考点】参数方程化成普通方程.【分析】(1)由曲线C:,(θ为参数),利用cos2θ+sin2θ=1可得普通方程.由直线l:,(t为参数),消去参数t化为普通方程.(2)设A(2cosθ,sinθ),点A到直线l的距离d=(其中tanφ=4),利用三角函数的单调性与值域即可得出最值.【解答】解:(1)由曲线C:,(θ为参数),可得普通方程:=1.由直线l:,(t为参数)化为普通方程:2x﹣y﹣5=0.(2)设A(2cosθ,sinθ),点A到直线l的距离d==(其中tanφ=4),当sin(θ﹣φ)=﹣1时,d取得最小值=.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣2|﹣|x﹣4|.(1)求不等式f(x)<0的解集;(2)若函数g(x)=的定义域为R,求实数m的取值范围.【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(1)通过讨论x的范围,求出不等式的解集即可;(2)问题等价于m=f(x)在R 无解,求出f(x)的范围,从而求出m的范围即可.【解答】解:(1)原不等式即为|x﹣2|﹣|x﹣4|<0,若x≤2,则2﹣x+x﹣4<0,符合题意,∴x≤2,若2<x<4,则x﹣2+x﹣4<0,解得:x<3,∴2<x<3,若x≥4,则x﹣2﹣x+4<0,不合题意,综上,原不等式的解集是{x|x<3};(2)若函数g(x)=的定义域为R,则m﹣f(x)=0恒不成立,即m=f(x)在R无解,|f(x)|=||x﹣2|﹣|x﹣4||≤|x﹣2﹣(x﹣4)|=2,当且仅当(x﹣2)(x﹣4)≤0时取“=”,∴﹣2≤f(x)≤2,故m的范围是(﹣∞,﹣2)∪(2,+∞).。